Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 430
Filtrar
1.
J Chromatogr A ; 1734: 465314, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39217735

RESUMO

Large synthetic oligonucleotides such as guide ribonucleic acid (gRNA), a critical reagent in clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing, have complex higher order structures (HOS) inherent in their design. In this study, we first developed a generic anion exchange chromatography (AEX) method for the comprehensive analysis of a 100mer single guide ribonucleic acid (sgRNA) impurity profiling. AEX demonstrated superior resolution compared to other common chromatographic methods employed for sgRNA analysis, such as Ion-Pairing Reversed Phase Liquid Chromatography (IP-RPLC) and Hydrophilic Interaction Chromatography (HILIC). Moreover, we discovered AEX's potential in probing the HOS of RNAs by adjusting the temperature and using organic additives. Our study also highlighted that sgRNA possesses a unique HOS distinctly different from other therapeutic nucleic acids, such as antisense oligonucleotides and messenger RNAs.


Assuntos
Oligonucleotídeos , Cromatografia por Troca Iônica/métodos , Oligonucleotídeos/química , Oligonucleotídeos/análise , RNA Guia de Sistemas CRISPR-Cas/química , Cromatografia de Fase Reversa/métodos , Interações Hidrofóbicas e Hidrofílicas , Ânions/química
2.
Int J Biol Macromol ; 280(Pt 1): 135413, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270887

RESUMO

Knockouts mediated by CRISPR/Cas9 technology are widely used to study insect gene functions, but the efficiency in Hemiptera is low. New strategies are urgently needed to improve gene knockout efficiency. This study initially explored the impact of modifying the fundamental backbone structure of single guide RNA (sgRNA) on knockout efficiency. The results indicated that both in vitro and in vivo transcription of sgRNA structures (Loop5bp + MT/C type) increased average knockout efficiency by 0.61-fold compared to the original sgRNA. In addition, the PTG/Cas9 system was observed to induce a 0.64-fold increase in average knockout efficiency using the original sgRNA. Notably, an integrated PTG/Cas9 system (iPTG/Cas9 system), the integration of optimized sgRNA structures (Loop5bp + MT/C type) into the conventional PTG/Cas9 system, demonstrated a synergistic effect, resulting in a 1.45-fold increase in average knockout efficiency compared to the original sgRNA structure. The iPTG/Cas9 system was effectively used to simultaneously knockout two different target sites within a single gene and to co-knockout two genes. This study represents the first application of the iPTG/Cas9 system to establish a double knockout system in Hemiptera, offering a promising approach to enhance knockout efficiency in species with low efficiency and improve genetic manipulation tools for pest control.

3.
Mar Biotechnol (NY) ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39212852

RESUMO

This study facilitates design of expression vectors and lentivirus tools for gene editing of Atlantic salmon. We have characterized widely used heterologous promoters and novel endogenous promoters in Atlantic salmon cells. We used qPCR to evaluate the activity of several U6 promoters for sgRNA expression, including human U6 (hU6), tilapia U6 (tU6), mouse U6 (mU6), zebrafish U6 (zU6), Atlantic salmon U6 (sU6), medaka U6 (medU6), and fugu U6 (fU6) promoters. We also evaluated several polymerase type II (pol II) promoters by luciferase assay. Our results showed that hU6 and tU6 promoters were the most active among all the tested U6 promoters, and heterologous promoters (CMV, hEF1α core) had higher activity compared to endogenous Atlantic salmon promoters sHSP8, sNUC3L, sEF1α. Among endogenous pol II promoters, sEF1α and sHSP8 displayed higher activity than sNUC3L, sHSP703, sHSP7C, sXRCC1L, and sETF. We observed that extending the promoter sequence to include the region up to the start codon (ATG) resulted in a significant increase in expression efficiency for sNUC3L and sEF1α. We also show that mutating the PRDM1 motif will significantly decrease the activity of the sEF1α promoter. The presence of the PRDM1 motif in sHSP8 promoter was also associated with relatively high expression compared to the promoters that naturally lacked this motif, such as sNUC3L. We speculate that this short sequence might be included in other promoters to further enhance the promoter activity, but further experiments are needed to confirm this. Our findings provide valuable insights into the activity of different promoters in Atlantic salmon cells and can be used to facilitate further transgenic studies and improve the efficiency of transgene expression in Atlantic salmon.

4.
Methods Mol Biol ; 2824: 203-219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039415

RESUMO

Like all the RNA viruses, Rift Valley fever virus (RVFV) encodes only few viral proteins and relies heavily on the host cellular machinery for productive infection. This dependence creates a potential "Achille's heel" that may be exploited to develop new approaches to treat RVFV infection. The recent development of lentiviral sgRNAs pool has enabled the creation of genome-scale CRISPR-Cas9 knockout libraries that has been used to identify host factors required for virus replication. In this chapter, we describe the preparation and execution of a pooled CRISPR-Cas9 loss-of-function screen using virus-induced cell death phenotypic readout. Using this technique, we outline a strategy for the identification of host factors essential for important human emerging viruses such as RVFV.


Assuntos
Sistemas CRISPR-Cas , Vírus da Febre do Vale do Rift , Humanos , Vírus da Febre do Vale do Rift/genética , Replicação Viral/genética , Interações Hospedeiro-Patógeno/genética , Técnicas de Inativação de Genes , RNA Guia de Sistemas CRISPR-Cas/genética
5.
Bio Protoc ; 14(13): e5029, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39007160

RESUMO

CRISPR-Cas9 technology has become an essential tool for plant genome editing. Recent advancements have significantly improved the ability to target multiple genes simultaneously within the same genetic background through various strategies. Additionally, there has been significant progress in developing methods for inducible or tissue-specific editing. These advancements offer numerous possibilities for tailored genome modifications. Building upon existing research, we have developed an optimized and modular strategy allowing the targeting of several genes simultaneously in combination with the synchronized expression of the Cas9 endonuclease in the egg cell. This system allows significant editing efficiency while avoiding mosaicism. In addition, the versatile system we propose allows adaptation to inducible and/or tissue-specific edition according to the promoter chosen to drive the expression of the Cas9 gene. Here, we describe a step-by-step protocol for generating the binary vector necessary for establishing Arabidopsis edited lines using a versatile cloning strategy that combines Gateway® and Golden Gate technologies. We describe a versatile system that allows the cloning of as many guides as needed to target DNA, which can be multiplexed into a polycistronic gene and combined in the same construct with sequences for the expression of the Cas9 endonuclease. The expression of Cas9 is controlled by selecting from among a collection of promoters, including constitutive, inducible, ubiquitous, or tissue-specific promoters. Only one vector containing the polycistronic gene (tRNA-sgRNA) needs to be constructed. For that, sgRNA (composed of protospacers chosen to target the gene of interest and sgRNA scaffold) is cloned in tandem with the pre-tRNA sequence. Then, a single recombination reaction is required to assemble the promoter, the zCas9 coding sequence, and the tRNA-gRNA polycistronic gene. Each element is cloned in an entry vector and finally assembled according to the Multisite Gateway® Technology. Here, we detail the process to express zCas9 under the control of egg cell promoter fused to enhancer sequence (EC1.2en-EC1.1p) and to simultaneously target two multiple C2 domains and transmembrane region protein genes (MCTP3 and MCTP4, respectively at3g57880 and at1g51570), using one or two sgRNA per gene. Key features • A simple method for Arabidopsis edited lines establishment using CRISPR-Cas9 technology • Versatile cloning strategy combining various technologies for convenient cloning (Gateway®, Golden Gate) • Multigene targeting with high efficiency.

6.
Methods Mol Biol ; 2842: 179-192, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39012596

RESUMO

The discovery and adaptation of CRISPR/Cas systema for epigenome editing has allowed for a straightforward design of targeting modules that can direct epigenome editors to virtually any genomic site. This advancement in DNA-targeting technology brings allele-specific epigenome editing into reach, a "super-specific" variation of epigenome editing whose goal is an alteration of chromatin marks at only one selected allele of the genomic target locus. This technology could be useful for the treatment of diseases caused by a mutant allele with a dominant effect, because allele-specific epigenome editing allows the specific silencing of the mutated allele leaving the healthy counterpart expressed. Moreover, it may allow the direct correction of aberrant imprints in imprinting disorders where editing of DNA methylation is required exclusively in a single allele. Here, we describe a basic protocol for the design and application of allele-specific epigenome editing systems using allele-specific DNA methylation at the NARF gene in HEK293 cells as an example. An sgRNA/dCas9 unit is used for allele-specific binding to the target locus containing a SNP in the seed region of the sgRNA or the PAM region. The dCas9 protein is connected to a SunTag allowing to recruit up to 10 DNMT3A/3L units fused to a single-chain Fv fragment, which specifically binds to the SunTag peptide sequence. The plasmids expressing dCas9-10x SunTag, scFv-DNMT3A/3L, and sgRNA, each of them co-expressing a fluorophore, are introduced into cells by co-transfection. Cells containing all three plasmids are enriched by FACS, cultivated, and later the genomic DNA and RNA can be retrieved for DNA methylation and gene expression analysis.


Assuntos
Alelos , Sistemas CRISPR-Cas , Metilação de DNA , Epigenoma , Edição de Genes , Humanos , Edição de Genes/métodos , Células HEK293 , RNA Guia de Sistemas CRISPR-Cas/genética , Epigenômica/métodos , Epigênese Genética
7.
Methods Mol Biol ; 2842: 289-307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39012602

RESUMO

Epigenetic modifications play a crucial role in regulating gene expression patterns. Through epigenetic editing approaches, the chromatin structure is modified and the activity of the targeted gene can be reprogrammed without altering the DNA sequence. By using the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic repeats) platform with nuclease-deactivated dCas9 proteins to direct epigenetic effector domains (EDs) to genomic regulatory regions, the expression of the targeted gene can be modulated. However, the long-term stability of these effects, although demonstrated, remains unpredictable. The versatility and flexibility of (co-)targeting different genes with multiple epigenetic effectors has made the CRISPR/dCas9 platform the most widely used gene modulating technology currently available. Efficient delivery of large dCas9-ED fusion constructs into target cells, however, is challenging. An approach to overcome this limitation is to generate cells that stably express sgRNA(s) or dCas9-ED constructs. The sgRNA(s) or dCas9-ED stable cell lines can be used to study the mechanisms underlying sustained gene expression reprogramming by transiently expressing the other of the two constructs. Here, we describe a detailed protocol for the engineering of cells that stably express CRISPR/dCas9 or sgRNA. Creating a system where one component of the CRISPR/dCas9 is stably expressed while the other is transiently expressed offers a versatile platform for investigating the dynamics of epigenetic reprogramming.


Assuntos
Sistemas CRISPR-Cas , Epigênese Genética , Edição de Genes , RNA Guia de Sistemas CRISPR-Cas , Edição de Genes/métodos , Humanos , RNA Guia de Sistemas CRISPR-Cas/genética , Linhagem Celular , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/genética , Células HEK293
8.
Antiviral Res ; 228: 105946, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38925369

RESUMO

SARS-CoV-2 is a betacoronavirus that causes COVID-19, a global pandemic that has resulted in many infections, deaths, and socio-economic challenges. The virus has a large positive-sense, single-stranded RNA genome of ∼30 kb, which produces subgenomic RNAs (sgRNAs) through discontinuous transcription. The most abundant sgRNA is sgRNA N, which encodes the nucleocapsid (N) protein. In this study, we probed the secondary structure of sgRNA N and a shorter model without a 3' UTR in vitro, using the SHAPE (selective 2'-hydroxyl acylation analyzed by a primer extension) method and chemical mapping with dimethyl sulfate and 1-cyclohexyl-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfonate. We revealed the secondary structure of sgRNA N and its shorter variant for the first time and compared them with the genomic RNA N structure. Based on the structural information, we designed gapmers, siRNAs and antisense oligonucleotides (ASOs) to target the N protein coding region of sgRNA N. We also generated eukaryotic expression vectors containing the complete sequence of sgRNA N and used them to screen for new SARS-CoV-2 gene N expression inhibitors. Our study provides novel insights into the structure and function of sgRNA N and potential therapeutic tools against SARS-CoV-2.


Assuntos
Conformação de Ácido Nucleico , RNA Viral , SARS-CoV-2 , Replicação Viral , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Replicação Viral/efeitos dos fármacos , RNA Viral/genética , Humanos , Antivirais/farmacologia , Antivirais/química , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/antagonistas & inibidores , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/química , Ésteres do Ácido Sulfúrico/farmacologia , Ésteres do Ácido Sulfúrico/química , COVID-19/virologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/química , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/química , Genoma Viral , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/química
9.
Int J Nanomedicine ; 19: 5335-5363, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859956

RESUMO

The genome editing approach by clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) is a revolutionary advancement in genetic engineering. Owing to its simple design and powerful genome-editing capability, it offers a promising strategy for the treatment of different infectious, metabolic, and genetic diseases. The crystal structure of Streptococcus pyogenes Cas9 (SpCas9) in complex with sgRNA and its target DNA at 2.5 Å resolution reveals a groove accommodating sgRNA:DNA heteroduplex within a bilobate architecture with target recognition (REC) and nuclease (NUC) domains. The presence of a PAM is significantly required for target recognition, R-loop formation, and strand scission. Recently, the spatiotemporal control of CRISPR/Cas9 genome editing has been considerably improved by genetic, chemical, and physical regulatory strategies. The use of genetic modifiers anti-CRISPR proteins, cell-specific promoters, and histone acetyl transferases has uplifted the application of CRISPR/Cas9 as a future-generation genome editing tool. In addition, interventions by chemical control, small-molecule activators, oligonucleotide conjugates and bioresponsive delivery carriers have improved its application in other areas of biological fields. Furthermore, the intermediation of physical control by using heat-, light-, magnetism-, and ultrasound-responsive elements attached to this molecular tool has revolutionized genome editing further. These strategies significantly reduce CRISPR/Cas9's undesirable off-target effects. However, other undesirable effects still offer some challenges for comprehensive clinical translation using this genome-editing approach. In this review, we summarize recent advances in CRISPR/Cas9 structure, mechanistic action, and the role of small-molecule activators, inhibitors, promoters, and physical approaches. Finally, off-target measurement approaches, challenges, future prospects, and clinical applications are discussed.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Humanos , Animais , Streptococcus pyogenes/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/química
10.
Cell Rep ; 43(6): 114290, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38823012

RESUMO

Coexpressing multiple identical single guide RNAs (sgRNAs) in CRISPR-dependent engineering triggers genetic instability and phenotype loss. To provide sgRNA derivatives for efficient DNA digestion, we design a high-throughput digestion-activity-dependent positive screening strategy and astonishingly obtain functional nonrepetitive sgRNA mutants with up to 48 out of the 61 nucleotides mutated, and these nonrepetitive mutants completely lose canonical secondary sgRNA structure in simulation. Cas9-sgRNA complexes containing these noncanonical sgRNAs maintain wild-type level of digestion activities in vivo, indicating that the Cas9 protein is compatible with or is able to adjust the secondary structure of sgRNAs. Using these noncanonical sgRNAs, we achieve multiplex genetic engineering for gene knockout and base editing in microbial cell factories. Libraries of strains with rewired metabolism are constructed, and overproducers of isobutanol or 1,3-propanediol are identified by biosensor-based fluorescence-activated cell sorting (FACS). This work sheds light on the remarkable flexibility of the secondary structure of functional sgRNA.


Assuntos
Citometria de Fluxo , RNA Guia de Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas/metabolismo , RNA Guia de Sistemas CRISPR-Cas/genética , Citometria de Fluxo/métodos , Sistemas CRISPR-Cas/genética , Mutação/genética , Conformação de Ácido Nucleico , Ensaios de Triagem em Larga Escala/métodos , Butanóis/metabolismo , Edição de Genes/métodos , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/genética
11.
Adv Sci (Weinh) ; 11(32): e2309314, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923275

RESUMO

Hypervascularized glioblastoma is naturally sensitive to anti-angiogenesis but suffers from low efficacy of transient vasculature normalization. In this study, a lipid-polymer nanoparticle is synthesized to execute compartmentalized Cas9 and sgRNA delivery for a permanent vasculature editing strategy by knocking out the signal transducer and activator of transcription 3 (STAT3). The phenylboronic acid branched cationic polymer is designed to condense sgRNA electrostatically (inner compartment) and patch Cas9 coordinatively (outer compartment), followed by liposomal hybridization with angiopep-2 decoration for blood-brain barrier (BBB) penetration. The lipid-polymer nanoparticles can reach glioblastoma within 2 h post intravenous administration, and hypoxia in tumor cells triggers charge-elimination and degradation of the cationic polymer for burst release of Cas9 and sgRNA, accompanied by instant Cas9 RNP assembly, yielding ≈50% STAT3 knockout. The downregulation of downstream vascular endothelial growth factor (VEGF) reprograms vasculature normalization to improve immune infiltration, collaborating with interleukin-6 (IL-6) and interleukin-10 (IL-10) reduction to develop anti-glioblastoma responses. Collectively, the combinational assembly for compartmentalized Cas9/sgRNA delivery provides a potential solution in glioblastoma therapy.


Assuntos
Glioblastoma , Nanopartículas , Polímeros , Glioblastoma/metabolismo , Glioblastoma/genética , Glioblastoma/tratamento farmacológico , Nanopartículas/química , Camundongos , Animais , Polímeros/química , Humanos , Lipídeos/química , RNA Guia de Sistemas CRISPR-Cas/genética , Modelos Animais de Doenças , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Barreira Hematoencefálica/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas
12.
Insects ; 15(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38786895

RESUMO

The CRISPR/Cas9 gene-editing system is a standard technique in functional genomics, with widespread applications. However, the establishment of a CRISPR/Cas9 system is challenging. Previous studies have presented numerous methodologies for establishing a CRISPR/Cas9 system, yet detailed descriptions are limited. Additionally, the difficulties in obtaining the necessary plasmids have hindered the replication of CRISPR/Cas9 techniques in other laboratories. In this study, we share a detailed and simple CRISPR/Cas9 knockout system with optimized steps. The results of gene knockout experiments in vitro and in vivo show that this system successfully knocked out the target gene. By sharing detailed information on plasmid sequences, reagent codes, and methods, this study can assist researchers in establishing gene knockout systems.

13.
Int J Biol Macromol ; 271(Pt 1): 132546, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782330

RESUMO

This study investigated the function of AMP deaminase 1 (AMPD1) in Jingyuan chicken and the biological activity of its expression vector. AMPD1 was cloned and sequenced from chicken breast muscle tissue by RT-PCR and further analyzed using Cluster, DNASTAR, and online bioinformatics software, as well as vector construction, qPCR, Western blotting, enzymatic digestion, and sequencing. The coding sequence was 2162 bp, encoding 683 amino acids and producing a protein of approximately 78.95 kDa. After verification, the overexpression plasmids pEGFP-AMPD1, Cas9/sgRNA2, and Cas9/sgRNA3 were found to have biological activity in chicken muscle cells and individual chickens, and two sgRNAs (sgRNA2, sgRNA3) were identified that could edit AMPD1. The qPCR and Western blotting result showed that the pEGFP-AMPD1 plasmid significantly increased both mRNA and protein expression of AMPD1. T7EI digestion showed editing efficiencies of approximately 35 %, 37 %, and 33 % for sgRNA2, sgRNA3, and sgRNA2 + sgRNA3 of AMPD1 in chicken muscle cells. In comparison, TA cloning sequencing showed editing efficiencies of approximately 36.7 %, 86.7 %, and 26.7 % and editing efficiencies in chicken individuals of approximately 71 %, 45 %, and 76.7 %, respectively. These results provide a theoretical basis and support for further investigation into the function of the AMPD1 gene.


Assuntos
AMP Desaminase , Galinhas , Clonagem Molecular , Vetores Genéticos , Animais , Galinhas/genética , AMP Desaminase/genética , AMP Desaminase/metabolismo , Sequência de Aminoácidos , Expressão Gênica , Edição de Genes/métodos , Plasmídeos/genética , RNA Guia de Sistemas CRISPR-Cas/genética
14.
Genesis ; 62(3): e23598, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38727638

RESUMO

Nowadays, a significant part of the investigations carried out in the medical field belong to cancer treatment. Generally, conventional cancer treatments, including chemotherapy, radiotherapy, and surgery, which have been used for a long time, are not sufficient, especially in malignant cancers. Because genetic mutations cause cancers, researchers are trying to treat these diseases using genetic engineering tools. One of them is clustered regularly interspaced short palindromic repeats (CRISPR), a powerful tool in genetic engineering in the last decade. CRISPR, which forms the CRISPR-Cas structure with its endonuclease protein, Cas, is known as a part of the immune system (adaptive immunity) in bacteria and archaea. Among the types of Cas proteins, Cas9 endonuclease has been used in many scientific studies due to its high accuracy and efficiency. This review reviews the CRISPR system, focusing on the history, classification, delivery methods, applications, new generations, and challenges of CRISPR-Cas9 technology.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Edição de Genes/métodos , Neoplasias/genética , Neoplasias/terapia , Animais , Terapia Genética/métodos , Técnicas de Transferência de Genes
15.
Annu Rev Genomics Hum Genet ; 25(1): 51-76, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38692586

RESUMO

Genome-wide screening is a potent approach for comprehensively understanding the molecular mechanisms of biological phenomena. However, despite its widespread use in the past decades across various biological targets, its application to biochemical reactions with temporal and reversible biological outputs remains a formidable challenge. To uncover the molecular machinery underlying various biochemical reactions, we have recently developed the revival screening method, which combines flow cytometry-based cell sorting with library reconstruction from collected cells. Our refinements to the traditional genome-wide screening technique have proven successful in revealing the molecular machinery of biochemical reactions of interest. In this article, we elucidate the technical basis of revival screening, focusing on its application to CRISPR-Cas9 single guide RNA (sgRNA) library screening. Finally, we also discuss the future of genome-wide screening while describing recent achievements from in vitro and in vivo screening.


Assuntos
Sistemas CRISPR-Cas , Humanos , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/metabolismo , Citometria de Fluxo/métodos , Animais , Estudo de Associação Genômica Ampla , Edição de Genes/métodos , Biblioteca Gênica
16.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674012

RESUMO

CRISPR/Cas9 is a powerful genome-editing tool in biology, but its wide applications are challenged by a lack of knowledge governing single-guide RNA (sgRNA) activity. Several deep-learning-based methods have been developed for the prediction of on-target activity. However, there is still room for improvement. Here, we proposed a hybrid neural network named CrnnCrispr, which integrates a convolutional neural network and a recurrent neural network for on-target activity prediction. We performed unbiased experiments with four mainstream methods on nine public datasets with varying sample sizes. Additionally, we incorporated a transfer learning strategy to boost the prediction power on small-scale datasets. Our results showed that CrnnCrispr outperformed existing methods in terms of accuracy and generalizability. Finally, we applied a visualization approach to investigate the generalizable nucleotide-position-dependent patterns of sgRNAs for on-target activity, which shows potential in terms of model interpretability and further helps in understanding the principles of sgRNA design.


Assuntos
Sistemas CRISPR-Cas , Aprendizado Profundo , Edição de Genes , Redes Neurais de Computação , RNA Guia de Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Humanos
17.
Anim Cells Syst (Seoul) ; 28(1): 75-83, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440123

RESUMO

The CRISPR-Cas system stands out as a promising genome editing tool due to its cost-effectiveness and time efficiency compared to other methods. This system has tremendous potential for treating various diseases, including genetic disorders and cancer, and promotes therapeutic research for a wide range of genetic diseases. Additionally, the CRISPR-Cas system simplifies the generation of animal models, offering a more accessible alternative to traditional methods. The CRISPR-Cas9 system can be used to cleave target DNA strands that need to be corrected, causing double-strand breaks (DSBs). DNA with DSBs can then be recovered by the DNA repair pathway that the CRISPR-Cas9 system uses to edit target gene sequences. High cleavage efficiency of the CRISPR-Cas9 system is thus imperative for effective gene editing. Herein, we explore several factors affecting the cleavage efficiency of the CRISPR-Cas9 system. These factors include the GC content of the protospacer-adjacent motif (PAM) proximal and distal regions, single-guide RNA (sgRNA) properties, and chromatin state. These considerations contribute to the efficiency of genome editing.

18.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38426328

RESUMO

CRISPR/Cas9 is a promising RNA-guided genome editing technology, which consists of a Cas9 nuclease and a single-guide RNA (sgRNA). So far, a number of sgRNA prediction softwares have been developed. However, they were usually designed for protein-coding genes without considering that long non-coding RNA (lncRNA) genes may have different characteristics. In this study, we first evaluated the performances of a series of known sgRNA-designing tools in the context of both coding and non-coding datasets. Meanwhile, we analyzed the underpinnings of their varied performances on the sgRNA's specificity for lncRNA including nucleic acid sequence, genome location and editing mechanism preference. Furthermore, we introduce a support vector machine-based machine learning algorithm named CRISPRlnc, which aims to model both CRISPR knock-out (CRISPRko) and CRISPR inhibition (CRISPRi) mechanisms to predict the on-target activity of targets. CRISPRlnc combined the paired-sgRNA design and off-target analysis to achieve one-stop design of CRISPR/Cas9 sgRNAs for non-coding genes. Performance comparison on multiple datasets showed that CRISPRlnc was far superior to existing methods for both CRISPRko and CRISPRi mechanisms during the lncRNA-specific sgRNA design. To maximize the availability of CRISPRlnc, we developed a web server (http://predict.crisprlnc.cc) and made it available for download on GitHub.


Assuntos
RNA Guia de Sistemas CRISPR-Cas , RNA Longo não Codificante , Sistemas CRISPR-Cas , RNA Longo não Codificante/genética , Edição de Genes , Aprendizado de Máquina
19.
Methods Mol Biol ; 2760: 267-280, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468094

RESUMO

In recent years, the clustered regularly interspaced palindromic repeats-Cas (CRISPR-Cas) technology has become the method of choice for precision genome editing in many organisms due to its simplicity and efficacy. Multiplex genome editing, point mutations, and large genomic modifications are attractive features of the CRISPR-Cas9 system. These applications facilitate both the ease and velocity of genetic manipulations and the discovery of novel functions. In this protocol chapter, we describe the use of a CRISPR-Cas9 system for multiplex integration and deletion modifications, and deletions of large genomic regions by the use of a single guide RNA (sgRNA), and, finally, targeted point mutation modifications in Paenibacillus polymyxa.


Assuntos
Edição de Genes , Paenibacillus polymyxa , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Paenibacillus polymyxa/genética , Genoma
20.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 525-537, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38414349

RESUMO

The BCR-ABL fusion gene, formed by the fusion of the breakpoint cluster region protein ( BCR) and the Abl Oncogene 1, Receptor Tyrosine Kinase ( ABL) genes, encodes the BCR-ABL oncoprotein, which plays a crucial role in leukemogenesis. Current therapies have limited efficacy in patients with chronic myeloid leukemia (CML) because of drug resistance or disease relapse. Identification of novel strategies to treat CML is essential. This study aims to explore the efficiency of novel CRISPR-associated protein 9 (Cas9)/dual-single guide RNA (sgRNA)-mediated disruption of the BCR-ABL fusion gene by targeting BCR and cABL introns. A co-expression vector for Cas9 green fluorescent protein (GFP)/dual-BA-sgRNA targeting BCR and cABL introns is constructed to produce lentivirus to affect BCR-ABL expression in CML cells. The effects of dual-sgRNA virus-mediated disruption of BCR-ABL are analyzed via the use of a genomic sequence and at the protein expression level. Cell proliferation, cell clonogenic ability, and cell apoptosis are assessed after dual sgRNA virus infection, and phosphorylated BCR-ABL and its downstream signaling molecules are detected. These effects are further confirmed in a CML mouse model via tail vein injection of Cas9-GFP/dual-BA-sgRNA virus-infected cells and in primary cells isolated from patients with CML. Cas9-GFP/dual-BA-sgRNA efficiently disrupts BCR-ABL at the genomic sequence and gene expression levels in leukemia cells, leading to blockade of the BCR-ABL tyrosine kinase signaling pathway and disruption of its downstream molecules, followed by cell proliferation inhibition and cell apoptosis induction. This method prolongs the lifespan of CML model mice. Furthermore, the effect is confirmed in primary cells derived from patients with CML.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , RNA Guia de Sistemas CRISPR-Cas , Animais , Humanos , Camundongos , Apoptose/genética , Proliferação de Células/genética , Sistemas CRISPR-Cas , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Genes abl , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Proteínas Proto-Oncogênicas c-bcr/genética , Proteínas Proto-Oncogênicas c-bcr/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA