Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 10(23): 12960-12972, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304508

RESUMO

AIM: Coffee is an important export for many developing countries, with a global annual trade value of $100 billion, but it is threatened by a warming climate. Shade trees may mitigate the effects of climate change through temperature regulation that can aid in coffee growth, slow pest reproduction, and sustain avian insectivore diversity. The impact of shade on bird diversity and microclimate on coffee farms has been studied extensively in the Neotropics, but there is a dearth of research in the Paleotropics. LOCATION: East Africa. METHODS: We created current and future regional Maxent models for avian insectivores in East Africa using Worldclim temperature data and observations from the Global Biodiversity Information Database. We then adjusted current and future bioclimatic layers based on mean differences in temperature between shade and sun coffee farms and projected the models using these adjusted layers to predict the impact of shade tree removal on climatic suitability for avian insectivores. RESULTS: Existing Worldclim temperature layers more closely matched temperatures under shade trees than temperatures in the open. Removal of shade trees, through warmer temperatures alone, would result in reduction of avian insectivore species by over 25%, a loss equivalent to 50 years of climate change under the most optimistic emissions scenario. Under the most extreme climate scenario and removal of shade trees, insectivore richness is projected to decline from a mean of 38 to fewer than 8 avian insectivore species. MAIN CONCLUSIONS: We found that shade trees on coffee farms already provide important cooler microclimates for avian insectivores. Future temperatures will become a regionally limiting factor for bird distribution in East Africa, which could negatively impact control of coffee pests, but the effect of climate change can be potentially mediated through planting and maintaining shade trees on coffee farms.

2.
Insects ; 11(6)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545306

RESUMO

Exclusion nets are increasingly being used to protect a variety of agricultural crops from insect pests as a sustainable alternative to chemical controls. We examined the efficacy of exclusion nets in controlling the world's most damaging insect pest of coffee, Hypothenemus hampei (coffee berry borer), on two small-scale coffee farms on Hawai'i Island. We recorded microclimate data, fruit infestation, population per fruit, sex ratio, mortality by Beauveria bassiana, coffee yield and quality in four paired exclusion and control (un-netted) plots on both farms. Mean and maximum daily temperature and relative humidity were similar between treatments, while mean and maximum daily solar radiation was reduced by ~50% in exclusion plots. Green and ripe fruit from exclusion plots had significantly lower infestation compared to un-netted control plots at both farms. We observed no significant difference between exclusion and control plots in the number of CBB per fruit or the female:male sex ratio. CBB mortality was significantly higher in control relative to exclusion plots in one of the two farms. Ripe fruits harvested from exclusion plots were on average significantly heavier and wider than those from control plots; however, there was no significant difference in the average yield per tree between treatments. Lastly, coffee quality was not significantly different between control and exclusion plots. Our results suggest that with complete sanitation prior to net installation in an environment where CBB is actively circulating, exclusion netting can successfully control CBB on small-scale coffee farms without reducing coffee yield or quality, and has the potential to lower production and labor costs by eliminating the need to spray pesticides.

3.
R Soc Open Sci ; 6(8): 190013, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31598226

RESUMO

Shade coffee farming has been promoted as a means of combining sustainable coffee production and biodiversity conservation. Supporting this idea, similar levels of diversity and abundance of birds have been found in shade coffee and natural forests. However, diversity and abundance are not always good indicators of habitat quality because there may be a lag before population effects are observed following habitat conversion. Therefore, other indicators of habitat quality should be tested. In this paper, we investigate the use of two biomarkers: fluctuating asymmetry (FA) of tarsus length and rectrix mass, and feather growth bars (average growth bar width) to characterize the habitat quality of shade coffee and natural forests. We predicted higher FA and narrower feather growth bars in shade coffee forest versus natural forest, indicating higher quality in the latter. We measured and compared FA in tarsus length and rectrix mass and average growth bar width in more than 200 individuals of five bird species. The extent of FA in both tarsus length and rectrix mass was not different between the two forest types in any of the five species. Similarly, we found no difference in feather growth between shade coffee and natural forests for any species. Therefore, we conclude our comparison of biomarkers suggests that shade coffee farms and natural forests provide similar habitat quality for the five species we examined.

4.
J Environ Manage ; 130: 48-54, 2013 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-24061085

RESUMO

In recent years, shade coffee certification programs have attracted increasing attention from conservation and development organizations. Certification programs offer an opportunity to link environmental and economic goals by providing a premium price to producers and thereby contributing to forest conservation. However, the significance of the conservation efforts of certification programs remains unclear because of a lack of empirical evidence. The purpose of this study was to examine the impact of a shade coffee certification program on forest conservation. The study was conducted in the Belete-Gera Regional Forest Priority Area in Ethiopia, and remote sensing data of 2005 and 2010 were used to gauge the change of forest area. Using propensity score matching estimation, we found that forests under the coffee certification program were less likely to be deforested than forests without forest coffee. By contrast, the difference in the degree of deforestation between forests with forest coffee but not under the certification program and forests with no forest coffee is statistically insignificant. These results suggest that the certification program has had a large effect on forest protection, decreasing the probability of deforestation by 1.7 percentage points.


Assuntos
Café/fisiologia , Conservação dos Recursos Naturais , Árvores , Biodiversidade , Etiópia , Motivação
5.
Conserv Biol ; 27(4): 785-95, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23551570

RESUMO

Two contrasting strategies have been proposed for conserving biological diversity while meeting the increasing demand for agricultural products: land sparing and land sharing production systems. Land sparing involves increasing yield to reduce the amount of land needed for agriculture, whereas land-sharing agricultural practices incorporate elements of native ecosystems into the production system itself. Although the conservation value of these systems has been extensively debated, empirical studies are lacking. We compared bird communities in shade coffee, a widely practiced land-sharing system in which shade trees are maintained within the coffee plantation, with bird communities in a novel, small-scale, land-sparing coffee-production system (integrated open canopy or IOC coffee) in which farmers obtain higher yields under little or no shade while conserving an area of forest equal to the area under cultivation. Species richness and diversity of forest-dependent birds were higher in the IOC coffee farms than in the shade coffee farms, and community composition was more similar between IOC coffee and primary forest than between shade coffee and primary forest. Our study represents the first empirical comparison of well-defined land sparing and land sharing production systems. Because IOC coffee farms can be established by allowing forest to regenerate on degraded land, widespread adoption of this system could lead to substantial increases in forest cover and carbon sequestration without compromising agricultural yield or threatening the livelihoods of traditional small farmers. However, we studied small farms (<5 ha); thus, our results may not generalize to large-scale land-sharing systems. Furthermore, rather than concluding that land sparing is generally superior to land sharing, we suggest that the optimal approach depends on the crop, local climate, and existing land-use patterns.


Assuntos
Agricultura/métodos , Biodiversidade , Aves/fisiologia , Café/crescimento & desenvolvimento , Conservação dos Recursos Naturais/métodos , Modelos Biológicos , Animais , Costa Rica , Dinâmica Populacional , Especificidade da Espécie , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA