Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 626
Filtrar
1.
J Hazard Mater ; 479: 135685, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39226690

RESUMO

Based on the important feature of sulfur with excellent selectivity toward selenite in the presence of selenate, a simple and low-cost adsorbent of solid phase extraction known as sulfur loading activated carbon (SAC-6) was successfully prepared and applied for selenite (Se(IV)) analysis in water. Microstructure and morphological characteristics of SAC-6 had been identified by XRD, TEM, BET and FT-IR. In the static adsorption experiments, Se(IV) could be separated in a wide range of pH values (pH=3-11). The retention process of Se(IV) onto SAC-6 was characterized as spontaneous exothermic reaction. An obvious change of adsorption mechanism occurred in static and dynamic adsorption processes shown that the behaviors followed monolayer and hybrid adsorption. The theoretical maximum adsorption capacity of SAC-6 calculated by Langmuir-Freundlich was 13.48 mg/g. The microcolumn filled with SAC-6 was applied to extract Se(IV) in water solution. The detection limit of Se(IV) analytical procedure was confirmed as 0.27 µg/L within a linear range of 10-1000 µg/L. A good precision with relative standard deviation of 1.34 % (100 µg/L, n = 6) was achieved. The high adaptability and accuracy of SAC-6 microcolumn was validated by analyzing natural water samples and certified reference materials. Our work successfully excavated the application value of the sulfur selectivity, and also provided a new adsorbent for Se(IV) extraction and analysis.

2.
Chem Biol Interact ; 402: 111184, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39103028

RESUMO

Selenium supplements are beneficial to human health, however, concerns regarding the toxicity of inorganic selenium have stimulated research on safer organic compounds. The main objective of this study was to develop a novel glucosamine-selenium compound (Se-GlcN), clarify its structure, and subsequently investigate its oral toxicity and in vitro anti-hepatitis B virus (HBV) activity. Electron microscopy, infrared, ultraviolet spectroscopy, nuclear magnetic resonance and thermogravimetric analyses revealed a unique binding mode of Se-GlcN, with the introduction of the Se-O bond at the C6 position, resulting in the formation of two carboxyl groups. In acute toxicity studies, the median lethal dose (LD50) of Se-GlcN in ICR mice was 92.31 mg/kg body weight (BW), with a 95 % confidence interval of 81.88-104.07 mg/kg BW. A 30-day subchronic toxicity study showed that 46.16 mg/kg BW Se-GlcN caused livers and kidneys damage in mice, whereas doses of 9.23 mg/kg BW and lower were safe for the livers and kidneys. In vitro studies, Se-GlcN at 1.25 µg/mL exhibited good anti-HBV activity, significantly reducing HBsAg, HBeAg, 3.5 kb HBV RNA and total HBV RNA by 45 %, 54 %, 84 %, 87 %, respectively. In conclusion, the Se-GlcN synthesized in this study provides potential possibilities and theoretical references for its use as an organic selenium supplement.

3.
Antioxidants (Basel) ; 13(8)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39199249

RESUMO

Selenium (Se) is an essential trace element known for its significant role in maintaining human health and mitigating disease progression. Selenium and its compounds exhibit high selective cytotoxicity against tumor cells. However, their anti-cervical cancer (CC) effects and underlying mechanisms have not been fully explored. This study found that sodium selenite (SS) inhibits the viability of HeLa and SiHa cells in a dose- and time-dependent manner. Intraperitoneal injection of 3 and 6 mg/kg SS for 14 days in female nude mice significantly inhibited the growth of HeLa cell xenografts without evident hepatotoxicity or nephrotoxicity. RNA sequencing results indicated that the AMP-activated protein kinase (AMPK), Forkhead box protein O (FOXO), and apoptosis signaling pathways are key regulatory pathways in SS's anti-CC effects, and SS's inhibition of HeLa cell proliferation may be related to autophagy and ROS-induced apoptosis. Further research has revealed that SS induces cell autophagy and apoptosis through the AMPK/mTOR/FOXO3a pathway, characterized by the upregulation of p-AMPK/AMPK, FOXO3a, LC3-II, cleaved-caspase3, and cleaved-PARP and the downregulation of p-mTOR/mTOR and p62. Additionally, SS impaired mitochondrial function, including decreased mitochondrial membrane potential, mitochondrial Ca2+ overload, and accumulation of mitochondrial reactive oxygen species (mtROS). Pretreatment with Mitoquinone mesylate (Mito Q) and compound C partially reversed SS-induced apoptosis, autophagy, and proliferation inhibition. Pretreatment with 3-methyladenine (3-MA) enhances SS-induced apoptosis and proliferation inhibition in HeLa cells but reverses these effects in SiHa cells. In summary, SS induces apoptosis, autophagy, and proliferation inhibition in HeLa and SiHa cells through the activation of the AMPK/mTOR/FOXO3a signaling pathway via mtROS. Autophagy activation may be a major risk factor for SS-induced apoptosis in SiHa cells but can protect HeLa cells from SS-induced apoptosis. These findings provide new evidence for understanding the molecular mechanisms underlying SS in potential new drug development for CC.

4.
Biochem Biophys Res Commun ; 733: 150580, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39213702

RESUMO

Colorectal cancer (CRC) is the third most common cancer in the world. With the development of high-throughput gene sequencing technology, homeostasis imbalance of the intestinal microbiota has been proven to play a key role in the pathogenesis of CRC. Furthermore, fecal bacteria transplantation (FMT) has been shown to alter the intestinal microecology, and is potentially an effective treatment for CRC. Sodium selenite plays an important role in anticancer adjuvant therapy due to its high pro-oxidation characteristics. In this study, a murine CRC tumor model was induced by AOM/DSS, and CRC mice were treated by FMT, sodium selenite, and FMT combined with sodium selenite. The results showed that FMT, sodium selenite, and FMT combined with sodium selenite inhibited the occurrence of CRC in mice, increased the abundance of beneficial intestinal bacteria, produced different microorganisms, and changed the metabolic pathways of the intestinal microbiota. In summary, FMT, sodium selenite, and FMT combined with sodium selenite can inhibit the occurrence of CRC by increasing the abundance of beneficial bacteria and regulating phenotypes and metabolic pathways. Notably, the effect of FMT combined with sodium selenite in reducing the number of tumors, protecting intestinal tissues, and restoring the diversity and richness of the intestinal microbiota is superior to that of FMT alone or sodium selenite alone. The results of this study provide new ideas for the application of FMT and selenium in the treatment of CRC.

5.
BMC Microbiol ; 24(1): 271, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033096

RESUMO

BACKGROUND: Selenium nanoparticles (SeNPs) are increasingly gaining attention due to its characteristics of low toxicity, high activity, and stability. Additionally, Bacillus licheniformis, as a probiotic, has achieved remarkable research outcomes in diverse fields such as medicine, feed processing, and pesticides, attracting widespread attention. Consequently, evaluating the activity of probiotics and SeNPs is paramount. The utilization of probiotics to synthesize SeNPs, achieving large-scale industrialization, is a current hotspot in the field of SeNPs synthesis and is currently the most promising synthetic method. To minimize production costs and maximize yield of SeNPs, this study selected agricultural by-products that are nutrient-rich, cost-effective, and readily available as culture medium components. This approach not only fulfills industrial production requirements but also mitigates the impact on downstream processes. RESULTS: The experimental findings revealed that SeNPs synthesized by B. licheniformis F1 exhibited a spherical morphology with diameters ranging from 110 to 170 nm and demonstrating high stability. Both the secondary metabolites of B. licheniformis F1 and the synthesized SeNPs possessed significant free radical scavenging ability. To provide a more robust foundation for acquiring large quantities of SeNPs via fermentation with B. licheniformis F1, key factors were identified through single-factor experiments and response surface methodology (RSM) include a 2% seed liquid inoculum, a temperature of 37 ℃, and agitation at 180 rpm. Additionally, critical factors during the optimization process were corn powder (11.18 g/L), soybean meal (10.34 g/L), and NaCl (10.68 g/L). Upon validating the optimized conditions and culture medium, B. licheniformis F1 can synthesize nearly 100.00% SeNPs from 5 mmol/L sodium selenite. Subsequently, pilot-scale verification in a 5 L fermentor using the optimized medium resulted in a shortened fermentation time, significantly reducing production costs. CONCLUSION: In this study, the efficient production of SeNPs by the probiotic B. licheniformis F1 was successfully achieved, leading to a significant reduction in fermentation costs. The exploration of the practical applications of this strain holds significant potential and provides valuable guidance for facilitating the industrial-scale implementation of microbial synthesis of SeNPs.


Assuntos
Bacillus licheniformis , Meios de Cultura , Fermentação , Probióticos , Selênio , Bacillus licheniformis/metabolismo , Selênio/metabolismo , Meios de Cultura/química , Probióticos/metabolismo , Nanopartículas/química , Nanopartículas Metálicas/química
6.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000544

RESUMO

Selenium (Se)-rich Cyclocarya paliurus is popular for its bioactive components, and exogenous Se fortification is the most effective means of enrichment. However, the effects of exogenous Se fortification on the nutritional quality of C. paliurus are not well known. To investigate the nutrient contents and antioxidant properties of C. paliurus following Se treatment, we used a foliar spray to apply Se in two forms-chemical nano-Se (Che-SeNPs) and sodium selenite (Na2SeO3). Sampling began 10 days after spraying and was conducted every 5 days until day 30. The Se, secondary metabolite, malondialdehyde contents, antioxidant enzyme activity, Se speciation, and Se-metabolism-related gene expression patterns were analyzed in the collected samples. Exogenous Se enhancement effectively increased the Se content of leaves, reaching a maximum on days 10 and 15 of sampling, while the contents of flavonoids, triterpenes, and polyphenols increased significantly during the same period. In addition, the application of Se significantly enhanced total antioxidant activity, especially the activity of the antioxidant enzyme peroxidase. Furthermore, a positive correlation between the alleviation of lipid peroxidation and Se content was observed, while methylselenocysteine formation was an effective means of alleviating Se stress. Finally, Na2SeO3 exhibited better absorption and conversion efficiency than Che-SeNPs in C. paliurus.


Assuntos
Antioxidantes , Folhas de Planta , Selênio , Selenito de Sódio , Antioxidantes/metabolismo , Selênio/metabolismo , Selênio/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Selenito de Sódio/farmacologia , Selenito de Sódio/metabolismo , Juglandaceae/química , Flavonoides/metabolismo , Flavonoides/análise , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Polifenóis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Triterpenos/metabolismo
7.
Curr Eye Res ; : 1-6, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034665

RESUMO

PURPOSE: To evaluate the protective role of Laurus Nobilis eye drops on selenite-induced cataracts in suckling rabbits. METHODS: Fifteen male albino suckling rabbits with no signs of ocular inflammation were randomly assigned to three groups: controls (Group A), sodium-selenite group (Group B) and sodium-selenite plus Laurus Nobilis group (Group C). By selenite treatment, cataract formation was experimentally induced and then graded. The grade of oxidative stress was defined in the lens, measuring the concentration of malondialdehyde, alpha-tocopherol, oxidized glutathione, ascorbic acid and hydrogen peroxide, and in blood samples as levels of alpha-tocopherol and malondialdehyde. RESULTS: Mean lens concentrations of GSSG, H2O2, and MDA levels in group B were significantly higher than in both group C and control. Ascorbic acid and alpha-tocopherol concentrations were lower in group B than in both group C and A. As plasma oxidative status markers, the level of MDA was higher in group B respected group C and A. The mean alpha-tocopherol levels in group B were significantly lower than in both group A and group C. CONCLUSIONS: In animals treated with Laurus Nobilis-based eye drops, inflammation was inhibited, and lipid peroxidation was significantly reduced. Laurus nobilis leaves extract represents a good source of antioxidant components that may contrast sodium selenite-induced cataractogenesis in suckling rabbits.

8.
Plant Physiol Biochem ; 214: 108930, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39013356

RESUMO

Selenium (Se) is an essential micronutrient in organisms that has a significant impact on physiological activity and gene expression in plants, thereby affecting growth and development. Humans and animals acquire Se from plants. Tomato (Solanum lycopersicum L.) is an important vegetable crop worldwide. Improving the Se nutrient level not only is beneficial for growth, development and stress resistance in tomato plants but also contributes to improving human health. However, the molecular basis of Se-mediated tomato plant growth has not been fully elucidated. In this study, using physiological and transcriptomic analyses, we investigated the effects of a low dosage of selenite [Se(Ⅳ)] on tomato seedling growth. Se(IV) enhanced the photosynthetic efficiency and increased the accumulation of soluble sugars, dry matter and organic matter, thereby promoting tomato plant growth. Transcriptome analysis revealed that Se(IV) reprogrammed primary and secondary metabolic pathways, thus modulating plant growth. Se(IV) also increased the concentrations of auxin, jasmonic acid and salicylic acid in leaves and the concentration of cytokinin in roots, thus altering phytohormone signaling pathways and affecting plant growth and stress resistance in tomato plants. Furthermore, exogenous Se(IV) alters the expression of genes involved in flavonoid biosynthesis, thereby modulating plant growth and development in tomato plants. Taken together, these findings provide important insights into the regulatory mechanisms of low-dose Se(IV) on tomato growth and contribute to the breeding of Se-accumulating tomato cultivars.


Assuntos
Reguladores de Crescimento de Plantas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Reguladores de Crescimento de Plantas/metabolismo , Ácido Selenioso/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Metabolismo Secundário/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Plântula/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento
9.
Int J Pharm ; 662: 124502, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39059519

RESUMO

The combined chemotoxicity and radiotoxicity associated with uranium, utilized in nuclear industry and military applications, poses significant threats to human health. Among uranium pollutants, uranyl is particularly concerning due to its high absorptivity and potent nephrotoxicity in its + 6 valence state. Here, we have serendipitously found Na2SeO3 facilitates the conversion of U(VI) to U(IV) precipitates. A novel approach involving nano-chitosan loaded internally with melatonin and externally modified with selenite (NPs Cs-Se/MEL) was introduced. This modification not only enhances the conversion of U(VI) to U(IV) but also preserves the spherical nanostructure and specific surface area, leading to increased adsorption of U(VI) compared to unmodified samples. Selenite modification improves lysosomal delivery in HEK-293 T cells and kidney distribution of the nanoparticles. Furthermore, NPs Cs-Se/MEL demonstrated a heightened uranium concentration in urine and exhibited remarkable efficiency in uranium removal, resulting in a reduction of uranium deposition in serum, kidneys, and femurs by up to 52.02 %, 46.79 %, and 71.04 %, respectively. Importantly, NPs Cs-Se/MEL can be excreted directly from the kidneys into urine when carrying uranium. The results presented a novel mechanism for uranium adsorption, making selenium-containing nano-materials attractive for uranium sequestration and detoxification.


Assuntos
Quitosana , Melatonina , Nanopartículas , Ácido Selenioso , Urânio , Humanos , Urânio/química , Células HEK293 , Melatonina/administração & dosagem , Melatonina/química , Melatonina/farmacocinética , Quitosana/química , Nanopartículas/química , Ácido Selenioso/química , Animais , Rim/metabolismo , Rim/efeitos dos fármacos , Adsorção , Masculino , Distribuição Tecidual
10.
Toxics ; 12(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39058134

RESUMO

Nanotechnology has been increasingly used in plant sciences, with engineered nanoparticles showing promising results as fertilizers or pesticides. The present study compared the effects in the foliar application of Se nanoparticles (SeNPs) or sodium selenite-Se(IV) on rice seedlings. The degree of plant growth, photosynthetic pigment content, and concentrations of Se, Na, Mg, K, Ca, Mn, Co, Cu, Zn, As, Cd, and Pb were evaluated. The results showed that the application of SeNPs at high concentrations (5 mg L-1), as well as the application of Se(IV), inhibited plant growth and increased the root concentrations of As and Pb. The application of SeNPs at 0.5 mg L-1 significantly increased Se accumulation in the aerial part from 0.161 ± 0.028 mg kg-1 to 0.836 ± 0.097 mg kg-1 without influencing physiological, chemical, or biochemical parameters. When applied to leaves, SeNPs tended to remain in the aerial part, while the application of Se(IV) caused a higher Se translocation from the shoots to the roots. This study provides useful information concerning the uptake, accumulation, and translocation of different Se formulations in rice seedlings and their effect on plant ionomic profiles, thus showing that the foliar application of SeNPs at low concentrations can be an effective and safe alternative for rice biofortification.

11.
Poult Sci ; 103(8): 103943, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964271

RESUMO

The purpose of this research was to see how different levels of Se-chitosan, a novel organic source of Se, affected the production performance, egg quality, egg Se concentration, microbial population, immunological response, antioxidant status, and yolk fatty acid profile of laying Japanese quail. This experiment used a totally randomized design, with 5 treatments, 6 repeats, and 10 birds in each repetition. The dietary treatment groups were as follows: no Se supplementation (control group), 0.2 mg/kg Na-selenite supplementation, and 0.2, 0.4, and 0.6 mg/kg Se-chitosan supplementation. The feed conversion ratio (FCR) improved linearly in quails fed different levels of Se-chitosan compared to the control group (P < 0.05). Furthermore, Se-chitosan at concentrations of 0.2 and 0.4 mg/kg demonstrated both linear and quadratic increases in albumen height, Haugh unit, and yolk color in fresh eggs compared to the control group. Additionally, Se-chitosan contributed to enhanced shell thickness and strength, along with an increased Se concentration in the yolk. Se-chitosan supplementation at different levels linearly and quadratically reduced coliforms (COL) while increasing lactic acid bacteria (LAB)/coliform ratios (P < 0.05). Se-chitosan supplementation linearly and quadratically increased the total antibody response to sheep red blood cells (SRBC) and IgG titers (P < 0.05). It also linearly decreased the level of malondialdehyde in fresh and stored egg yolks and increased the activity of antioxidant enzymes catalase and glutathione peroxidase linearly, and superoxide dismutase (SOD) both linearly and quadratically in quail blood serum (P < 0.05). Additionally, supplementation of Se-chitosan at levels of 0.2 and 0.6 mg/kg linearly decreased the ∑ n-6 PUFA/∑ n-3 PUFA ratio in the yolk compared to the control group (P < 0.05). It can be concluded that incorporating Se-chitosan as a novel organic source of Se in the diet of laying quails can enhance production performance, egg quality, egg Se concentration, yolk lipid oxidation, microbial population, immune response, antioxidant enzyme activity, and yolk fatty acid profile.


Assuntos
Ração Animal , Quitosana , Coturnix , Dieta , Suplementos Nutricionais , Selênio , Animais , Coturnix/fisiologia , Coturnix/imunologia , Quitosana/administração & dosagem , Suplementos Nutricionais/análise , Ração Animal/análise , Dieta/veterinária , Selênio/administração & dosagem , Selênio/farmacologia , Selênio/química , Feminino , Óvulo/efeitos dos fármacos , Óvulo/química , Óvulo/fisiologia , Distribuição Aleatória , Relação Dose-Resposta a Droga , Gema de Ovo/química , Antioxidantes/metabolismo
12.
Microorganisms ; 12(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39065104

RESUMO

Colorectal cancer (CRC) is the third most common cancer worldwide. The role of intestinal microbiota in carcinogenesis has also become an important research topic, and CRC is closely related to the intestinal microbiota. Selenium-containing compounds have attracted more attention as anticancer drugs as they can have minimal side effects. The purpose of this study was to determine and compare the effect of sodium selenite and selenomethionine on the microbial communities of nude mice with CRC. A CRC ectopic tumorigenesis model was established by subcutaneously injecting HCT116 cells into nude mice. The mice were then intraperitoneally injected with sodium selenite and selenomethionine for 24 days to regulate their intestinal microbiota. Compared with sodium selenite, selenomethionine resulted in a greater reduction in the richness and diversity of intestinal microbiota in nude mice with CRC, and the richness and diversity were closer to healthy levels. Selenomethionine also regulated a wider variety of flora. Additionally, sodium selenite and selenomethionine produced different microorganisms, changed function and metabolic pathways in the intestinal microbiota. Both sodium selenite and selenomethionine have certain effects on restoring the intestinal microbial diversity in nude mice with CRC, and the effect of selenomethionine is better than that of sodium selenite.

13.
Antioxidants (Basel) ; 13(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39061825

RESUMO

To compare the effects of organic selenium nanoparticles (SeNPs, Se0) and inorganic sodium selenite (NaSe, Na2SeO3, Se4+) on the antioxidant response in maternal and fetal rat liver, pregnant females were treated with two forms of selenium (Se) at equivalent doses during gestation (0.5 mg SeNPs or 0.5 mg NaSe/kg body weight/day). Structural parameters of the liver of gravid females and their fetuses were examined in a sex-specific manner. The oxidative stress parameters superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR), glutathione S-transferase (GST), total glutathione (GSH) and sulfhydryl groups (SH) were established. In addition, the Se concentration was determined in the blood, liver, urine and feces of the gravid females and in the liver of the fetuses. The structure of the liver of gravid females remained histologically the same after supplementation with both forms of Se, while the oxidative stress in the liver was significantly lower after the use of SeNPs compared to NaSe. Immaturity of fetal antioxidant defenses and sex specificity were demonstrated. This study provides a detailed insight into the differences in the bioavailability of the nano form of Se compared to sodium selenite in the livers of pregnant females and fetuses.

14.
BMC Nephrol ; 25(1): 226, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009991

RESUMO

BACKGROUND: Contrast-induced acute kidney injury (CI-AKI) is an acute renal complication that occurs after intravascular contrast agent administration. Sodium selenite (SS) is an inorganic source of Se and has potent antioxidant properties. This study intends to examine its anti-inflammatory and antioxidant effects in CI-AKI. METHODS: A rat CI-AKI model was established with the pretreatment of SS (0.35 mg/kg). Hematoxylin-eosin staining was employed for histopathological analysis of rat kidney specimens. Biochemical analysis was conducted for renal function detection. Tissue levels of oxidative stress-related markers were estimated. Reverse transcription-quantitative polymerase chain reaction revealed the mRNA levels of proinflammatory cytokines. Western blotting showed the Nrf2 signaling-related protein expression in the rat kidney. RESULTS: SS administration alleviated the renal pathological changes and reduced the serum levels of serum creatinine, blood urea nitrogen, neutrophil gelatinase-associated lipocalin, cystatin C, and urinary level of kidney injury molecule-1 in CI-AKI rats. SS attenuated oxidative stress and inflammatory response in CI-AKI rat kidney tissues. SS activated the Nrf2 signaling transduction in the renal tissues of rats with CI-AKI. CONCLUSION: SS ameliorates CI-AKI in rats by reducing oxidative stress and inflammation via the Nrf2 signaling.


Assuntos
Injúria Renal Aguda , Meios de Contraste , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Ratos Sprague-Dawley , Transdução de Sinais , Selenito de Sódio , Animais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/patologia , Estresse Oxidativo/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Masculino , Meios de Contraste/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Selenito de Sódio/farmacologia , Selenito de Sódio/uso terapêutico , Elementos de Resposta Antioxidante , Inflamação/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Creatinina/sangue
15.
Nutrients ; 16(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892670

RESUMO

Tumor cells are characterized by a delicate balance between elevated oxidative stress and enhanced antioxidant capacity. This intricate equilibrium, maintained within a threshold known as redox homeostasis, offers a unique perspective for cancer treatment by modulating reactive oxygen species (ROS) levels beyond cellular tolerability, thereby disrupting this balance. However, currently used chemotherapy drugs require larger doses to increase ROS levels beyond the redox homeostasis threshold, which may cause serious side effects. How to disrupt redox homeostasis in cancer cells more effectively remains a challenge. In this study, we found that sodium selenite and docosahexaenoic acid (DHA), a polyunsaturated fatty acid extracted from marine fish, synergistically induced cytotoxic effects in colorectal cancer (CRC) cells. Physiological doses of DHA simultaneously upregulated oxidation and antioxidant levels within the threshold range without affecting cell viability. However, it rendered the cells more susceptible to reaching the upper limit of the threshold of redox homeostasis, facilitating the elevation of ROS levels beyond the threshold by combining with low doses of sodium selenite, thereby disrupting redox homeostasis and inducing MAPK-mediated paraptosis. This study highlights the synergistic anticancer effects of sodium selenite and DHA, which induce paraptosis by disrupting redox homeostasis in tumor cells. These findings offer a novel strategy for more targeted and less toxic cancer therapies for colorectal cancer treatment.


Assuntos
Neoplasias Colorretais , Ácidos Docosa-Hexaenoicos , Homeostase , Sistema de Sinalização das MAP Quinases , Oxirredução , Espécies Reativas de Oxigênio , Selenito de Sódio , Ácidos Docosa-Hexaenoicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Selenito de Sódio/farmacologia , Humanos , Oxirredução/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Linhagem Celular Tumoral , Estresse Oxidativo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Sinergismo Farmacológico , Antineoplásicos/farmacologia , Paraptose
16.
Molecules ; 29(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893338

RESUMO

Acting as a growth regulator, Indole-3-acetic acid (IAA) is an important phytohormone that can be produced by several Bacillus species. However, few studies have been published on the comprehensive evaluation of the strains for practical applications and the effects of selenium species on their IAA-producing ability. The present study showed the selenite reduction strain Bacillus altitudinis LH18, which is capable of producing selenium nanoparticles (SeNPs) at a high yield in a cost-effective manner. Bio-SeNPs were systematically characterized by using DLS, zeta potential, SEM, and FTIR. The results showed that these bio-SeNPs were small in particle size, homogeneously dispersed, and highly stable. Significantly, the IAA-producing ability of strain was differently affected under different selenium species. The addition of SeNPs and sodium selenite resulted in IAA contents of 221.7 µg/mL and 91.01 µg/mL, respectively, which were 3.23 and 1.33 times higher than that of the control. This study is the first to examine the influence of various selenium species on the IAA-producing capacity of Bacillus spp., providing a theoretical foundation for the enhancement of the IAA-production potential of microorganisms.


Assuntos
Bacillus , Ácidos Indolacéticos , Selênio , Ácidos Indolacéticos/metabolismo , Bacillus/metabolismo , Bacillus/efeitos dos fármacos , Selênio/química , Selênio/farmacologia , Selênio/metabolismo , Nanopartículas/química , Tamanho da Partícula
17.
Materials (Basel) ; 17(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38893746

RESUMO

Solar water evaporation offers a promising solution to address global water scarcity, utilizing renewable energy for purification and desalination. Transition-metal selenite hydrates (specifically nickel and cobalt) have shown potential as solar absorbers with high evaporation rates of 1.83 and 2.34 kg∙m-2∙h-1, but the reported discrepancy in evaporation rate deserves further investigation. This investigation aims to clarify their thermal stability for applications and determine the underlying mechanisms responsible for the differences. Nickel and cobalt selenite hydrate compositions were synthesized and investigated via thermogravimetric analysis, X-ray diffraction, and Raman spectroscopy to assess their temperature-induced structural and compositional variations. The results reveal distinct phase transitions and structural alterations under various temperature conditions for these two photothermal materials, providing valuable insights into the factors influencing water transportation and evaporation rates.

18.
J Nanobiotechnology ; 22(1): 352, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902695

RESUMO

In this study, highly selenite-resistant strains belonging to Brevundimonas diminuta (OK287021, OK287022) genus were isolated from previously operated single chamber microbial fuel cell (SCMFC). The central composite design showed that the B. diminuta consortium could reduce selenite. Under optimum conditions, 15.38 Log CFU mL-1 microbial growth, 99.08% Se(IV) reduction, and 89.94% chemical oxygen demand (COD) removal were observed. Moreover, the UV-visible spectroscopy (UV) and Fourier transform infrared spectroscopy (FTIR) analyses confirmed the synthesis of elemental selenium nanoparticles (SeNPs). In addition, transmission electron microscopy (TEM) and scanning electron microscope (SEM) revealed the formation of SeNPs nano-spheres. Besides, the bioelectrochemical performance of B. diminuta in the SCMFC illustrated that the maximum power density was higher in the case of selenite SCMFCs than those of the sterile control SCMFCs. Additionally, the bioelectrochemical impedance spectroscopy and cyclic voltammetry characterization illustrated the production of definite extracellular redox mediators that might be involved in the electron transfer progression during the reduction of selenite. In conclusion, B. diminuta whose electrochemical activity has never previously been reported could be a suitable and robust biocatalyst for selenite bioreduction along with wastewater treatment, bioelectricity generation, and economical synthesis of SeNPs in MFCs.


Assuntos
Fontes de Energia Bioelétrica , Oxirredução , Ácido Selenioso , Selênio , Selênio/metabolismo , Selênio/química , Ácido Selenioso/metabolismo , Caulobacteraceae/metabolismo , Nanopartículas/química , Eletricidade , Nanopartículas Metálicas/química , Consórcios Microbianos , Análise da Demanda Biológica de Oxigênio
19.
Food Chem ; 455: 139740, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843715

RESUMO

Monascus species are functional fermentation fungi with great potential for selenium (Se) supplementation. This study investigated the effects of Se bio-fortification on the growth, morphology, and biosynthesis of Monascus ruber M7. The results demonstrated a significant increase in the yield of orange and red Monascus pigments (MPs) in red yeast rice (RYR) by 38.52% and 36.57%, respectively, under 20 µg/mL of selenite pressure. Meanwhile, the production of citrinin (CIT), a mycotoxin, decreased from 244.47 µg/g to 175.01 µg/g. Transcriptome analysis revealed significant upregulation of twelve genes involved in MPs biosynthesis, specifically MpigE, MpigF, and MpigN, and downregulation of four genes (mrr3, mrr4, mrr7, and mrr8) associated with CIT biosynthesis. Additionally, three genes encoding cysteine synthase cysK (Log2FC = 1.6), methionine synthase metH (Log2FC = 2.2), and methionyl-tRNA synthetase metG (Log2FC = 1.8) in selenocompound metabolism showed significantly upregulated. These findings provide insights into Se biotransformation and metabolism in filamentous fungi.


Assuntos
Biofortificação , Citrinina , Monascus , Ácido Selenioso , Selênio , Monascus/metabolismo , Monascus/genética , Monascus/crescimento & desenvolvimento , Selênio/metabolismo , Ácido Selenioso/metabolismo , Citrinina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pigmentos Biológicos/metabolismo , Fermentação , Produtos Biológicos
20.
Medicina (Kaunas) ; 60(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38929492

RESUMO

Background and Objectives: Selenium deficiency represents a risk factor for the occurrence of severe diseases, such as acute kidney injury (AKI). Recently, selenoprotein-p1 (SEPP1), a selenium transporter, mainly released by the liver, has emerged as a promising plasmatic biomarker of AKI as a consequence of cardio-surgery operations. The aim of the present study was to investigate, on an in vitro model of hypoxia induced in renal tubular cells, HK-2, the effects of sodium selenite (Na2SeO3) and to evaluate the expression of SEPP1 as a marker of injury. Materials and Methods: HK-2 cells were pre-incubated with 100 nM Na2SeO3 for 24 h, and then, treated for 24 h with CoCl2 (500 µM), a chemical hypoxia inducer. The results were derived from an ROS assay, MTT, and Western blot analysis. Results: The pre-treatment determined an increase in cells' viability and a reduction in reactive oxygen species (ROS), as shown by MTT and the ROS assay. Moreover, by Western blot an increase in SEPP1 expression was observed after hypoxic injury as after adding sodium selenite. Conclusions: Our preliminary results shed light on the possible role of selenium supplementation as a means to prevent oxidative damage and to increase SEPP1 after acute kidney injury. In our in vitro model, SEPP1 emerges as a promising biomarker of kidney injury, although further studies in vivo are necessary to validate our findings.


Assuntos
Túbulos Renais Proximais , Traumatismo por Reperfusão , Selenoproteína P , Humanos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/etiologia , Biomarcadores/análise , Linhagem Celular , Sobrevivência Celular , Técnicas In Vitro , Túbulos Renais Proximais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Selenoproteína P/sangue , Selenoproteína P/metabolismo , Selenito de Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA