Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39062797

RESUMO

The role of induction chemotherapy (iCHT) in locally advanced head and neck squamous cell carcinoma (LA-HNSCC) is still to be established due to high toxicity and variable response rates. The aim of this retrospective study is to use NMR-based serum metabolomics to predict the response rates to iCHT from the pretreatment samples. The studied group consisted of 46 LA-HNSCC patients treated with iCHT. The response to the treatment was evaluated by the clinical, fiberoptic, and radiological examinations made before and after iCHT. The proton nuclear magnetic resonance (1H NMR) serum spectra of the samples collected before iCHT were acquired with a 400 MHz spectrometer and were analyzed using multivariate and univariate statistical methods. A significant multivariate model was obtained only for the male patients. The treatment-responsive men with >75% primary tumor regression after iCHT showed pretreatment elevated levels of isoleucine, alanine, glycine, tyrosine, N-acetylcysteine, and the lipid compounds, as well as decreased levels of acetate, glutamate, formate, and ketone bodies compared to those who did not respond (regression of the primary tumor <75%). The results indicate that the nutritional status, capacity of the immune system, and the efficiency of metabolism related to protein synthesis may be prognostic factors for the response to induction chemotherapy in male HNSCC patients. However, larger studies are required that would validate the findings and could contribute to the development of more personalized treatment protocols for HNSCC patients.


Assuntos
Neoplasias de Cabeça e Pescoço , Quimioterapia de Indução , Metabolômica , Humanos , Masculino , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/sangue , Pessoa de Meia-Idade , Metabolômica/métodos , Feminino , Idoso , Adulto , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/sangue , Espectroscopia de Ressonância Magnética/métodos , Prognóstico , Metaboloma , Biomarcadores Tumorais/sangue , Resultado do Tratamento
2.
J Tradit Complement Med ; 14(4): 456-466, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39035686

RESUMO

Background and aim: Interest in the safety of herbal medicine is growing rapidly regarding knowledge and challenges in natural products. Hence, this study aimed to reveal the toxicological profile of Ardisia elliptica, a traditional medicinal plant used in the treatment of various illnesses. Experimental procedure: Acute toxicity study was performed on female and male Sprague Dawley rats with a single oral administration of 2000 mg/kg BW of 70% ethanolic A. elliptica leaf extract, using a combination of conventional investigations and 1H-NMR-based metabolomics approaches. Results: Physical, hematological, biochemical, and histopathological assessments demonstrated the usual rat profile, with no mortality and delayed toxicity 14 days after administration. 1H NMR serum metabolomics depicted similar metabolites between normal and treated groups. Nevertheless, 1H NMR of urinary metabolomics revealed perturbation in carbohydrate, amino acid, and energy metabolism within 24h after extract administration, while no accumulation of toxic biomarkers in the collected biological fluids on Day 14. A minor gender-based difference revealed the influence of sex hormones and different energy expenditure on response to extract treatment. Conclusion: This study suggested that 2000 mg/kg BW of 70% ethanolic A. elliptica leaf extract is considered as safe for consumption and offered a comprehensive overview of the response of physiological and metabolic aspects applicable to food and herbal product development.

3.
Nutrients ; 16(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38999758

RESUMO

Globally, metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed nonalcoholic fatty liver disease (NAFLD), is one of the most common liver disorders and is strongly associated with copper deficiency. To explore the potential effects and mechanisms of Lactiplantibacillus plantarum LPJZ-658, copper deficiency combined with a high-sugar diet-induced MASLD mouse model was utilized in this study. We fed 40-week-old (middle-aged) male C57BL/6 mice a copper-deficient and high-sugar diet for 16 weeks (CuDS), with supplementary LPJZ-658 for the last 6 weeks (CuDS + LPJZ-658). In this study, we measured body weight, liver weight, and serum biochemical markers. Lipid accumulation, histology, lipidomics, and sphingolipid metabolism-related enzyme expression were investigated to analyze liver function. Untargeted metabolomics was used to analyze the serum and the composition and abundance of intestinal flora. In addition, the correlation between differential liver lipid profiles, serum metabolites, and gut flora at the genus level was measured. The results show that LPJZ-658 significantly improves abnormal liver function and hepatic steatosis. The lipidomics analyses and metabolic pathway analysis identified sphingolipid, retinol, and glycerophospholipid metabolism as the most relevant metabolic pathways that characterized liver lipid dysregulation in the CuDS group. Consistently, RT-qPCR analyses revealed that the enzymes catalyzing sphingolipid metabolism that were significantly upregulated in the CuDS group were downregulated by the LPJZ-658 treatment. In addition, the serum metabolomics results indicated that the linoleic acid, taurine and hypotaurine, and ascorbate and aldarate metabolism pathways were associated with CuDS-induced MASLD. Notably, we found that treatment with LPJZ-658 partially reversed the changes in the differential serum metabolites. Finally, LPJZ-658 effectively regulated intestinal flora abnormalities and was significantly correlated with differential hepatic lipid species and serum metabolites. In conclusion, we elucidated the function and potential mechanisms of LPJZ-658 in alleviating copper deficiency combined with sugar-induced middle-aged MASLD and hope this will provide possible treatment strategies for improving MASLD.


Assuntos
Cobre , Fígado , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Animais , Masculino , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Camundongos , Cobre/sangue , Fígado/metabolismo , Metabolismo dos Lipídeos , Microbioma Gastrointestinal/efeitos dos fármacos , Modelos Animais de Doenças , Probióticos/administração & dosagem , Probióticos/farmacologia , Metabolômica , Lactobacillus plantarum , Lipidômica , Multiômica
4.
J Pharm Biomed Anal ; 249: 116367, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39029356

RESUMO

Angelica sinensis (Oliv.) Diels (AS) is a commonly used herbal medicine and culinary spice known for its gastrointestinal protective properties. Angelica sinensis oil (AO) is the main bioactive component of AS. However, the therapeutic effects and mechanisms of AO on the gastrointestinal tract remain unclear. In this study, we aim to investigated the potential of AO in restoring gut microbiota disorder and metabolic disruptions associated with ulcerative colitis (UC). A systematic chemical characterization of AO was conducted using GC×GC-Q TOF-MS. A UC mouse model was established by freely drinking DSS to assess the efficacy of AO. Utilizing 16 S rRNA sequencing in combination with untargeted metabolomics analysis of serum, we identified alterations in gut microbiota, differential metabolites, and pathways influenced by AO in UC treatment, thereby elucidating the therapeutic mechanism of AO in UC management. Pharmacodynamic results indicated that AO effectively inhibited the content of inflammation mediators, such as Interleukin-1ß, Interleukin-6 and tumor necrosis factor-α, and proserved colon tissue integrity in UC mice. Furthermore, AO significantly downregulated the abundance of pathogenic bacteria (Bacteroidetes, Proteobacteria, and Desulfobacteriaceae) while increasing the abundance of beneficial bacteria (Firmicutes, Blautia, Akkermansia, and Lachnospiraceae). Metabolomics analysis highlighted significant disruptions in endogenous metabolism in UC mice, with a notable restoration of SphK1 and S1P levels following AO administration. Besides, we discovered that AO regulated the balance of sphingolipid metabolism and protected the intestinal barrier, potentially through the SphK1/MAPK signaling pathway. Overall, this study indicated that AO effectively ameliorates the clinical manifestations of UC by synergistically regulating gut microbe and metabolite homeostasis. AO emerges as a potential functional and therapeutic ingredient for UC treatment.

5.
Clin Transl Oncol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831193

RESUMO

BACKGROUND: This study aimed to investigate the serum metabolite profiles during neoadjuvant chemoradiotherapy (NCRT) in locally advanced rectal cancer (LARC) using liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis. METHODS: 60 serum samples were collected from 20 patients with LARC before, during, and after radiotherapy. LC-MS metabolomics analysis was performed to identify the metabolite variations. Functional annotation was applied to discover altered metabolic pathways. The key metabolites were screened and their ability to predict sensitivity to radiotherapy was calculated using random forests and ROC curves. RESULTS: The results showed that NCRT led to significant changes in the serum metabolite profiles. The serum metabolic profiles showed an apparent separation between different time points and different sensitivity groups. Moreover, the functional annotation showed that the differential metabolites were associated with a series of important metabolic pathways. Pre-radiotherapy (3Z,6Z)-3,6-Nonadiena and pro-radiotherapy 1-Hydroxyibuprofen showed good predictive performance in discriminating the sensitive and non-sensitive group to NCRT, with an AUC of 0.812 and 0.75, respectively. Importantly, the combination of different metabolites significantly increased the predictive ability. CONCLUSION: This study demonstrated the potential of LC-MS metabolomics for revealing the serum metabolite profiles during NCRT in LARC. The identified metabolites may serve as potential biomarkers and therapeutic targets for the management of this disease. Furthermore, the understanding of the affected metabolic pathways may help design more personalized therapeutic strategies for LARC patients.

6.
Talanta ; 277: 126442, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38897006

RESUMO

Mesenchymal stem cell (MSC) therapy offers a promising cure for Crohn's disease (CD), however, its therapeutic effects vary significantly due to individual differences. Therefore, identifying easily detectable biomarkers is essential to assess the efficacy of MSC therapy. In this study, SAMP1/Yit mice were used as a model of CD, which develop spontaneous chronic ileitis, closely resembling the characteristics present in CD patients. Serum metabolic alterations during treatment were analyzed, through the application of differential 12C-/13C-dansylation labeling liquid chromatography-mass spectrometry. Based on the significant differences and time-varying trends of serum amine/phenol-containing metabolites abundance between the control group, the model group, and the treatment group, four serum biomarkers were ultimately screened for evaluating the efficacy of MSC treatment for CD, namely 4-hydroxyphenylpyruvate, 4-hydroxyphenylacetaldehyde, caffeate, and N-acetyltryptamine, whose abundances both increased in the serum of CD model mice and decreased after MSC treatment. These metabolic alterations were associated with tyrosine metabolism, which was validated by the dysregulation of related enzymes. The discovery of biomarkers may help to improve the targeting and effectiveness of treatment and provide innovative prospects for the clinical application of MSC for CD.


Assuntos
Doença de Crohn , Transplante de Células-Tronco Mesenquimais , Metabolômica , Doença de Crohn/terapia , Doença de Crohn/sangue , Doença de Crohn/metabolismo , Animais , Humanos , Feminino , Camundongos , Metabolômica/métodos , Gravidez , Biomarcadores/sangue , Placenta/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Modelos Animais de Doenças
7.
Int J Biol Macromol ; 269(Pt 1): 131995, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692529

RESUMO

In the present work, a neutral polysaccharide (DHP-2W) with attenuating cognitive disorder was identified from Dendrobium huoshanense and its structure was clarified. The polysaccharide was successfully purified from D. huoshanense by column chromatography and its activity was evaluated. With a molecular weight of 508.934kDa, this polysaccharide is composed of mannose and glucose at a molar ratio of 75.81: 24.19. Structural characterization revealed that DHP-2W has a backbone consisting of 4)-ß-D-Manp-(1 and 4)-ß-D-Glcp-(1. In vivo experiments revealed that DHP-2W improved cognitive disorder in D-galactose treated mice and relieved oxidative stress and inflammation. DHP-2W attenuates D-galactose-induced cognitive disorder by inhibiting the BCL2/BAX/CASP3 pathway and activating the AMPK/SIRT pathway, thereby inhibiting apoptosis. Furthermore, DHP-2W had a significant effect on regulating the serum levels of Flavin adenine dinucleotide, Shikimic acid, and Kynurenic acid in aged mice. These, in turn, had a positive impact on AMPK/SIRT1 and BCL2/BAX/CASP3, resulting in protective effects against cognitive disorder.


Assuntos
Envelhecimento , Dendrobium , Mananas , Animais , Dendrobium/química , Camundongos , Mananas/farmacologia , Mananas/química , Envelhecimento/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Masculino , Apoptose/efeitos dos fármacos , Galactose
8.
J Pharm Biomed Anal ; 246: 116219, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38759325

RESUMO

Qingwanzi Pills (QP) were first mentioned in the "Puji Fang" of the Ming Dynasty, with a history of approximately 600 years. The formula consisted of Gypsum Fibrosum and Indigo Naturalis. It is a famous classical formula with antipyretic effects frequently utilized in ancient China, although our knowledge about the overall antipyretic mechanism of QP remains limited. Therefore, we replicated the fever model in New Zealand rabbits induced by lipopolysaccharide, performed the pharmacodynamic evaluation of QP, identified the differential metabolites among QP groups, and performed pathway enrichment analysis to comparatively analyze the effects of QP on fever-related metabolic pathways by ultra-performance liquid chromatography-mass spectrometry. The results showed that the antipyretic effect of QP was superior to that of each disassembled prescription, with Gypsum Fibrosum primarily contributing to the efficacy, followed by Indigo Naturalis and Junci Medulla. QP had an effective antipyretic effect, which was related to lowering the levels of TNF-α, IL-6, IL-1ß, and calcium in rabbit serum, lowering the levels of PGE2 and cAMP in rabbit cerebrospinal fluid, and increasing the level of calcium in rabbit cerebrospinal fluid. A total of 27 endogenous biomarkers were screened by serum metabolomics for the treatment of fever with QP. It is hypothesized that the antipyretic mechanism of QP may be related to regulating α-linolenic acid, sphingolipid, tryptophan, and bile acid metabolism. In summary, QP exhibited a significant antipyretic effect in rabbits with lipopolysaccharide-induced fever.


Assuntos
Antipiréticos , Medicamentos de Ervas Chinesas , Febre , Metabolômica , Animais , Coelhos , Antipiréticos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Metabolômica/métodos , Febre/tratamento farmacológico , Masculino , Modelos Animais de Doenças , Lipopolissacarídeos/farmacologia , Cromatografia Líquida de Alta Pressão/métodos
9.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1774-1784, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812189

RESUMO

The study aims to investigate the effects and potential mechanism of raw and processed Aconitum pendulum Busch on rheumatoid arthritis(RA) and analyze their toxicity attenuating and efficacy retaining effects. The bovine type Ⅱ collagen-induced arthritis(CIA) rat model was established. The weight, cardiac index, immune organ index, and arthritis index of the rats were recorded and calculated after administration. ELISA was used to measure the expressions of creatine kinase(CK), cardiac troponin T(cTnT), and multiple factors. The pathological morphological changes in heart tissue and ankle joint tissue were observed by hematoxylin-eosin staining. Connexin 43(Cx43) expression in the hearts of CIA rats was detected via immunohistochemical method. The levels of endogenous metabolites in the serum of CIA rats were detected by UPLC-Q-TOF-MS. Potential biomarkers were screened, and related metabolic pathways were analyzed. The results showed that raw A. pendulum could induce local myocardial fiber degeneration and necrosis, increase the cardiac index, decrease the average positive area of Cx43 expression significantly, and increase the expressions of CK and cTnT in cardiac tissue of rats. Meanwhile, raw A. pendulum could decrease the immune organ index, interleukin-6(IL-6), and other inflammatory cytokine contents in the serum and improve the damaged synovium and joint surface of CIA rats, with toxicity and efficacy coexisting. The Zanba stir-fired A. pendulum could reduce the index of arthritis, immune organ index, and content of IL-6 and inflammatory cytokines in serum and improve damaged synovium and joint surface of CIA rats with no obvious cardiac toxicity, showing significant toxicity attenuating and efficacy retaining effects. A total of 19 potential biomarkers of raw A. pendulum and Zanba stir-fired A. pendulum against RA were screened by serum metabolomics, including glycerophospholipid metabolism, glycine, serine, and threonine metabolism, arginine and proline metabolism, and steroid hormone synthesis. In conclusion, Xizang medicine A. pendulum is preventive and curative for RA. Raw A. pendulum has certain cardiotoxicity, and Zanba stir-fired A. pendulum has significant toxicity attenuating and efficacy retaining effects. The anti-RA mechanism may be related to the regulation of glycerophospholipid and amino acid metabolism.


Assuntos
Aconitum , Artrite Reumatoide , Medicamentos de Ervas Chinesas , Metabolômica , Animais , Aconitum/química , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Ratos , Medicamentos de Ervas Chinesas/administração & dosagem , Masculino , Feminino , Humanos , Ratos Sprague-Dawley , Conexina 43/metabolismo , Conexina 43/genética , Bovinos , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Creatina Quinase/sangue
10.
Eur J Heart Fail ; 26(4): 829-840, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38623713

RESUMO

AIMS: Prediction and early detection of heart failure (HF) is crucial to mitigate its impact on quality of life, survival, and healthcare expenditure. Here, we explored the predictive value of serum metabolomics (168 metabolites detected by proton nuclear magnetic resonance [1H-NMR] spectroscopy) for incident HF. METHODS AND RESULTS: Leveraging data of 68 311 individuals and >0.8 million person-years of follow-up from the UK Biobank cohort, we (i) fitted per-metabolite Cox proportional hazards models to assess individual metabolite associations, and (ii) trained and validated elastic net models to predict incident HF using the serum metabolome. We benchmarked discriminative performance against a comprehensive, well-validated clinical risk score (Pooled Cohort Equations to Prevent HF [PCP-HF]). During a median follow-up of ≈12.3 years, several metabolites showed independent association with incident HF (90/168 adjusting for age and sex, 48/168 adjusting for PCP-HF). Performance-optimized risk models effectively retained key predictors representing highly correlated clusters (≈80% feature reduction). Adding metabolomics to PCP-HF improved predictive performance (Harrel's C: 0.768 vs. 0.755, ΔC = 0.013, [95% confidence interval [CI] 0.004-0.022], continuous net reclassification improvement [NRI]: 0.287 [95% CI 0.200-0.367], relative integrated discrimination improvement [IDI]: 17.47% [95% CI 9.463-27.825]). Models including age, sex and metabolomics performed almost as well as PCP-HF (Harrel's C: 0.745 vs. 0.755, ΔC = 0.010 [95% CI -0.004 to 0.027], continuous NRI: 0.097 [95% CI -0.025 to 0.217], relative IDI: 13.445% [95% CI -10.608 to 41.454]). Risk and survival stratification was improved by integrating metabolomics. CONCLUSION: Serum metabolomics improves incident HF risk prediction over PCP-HF. Scores based on age, sex and metabolomics exhibit similar predictive power to clinically-based models, potentially offering a cost-effective, standardizable, and scalable single-domain alternative.


Assuntos
Insuficiência Cardíaca , Metabolômica , Humanos , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/epidemiologia , Feminino , Masculino , Metabolômica/métodos , Medição de Risco/métodos , Pessoa de Meia-Idade , Incidência , Idoso , Biomarcadores/sangue , Reino Unido/epidemiologia , Seguimentos , Valor Preditivo dos Testes
11.
J Vet Med Sci ; 86(6): 606-611, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38644199

RESUMO

This preliminary study explored potential serum biomarkers for predicting the onset of milk fever (MF), a bovine parturient disease with hypocalcemia. We conducted two-dimensional gas chromatography mass spectrometry-based metabolomics in 8 and 17 pregnant Holstein cows that did and did not develop MF 3 weeks later, respectively. In principal component analysis (PCA) applied to a dataset containing 1,498 metabolites, serum metabolites exhibited highly similar chemical profiles between cows with and without MF. PCA with a limited dataset of metabolites containing fatty acids, which had significantly different values between the groups and/or correlation coefficients of >0.5 for the serum calcium concentration, distinguished the two groups. These suggest the possibility of developing serum biomarkers for predicting bovine MF.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Animais , Feminino , Bovinos/sangue , Gravidez , Cromatografia Gasosa-Espectrometria de Massas/veterinária , Cromatografia Gasosa-Espectrometria de Massas/métodos , Biomarcadores/sangue , Doenças dos Bovinos/sangue , Análise de Componente Principal , Metaboloma , Cálcio/sangue , Metabolômica/métodos , Parto/sangue
12.
J Agric Food Chem ; 72(13): 7423-7437, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502791

RESUMO

As chlorfenapyr is a commonly used insecticide in agriculture, the health risks of subchronic exposure to chlorfenapyr remained unclear. This study aimed to extensively probe the health risks from subchronic exposure to chlorfenapyr at the NOAEL and 10-fold NOAEL dose in mice. Through pathological and biochemical examinations, the body metabolism, hepatic toxicity, and intestinal homeostasis were systematically assessed. After 12 weeks, a 10-fold NOAEL dose of chlorfenapyr resulted in weight reduction, increased daily food intake, and blood lipid abnormalities. Concurrently, this dosage induced hepatotoxicity and amplified oxidative stress in hepatocytes, a finding further supported in HepG2 cells. Moreover, chlorfenapyr resulted in intestinal inflammation, evidenced by increased inflammatory factors (IL-17a, IL-10, IL-1ß, IL-6, IL-22), disrupted immune cells (RORγt, Foxp3), and compromised intestinal barriers (ZO-1 and occludin). By contrast, the NOAEL dose presented less toxicity in most evaluations. Serum metabolomic analyses unveiled widespread disruptions in pathways related to hepatotoxicity and intestinal inflammation, including NF-κB signaling, Th cell differentiation, and bile acid metabolism. Microbiomic analysis showed an increase in Lactobacillus, a decrease in Muribaculaceae, and diminished anti-inflammatory microbes, which further propelled the inflammatory response and leaded to intestinal inflammation. These findings revealed the molecular mechanisms underlying chlorfenapyr-induced hepatotoxicity and intestinal inflammation, highlighting the significant role of the gut microbiota.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Inflamação , Piretrinas , Camundongos , Animais , Inflamação/induzido quimicamente , Inflamação/patologia , Estresse Oxidativo , Homeostase
13.
Front Pharmacol ; 15: 1327647, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545550

RESUMO

Introduction: Jinteng Qingbi granules (JTQBG), a traditional Chinese medicine formulation, are widely used for the treatment of rheumatoid arthritis (RA) due to their satisfactory therapeutic efficacy. However, the underlying mechanism of action remains unclear. This study aims to investigate the protective effects of JTQBG against RA and elucidates its potential molecular mechanisms. Methods: A collagen-induced arthritis (CIA) rat model was utilized, and JTQBG (1.25, 2.5, 5 g/kg/day) or methotrexate (MTX, 1 mg/kg/week) was orally administered. The rats' weight, arthritis index (AI), and paw volume were measured weekly. Synovial hyperplasia of the joints was detected using a small animal ultrasound imaging system. Joint destruction was assessed using an X-ray imaging system. Histopathological examinations were performed using hematoxylin-eosin (H&E), Saffron-O and fast green staining. Serum inflammatory cytokines were detected using ELISA. Furthermore, 4D label-free quantitative proteomics of synovial tissues and non-targeted metabolomics of blood serum were conducted to analyze the molecular mechanisms. Results: JTQBG exerted a significant therapeutic effect on CIA rats by reducing inflammatory cell infiltration, synovial hyperplasia, cartilage erosion, and bone destruction. It also decreased the spleen index, inhibited hyperplasia of the white pulp, and decreased the serum levels of IL-1ß and IL-18. Proteomics analysis identified 367 differentially expressed proteins (DEPs) between the Model and Normal groups, and 71 DEPs between the JTQBG and Model groups. These DEPs were significantly enriched in the NF-κB pathway. 11 DEPs were significantly reversed after treatment with JTQBG. Western blot results further validated the expression levels of Nfkb1, Pdk1, and Pecam1, and analyzed the expression levels of p-IKK, p-IκBα, and IκBα. The therapeutic efficacy of JTQBG was partly attributed to the suppression of the NF-κB pathway in synovial tissues. Serum metabolomics identified 17 potential biomarkers for JTQBG treatment of CIA rats, which were closely related to Alanine, aspartate and glutamate metabolism, Tryptophan metabolism, Ascorbate and aldarate metabolism, Arginine metabolism, and Inositol phosphate metabolism. Conclusion: Our findings demonstrated that JTQBG was effective against RA by alleviating synovial inflammation, synovial hyperplasia, and joint destruction. The anti-RA properties of JTQBG were likely attributed to the inhibition of the NF-κB pathway and the regulation of serum metabolite disorders.

14.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542465

RESUMO

In this study, serum metabolic profiling of patients diagnosed with papillary thyroid carcinoma (PTC) and benign thyroid pathologies (BT) aimed to identify specific biomarkers and altered pathways when compared with healthy controls (C). The blood was collected after a histological confirmation from PTC (n = 24) and BT patients (n = 31) in parallel with healthy controls (n = 81). The untargeted metabolomics protocol was applied by UHPLC-QTOF-ESI+-MS analysis and the statistical analysis was performed using the MetaboAnalyst 5.0 platform. The partial least squares-discrimination analysis, including VIP values, random forest graphs, and heatmaps (p < 0.05), was complemented with biomarker analysis (with AUROC ranking) and pathway analysis, suggesting a model for abnormal metabolic pathways in PTC and BT based on 166 identified metabolites. There were 11 classes of putative biomarkers selected that were involved in altered metabolic pathways, e.g., polar molecules (amino acids and glycolysis metabolites, purines and pyrimidines, and selenium complexes) and lipids including free fatty acids, bile acids, acylated carnitines, corticosteroids, prostaglandins, and phospholipids. Specific biomarkers of discrimination were identified in each class of metabolites and upregulated or downregulated comparative to controls, PTC group, and BT group. The lipidomic window was revealed to be more relevant for finding biomarkers related to thyroid carcinoma or benign thyroid nodules, since our study reflected a stronger involvement of lipids and selenium-related molecules in metabolic discrimination.


Assuntos
Carcinoma Papilar , Selênio , Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Humanos , Carcinoma Papilar/metabolismo , Nódulo da Glândula Tireoide/diagnóstico , Cromatografia Líquida de Alta Pressão , Neoplasias da Glândula Tireoide/patologia , Câncer Papilífero da Tireoide/diagnóstico , Câncer Papilífero da Tireoide/metabolismo , Metaboloma , Biomarcadores/metabolismo , Lipídeos , Biomarcadores Tumorais/metabolismo
15.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474567

RESUMO

Berberine is a natural isoquinoline alkaloid with low toxicity, which exists in a wide variety of medicinal plants. Berberine has been demonstrated to exhibit potent prevention of indomethacin-induced gastric injury (GI) but the related mechanism remains unclear. In the present study, liquid chromatography-mass spectrometry (LC-MS)-based metabolomics was applied for the first time to investigate the alteration of serum metabolites in the protection of berberine against indomethacin-induced gastric injury in rats. Subsequently, bioinformatics was utilized to analyze the potential metabolic pathway of the anti-GI effect of berberine. The pharmacodynamic data indicated that berberine could ameliorate gastric pathological damage, inhibit the level of proinflammatory factors in serum, and increase the level of antioxidant factors in serum. The LC-MS-based metabolomics analysis conducted in this study demonstrated the presence of 57 differential metabolites in the serum of rats with induced GI caused by indomethacin, which was associated with 29 metabolic pathways. Moreover, the study revealed that berberine showed a significant impact on the differential metabolites, with 45 differential metabolites being reported between the model group and the group treated with berberine. The differential metabolites were associated with 24 metabolic pathways, and berberine administration regulated 14 of the 57 differential metabolites, affecting 14 of the 29 metabolic pathways. The primary metabolic pathways affected were glutathione metabolism and arachidonic acid metabolism. Based on the results, it can be concluded that berberine has a gastroprotective effect on the GI. This study is particularly significant since it is the first to elucidate the mechanism of berberine's action on GI. The results suggest that berberine's action may be related to energy metabolism, oxidative stress, and inflammation regulation. These findings may pave the way for the development of new therapeutic interventions for the prevention and management of NSAID-induced GI disorders.


Assuntos
Berberina , Gastropatias , Ratos , Animais , Indometacina , Berberina/farmacologia , Espectrometria de Massa com Cromatografia Líquida , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem , Metabolômica/métodos , Gastropatias/tratamento farmacológico
16.
J Nutr Health Aging ; 28(3): 100036, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38320382

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is a major public health concern. However, validated and broadly applicable biomarkers for early CKD diagnosis are currently not available. We aimed to identify serum metabolic signatures at an early stage of CKD to provide a reference for future investigations into the early diagnostic biomarkers. METHODS: Serum metabolites were extracted from 65 renal dysfunction (RD) patients and 121 healthy controls (discovery cohort: 12 RD patients and 55 health participants; validation cohort: 53 RD patients and 66 health participants). Metabolite extracts were analyzed by ultraperformance liquid chromatography coupled with quadrupole-electrostatic field orbital trap mass spectrometry (UPLC-QE-Orbitrap MS) for untargeted metabolomics. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was performed to detect different compounds between groups. Receiver operating characteristic (ROC) curve analysis was carried out to determine the diagnostic value of the validated differential metabolites between groups. We referred to the Kyoto Encyclopedia of Gene and Genomes (KEGG) to elucidate the metabolic pathways of the validated differential metabolites. RESULTS: A total of 22 and 23 metabolites had significantly different abundances in the discovery and validation cohort, respectively. Six of them (creatinine, L-proline, citrulline, butyrylcarnitine, 1-methylhistidine, and valerylcarnitine) in the RD group was more abundant than that of the health group in both cohorts. The combination of the six validated differential metabolites were able to accurately detect RD (AUC 0.86). Three of the six metabolites are involved in the metabolism of arginine and proline. CONCLUSIONS: The present study highlights that creatinine, L-proline, citrulline, butyrylcarnitine, 1-methylhistidine, and valerylcarnitine are metabolite indicators with potential predictive value for CKD.


Assuntos
Carnitina/análogos & derivados , Citrulina , Insuficiência Renal Crônica , Humanos , Idoso , Cromatografia Líquida de Alta Pressão , Creatinina , Biomarcadores , Insuficiência Renal Crônica/diagnóstico , China , Prolina
17.
Adv Biol (Weinh) ; : e2300514, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38217312

RESUMO

Obesity (OB) is a prevalent metabolic disorder. With the advancement of the economy, the prevention and treatment of obesity is a big problem for the global community. The methods to lose weight include exercise, diet, medicine, and surgery. Compared with other methods, diet regulation is safer and more effective. Hawthorn fruit has the effect of reducing weight, but the mechanism of effectiveness are not clear. In this study, obesity model rats are used to conduct scientific pharmacological research on hawthorn flavonoids. Hawthorn flavonoids can effectively improve the body weight, lipid accumulation, and lipid levels of obese rats. The contents of the colon of rats are analyzed using 16S rDNA sequencing technology. The intestinal microflora in obese rats changed significantly after flavonoids treatment, and they tended to be the control group. Based on liquid chromatography-mass spectrometry, serum metabolomics showed that the metabolites in the serum changed significantly, after hawthorn flavonoids treatment. Hawthorn flavonoids are especially involved in the biological processes of grade bile acid biosynthesis, histidine metabolism, and lipid metabolism. Pearson correlation analysis showed that the disorder of intestinal microorganisms is connected to changes in serum metabolites. These findings give a new idea about how hawthorn flavonoids help with obesity.

18.
Metabolites ; 14(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38248861

RESUMO

This study was conducted to explore the potential effect of Yucca schidigera extract (YSE) on the metabolism of beef cattle. Thirty Angus crossbreed steers were selected, with an initial mean body weight of 506.6 ± 33.3 kg, and assigned to two treatments: a diet with no additives (CON group) and a diet supplemented with 1.75 g/kg of YSE (YSE group) (on a dry matter basis). The experiment lasted for 104 days, with 14 days for adaptation. The results showed that adding YSE could significantly improve the average daily gain (ADG) from 1 to 59 d (15.38%) (p = 0.01) and 1 to 90 d (11.38%) (p < 0.01), as well as dry matter digestibility (DMD) (0.84%) (p < 0.05). The contents of alanine aminotransferase, aspartate aminotransferase, and bilirubin and the total antioxidant capacity were increased and blood urea was reduced in the YSE group, compared to the CON group (p < 0.05). Both the glycerophospholipids and bile acids, including phosphocholine, glycerophosphocholine, PC(15:0/18:2(9Z,12Z)), PE(18:0/20:3(5Z,8Z,11Z)), PE(18:3(6Z,9Z,12Z)/P-18:0), LysoPC(15:0), LysoPC(17:0), LysoPC(18:0), LysoPC(20:5(5Z,8Z,11Z,14Z,17Z)), deoxycholic acid, glycocholic acid, and cholic acid, were upregulated by the addition of YSE. In summary, YSE may improve the ADG by increasing the blood total antioxidant capacity and glycerophospholipid synthesis, maintaining steers under a healthy status that is beneficial for growth. Furthermore, YSE may also increase the expression of bile acid synthesis, thereby promoting DMD, which, in turn, offers more nutrients available for growth.

19.
Metab Brain Dis ; 39(2): 283-294, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38095788

RESUMO

Brain stroke (BS, also known as a cerebrovascular accident), represents a serious global health crisis. It has been a leading cause of permanent disability and unfortunately, frequent fatalities due to lack of timely medical intervention. While progress has been made in prevention and management, the complexities and consequences of stroke continue to pose significant challenges, especially, its impact on patient's quality of life and independence. During stroke, there is a substantial decrease in oxygen supply to the brain leading to alteration of cellular metabolic pathways, including those involved in mitochondrial-damage, leading to mitochondrial-dysfunction. The present proof-of-the-concept metabolomics study has been performed to gain insights into the metabolic pathways altered following a brain stroke and discover new potential targets for timely interventions to mitigate the effects of cellular and mitochondrial damage in BS. The serum metabolic profiles of 108 BS-patients were measured using 800 MHz NMR spectroscopy and compared with 60 age and sex matched normal control (NC) subjects. Compared to NC, the serum levels of glutamate, TCA-cycle intermediates (such as citrate, succinate, etc.), and membrane metabolites (betaine, choline, etc.) were found to be decreased BS patients, whereas those of methionine, mannose, mannitol, phenylalanine, urea, creatine and organic acids (such as 3-hydroxybutyrate and acetone) were found to be elevated in BS patients. These metabolic changes hinted towards hypoxia mediated mitochondrial dysfunction in BS-patients. Further, the area under receiver operating characteristic curve (ROC) values for five metabolic features (methionine, mannitol, phenylalanine, mannose and urea) found to be more than 0.9 suggesting their high sensitivity and specificity for differentiating BS from NC subjects.


Assuntos
Manose , Acidente Vascular Cerebral , Humanos , Qualidade de Vida , Metabolômica/métodos , Espectroscopia de Ressonância Magnética/métodos , Encéfalo/metabolismo , Estresse Oxidativo , Fenilalanina , Metionina , Manitol , Ureia , Biomarcadores
20.
J Ethnopharmacol ; 319(Pt 3): 117340, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37879508

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tetradium ruticarpum (A.Juss.) T.G.Hartley, a traditional Chinese medicine with thousands of years of medicinal history, has been employed to address issues such as indigestion, abdominal pain, and vomiting. Dehydroevodiamine (DHE) is a quinazoline alkaloid extracted from traditional Chinese medicine Tetradium ruticarpum (A.Juss.) T.G.Hartley. Previous studies have shown that DHE has anti-inflammatory, analgesic, and antioxidant activities. However, it is still unclear whether DHE has an effect on ethanol-induced gastric ulcers. AIM OF THE STUDY: The objective of this study is to investigate the therapeutic efficacy and underlying mechanisms of action of DHE on ethanol-induced gastric ulcers using network pharmacology and metabolomics strategies. METHODS: In this study, we used ethanol-induced rats as a model to assess the efficacy of DHE by biochemical indicator assays and pathological tissue detection. The integration of network pharmacology and metabolomics was used to explore possible mechanisms and was validated by western blot experiments. Finally, molecular docking was used to analyze the binding energy between DHE and the targets of PIK3CG and PLA2G2A. RESULTS: DHE was able to reverse ethanol-induced abnormalities in biochemical indicators and improve pathological tissue. Network pharmacology results indicated that DHE may be involved in the regulation of gastric ulcers by modulating 79 targets, and metabolomics results showed that a total of 13 metabolites were changed before and after DHE administration. Integrating network pharmacology and metabolomics, PIK3CG and PLA2G2A were identified as possible targets to exert therapeutic effects. In addition, the MAPKs pathway may also be involved in the regulation of ethanol-induced gastric ulcers. Finally, molecular docking results showed that DHE had low binding energies with both PIK3CG and PLA2G2A. CONCLUSIONS: These findings suggest that DHE was able to exert a protective effect against ethanol-induced gastric ulcers by modulating multiple metabolites with multiple targets. This study provides a valuable reference for the development of antiulcer drugs.


Assuntos
Evodia , Úlcera Gástrica , Animais , Ratos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Anti-Inflamatórios não Esteroides , Etanol/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA