Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 11: 1251324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744258

RESUMO

Existing studies on the biomechanical characteristics of the first metatarsophalangeal joint (1st MTPJ) during shod running are limited to sagittal plane assessment and rely on skin marker motion capture, which can be affected by shoes wrapping around the 1st MTPJ and may lead to inaccurate results. This study aims to investigate the in vivo effects of different habitual foot strike patterns (FSP) on the six degrees of freedom (6DOF) values of the 1st MTPJ under shod condition by utilizing a dual-fluoroscopic imaging system (DFIS). Long-distance male runners with habitual forefoot strike (FFS group, n = 15) and rearfoot strike (RFS group, n = 15) patterns were recruited. All participants underwent foot computed tomography (CT) scan to generate 3D models of their foot. The 6DOF kinematics of the 1st MTPJ were collected using a DFIS at 100 Hz when participants performed their habitual FSP under shod conditions. Independent t-tests and one-dimensional statistical parametric mapping (1-d SPM) were employed to analyze the differences between the FFS and RFS groups' 1st MTPJ 6DOF kinematic values during the stance phase. FFS exhibited greater superior translation (3.5-4.9 mm, p = 0.07) during 51%-82% of the stance and higher extension angle (8.4°-10.1°, p = 0.031) during 65%-75% of the stance in the 1st MTPJ than RFS. Meanwhile, FFS exhibited greater maximum superior translation (+3.2 mm, p = 0.022), maximum valgus angle (+6.1°, p = 0.048) and varus-valgus range of motion (ROM) (+6.5°, p = 0.005) in the 1st MTPJ during stance. The greater extension angle of the 1st MTPJ in the late stance suggested that running with FFS may enhance the propulsive effect. However, the higher maximum valgus angle and the ROM of varus-valgus in FFS may potentially lead to the development of hallux valgus.

2.
Front Bioeng Biotechnol ; 10: 917675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837546

RESUMO

Shoes affect the biomechanical properties of the medial longitudinal arch (MLA) and further influence the foot's overall function. Most previous studies on the MLA were based on traditional skin-marker motion capture, and the observation of real foot motion inside the shoes is difficult. Thus, the effect of shoe parameters on the natural MLA movement during running remains in question. Therefore, this study aimed to investigate the differences in the MLA's kinematics between shod and barefoot running by using a high-speed dual fluoroscopic imaging system (DFIS). Fifteen healthy habitual rearfoot runners were recruited. All participants ran at a speed of 3 m/s ± 5% along with an elevated runway in barefoot and shod conditions. High-speed DFIS was used to acquire the radiographic images of MLA movements in the whole stance phase, and the kinematics of the MLA were calculated. Paired sample t-tests were used to compare the kinematic characteristics of the MLA during the stance phase between shod and barefoot conditions. Compared with barefoot, shoe-wearing showed significant changes (p < 0.05) as follows: 1) the first metatarsal moved with less lateral direction at 80%, less anterior translation at 20%, and less superiority at 10-70% of the stance phase; 2) the first metatarsal moved with less inversion amounting to 20-60%, less dorsiflexion at 0-10% of the stance phase; 3) the inversion/eversion range of motion (ROM) of the first metatarsal relative to calcaneus was reduced; 4) the MLA angles at 0-70% of the stance phase were reduced; 5) the maximum MLA angle and MLA angle ROM were reduced in the shod condition. Based on high-speed DFIS, the above results indicated that shoe-wearing limited the movement of MLA, especially reducing the MLA angles, suggesting that shoes restricted the compression and recoil of the MLA, which further affected the spring-like function of the MLA.

3.
Front Bioeng Biotechnol ; 10: 892760, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651545

RESUMO

The biomechanics of the first metatarsophalangeal joint (MTPJ) is affected by different shoe conditions. In the biomechanical research field, traditional skin marker motion capture cannot easily acquire the in vivo joint kinematics of the first MTPJ in shoes. Thus, the present study aims to investigate the differences of the first MTPJ's six-degree-of-freedom (6DOF) kinematics between shod and barefoot running by using a high-speed dual fluoroscopic imaging system (DFIS). In total, 15 healthy male runners were recruited. Computed tomography scans were taken from each participant's right foot for the construction of 3D models and local coordinate systems. Radiographic images were acquired at 100 Hz while the participants ran at a speed of 3 m/s ± 5% in shod and barefoot conditions along an elevated runway, and 6DOF kinematics of the first MTPJ were calculated by 3D-2D registration. Paired sample t-tests were used to compare the kinematic characteristics of the first MTPJ 6DOF kinematics during the stance phase between shod and barefoot conditions. Compared with barefoot, wearing shoes showed significant changes (p < 0.05): 1) the first MTPJ moved less inferior at 50% but moved less superior at 90 and 100% of the stance phase; 2) the peak medial, posterior, and superior translation of the first MTPJ significantly decreased in the shod condition; 3) the extension angle of the first MTPJ was larger at 30-60% but smaller at 90 and 100% of the stance phase; 4) the maximum extension angle and flexion/extension range of motion of the first MTPJ were reduced; and 5) the minimum extension and adduction angle of the first MTPJ was increased in the shod condition. On the basis of the high-speed DFIS, the aforementioned results indicated that wearing shoes limited the first MTPJ flexion and extension movement and increased the adduction angle, suggesting that shoes may affect the propulsion of the first MTPJ and increase the risk of hallux valgus.

4.
Chin J Traumatol ; 24(3): 174-179, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33757697

RESUMO

PURPOSE: This study evaluated the angular kinematic and moment of the ankle and foot during shod walking and barefoot walking in individuals with unilateral chronic ankle instability (CAI). METHODS: Recreational soccer players with unilateral CAI were recruited for this cross sectional study conducted between January and August 2019. A total of 40 participants were screened for eligibility but only 31 met the inclusion criteria based on the methods of Delahunt et al and Gribble et al. Except for 3 participants not attending the evaluation session, 28 participants were finally included. A three dimensional motion analysis system made up of ProReflex motion capture unit and an AMTIb Kistler force plate, embedded in the middle of nine meter walkway, were used to assess the ankle and foot angles and moment during shod walking and barefoot walking conditions. A Statistical Package for Social Sciences (version 20.0) was used to analyze data. RESULTS: During shod walking, the ankle joint plantar-flexion range of motion (ROM) at 10% of the gait cycle (GC) and dorsiflexion ROM at 30% of the GC were significantly higher than those during barefoot walking for both feet (p = 0.001, 0.001, 0.027, and 0.036 respectively). The inversion ROM during shod walking was significantly higher than that during barefoot walking for both feet at 10% and 30% of the GC (p = 0.001. 0.001, 0.001, and 0.042 respectively). At 10% of the GC, the eversion moment was significantly higher between barefoot and shod walking for both feet (both p = 0.001). At 30% of the GC, there was no significant difference between shod and barefoot walking plantar-flexion moment of both feet (p = 0.975 and 0.763 respectively), and the eversion moment of both feet (p = 0.116 and 0.101 respectively). CONCLUSION: At the early stance, shod walking increases the ankle plantar-flexion and foot inversion ROM, and decreases the eversion moment for both feet in subjects with unilateral CAI. Therefore, the foot wearing condition should be considered during evaluation of ankle and foot kinematics and kinetics.


Assuntos
Articulação do Tornozelo , Caminhada , Tornozelo , Fenômenos Biomecânicos , Estudos Transversais , Humanos , Sapatos
5.
Braz J Phys Ther ; 25(3): 336-343, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33109481

RESUMO

BACKGROUND: There is a lack of studies describing foot strike patterns in children and adolescents. This raises the question on what the natural foot strike pattern with less extrinsic influence should be and whether or not it is valid to make assumptions on adults based on the knowledge from children. OBJECTIVES: To investigate the distribution of foot strike patterns in children and adolescents during running, and the association of participants' characteristics with the foot strike patterns. METHODS: This is a cross-sectional study. Videos were acquired with a high-speed camera and running speed was measured with a stopwatch. Bayesian analyses were performed to allow foot strike pattern inferences from the sample to the population distribution and a supervised machine learning procedure was implemented to develop an algorithm based on logistic mixed models aimed at classifying the participants in rearfoot, midfoot, or forefoot strike patterns. RESULTS: We have included 415 children and adolescents. The distribution of foot strike patterns was predominantly rearfoot for shod and barefoot assessments. Running condition (barefoot versus shod), speed, and footwear (with versus without heel elevation) seemed to influence the foot strike pattern. Those running shod were more likely to present rearfoot pattern compared to barefoot. The classification accuracy of the final algorithm ranged from 80% to 88%. CONCLUSIONS: The rearfoot pattern was predominant in our sample. Future well-designed prospective studies are needed to understand the influence of foot strike patterns on the incidence and prevalence of running-related injuries in children and adolescents during running, and in adult runners.


Assuntos
Pé/fisiologia , Calcanhar/fisiologia , Adolescente , Adulto , Teorema de Bayes , Estudos Transversais , Humanos , Estudos Prospectivos , Sapatos
6.
Biomech Model Mechanobiol ; 19(4): 1211-1224, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31705337

RESUMO

This study presents population-based multivariate regression models for predicting foot plantar pressure from easily measured foot metrics in both shod and barefoot populations for running and walking tasks. Both shod and barefoot models were trained on 50 participants and predicted plantar pressure from anthropometric measurements using a 'leave-one-out' validation with R2 values of 0.72-0.78 across walking and running in both populations. When the model was blindly tested on 16 new data sets, the model performed just as well with R2 values of 0.76-0.79 across both populations. Walking and running peak plantar pressure were predicted with similar levels of accuracy in both populations. It was revealed that forefoot plantar pressure was more sensitive to the hallux-toe distance in barefoot people with shod participants showing little response to this foot characteristic. Lateral forefoot plantar pressure was sensitive to the arch index in both shod and barefoot participants but only for walking. During running, the arch index was not a useful determinant of lateral forefoot pressure. Hence, habitually barefoot people who adopt minimalist footwear should consider additional support in the medial forefoot and walking footwear should include forefoot support stratified by arch index (foot type), but running footwear is challenging due to the variability in strike patterns.


Assuntos
Pé/anatomia & histologia , Pé/fisiologia , Intervalos de Confiança , Humanos , Análise dos Mínimos Quadrados , Masculino , Pressão , Corrida/fisiologia , Caminhada/fisiologia
7.
Int J Exerc Sci ; 12(1): 1110-1120, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31839842

RESUMO

Running is one of the most popular forms of exercise, thus overuse injuries such as plantar fasciitis, shin splints, and tibial stress fractures are also common. Barefoot/forefoot running has shown promise to reduce overuse injuries by decreasing the impact upon contact with the ground. The arch of the foot utilizes a 'spring' system that simultaneously reduces impact and propels the stride forward. Increased muscle activity in a particular location is indicative of greater impact forces, suggesting a larger risk for overuse injuries. The current study investigated the role of the barefoot condition on electromyography (EMG) activity in the tibialis anterior (TA) and the lateral gastrocnemius head (GAS) in recreationally active college-aged females when forefoot striking. Seventeen healthy and active female participants 18-23 years old were recruited for this study. Participants ran on a treadmill for 10 minutes in shod and barefoot conditions at 9 km/h and 1% incline. Paired t-tests were used to compare EMG values for each muscle and rating of perceived exertion (RPE) between shod and barefoot conditions. An of 3% of maximum voluntary contraction (MVC) was recorded in the TA in the barefoot condition (p = 0.04). There was a trending, though non-significant, increase of 3%MVC in GAS activity in the barefoot condition (p = 0.056). No differences in RPE were noted between conditions. Though recruitment varied (e.g. athlete vs recreational) we only found minimal differences in RPE. Caution is warranted in this population engaging in barefoot/forefoot running due to the potential increase in muscle demand, potentially leading to overuse injuries.

8.
Gait Posture ; 72: 57-61, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31151088

RESUMO

BACKGROUND: While wearing shoes is common in daily activities, most foot kinematic models report results on barefoot conditions. It is difficult to describe foot position inside shoes. This study used fluoroscopic images to determine talocrural and subtalar motion. RESEARCH QUESTION: What are the differences in sagittal talocrual and subtalar kinematics between walking barefoot and while wearing athletic walking shoes? METHODS: Thirteen male subjects (mean age 22.9 ±â€¯2.9 years, mean weight 77.2 ±â€¯6.9 kg, mean height 178.2 ±â€¯3.7 cm) screened for normal gait were tested. A fluoroscopy unit was used to collect images during stance. Sagittal motion of the talocrural and subtalar joints of the right foot were analyzed barefoot and in an athletic walking shoe. RESULTS: Shod talocrural position at heel strike was 6.0° of dorsiflexion and shod peak talocrural plantarflexion was 4.2°. Barefoot talocrural plantarflexion at heel strike was 4.2° and barefoot peak talocrural plantarflexion was 10.9°. Shod subtalar position at heel strike was 2.6° of plantarflexion and peak subtalar dorsiflexion was 1.5°. The barefoot subtalar joint at heel strike was in 0.4° dorsiflexion and barefoot peak subtalar dorsiflexion was 3.5°. As the result of wearing shoes, average walking speed and stride length increased and average cadence decreased. Comparing barefoot to shod walking there was a statistical significance in talocrural dorsiflexion and at heel strike and peak talocrural dorsiflexion, subtalar plantarflexion at heel strike and peak subtalar dorsiflexion, walking speed, stride length, and cadence. SIGNIFICANCE: This work demonstrates the ability to directly measure talocrural and subtalar kinematics of shod walking using fluoroscopy. Future work using this methodology can be used to increase understanding of hindfoot kinematics during a variety of non-barefoot activities.


Assuntos
Articulação do Tornozelo/diagnóstico por imagem , Articulação do Tornozelo/fisiologia , Sapatos , Articulação Talocalcânea/diagnóstico por imagem , Articulação Talocalcânea/fisiologia , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos/fisiologia , Fluoroscopia , Humanos , Masculino , Velocidade de Caminhada/fisiologia , Adulto Jovem
9.
Am J Sports Med ; 47(8): 1975-1983, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31166116

RESUMO

BACKGROUND: Previous studies have shown that changing acutely from shod to barefoot running induces several changes to running biomechanics, such as altered ankle kinematics, reduced ground-reaction forces, and reduced loading rates. However, uncertainty exists whether these effects still exist after a short period of barefoot running habituation. PURPOSE/HYPOTHESIS: The purpose was to investigate the effects of a habituation to barefoot versus shod running on running biomechanics. It was hypothesized that a habituation to barefoot running would induce different adaptations of running kinetics and kinematics as compared with a habituation to cushioned footwear running or no habituation. STUDY DESIGN: Controlled laboratory study. METHODS: Young, physically active adults without experience in barefoot running were randomly allocated to a barefoot habituation group, a cushioned footwear group, or a passive control group. The 8-week intervention in the barefoot and footwear groups consisted of 15 minutes of treadmill running at 70% of VO2 max (maximal oxygen consumption) velocity per weekly session in the allocated footwear. Before and after the intervention period, a 3-dimensional biomechanical analysis for barefoot and shod running was conducted on an instrumented treadmill. The passive control group did not receive any intervention but was also tested prior to and after 8 weeks. Pre- to posttest changes in kinematics, kinetics, and spatiotemporal parameters were then analyzed with a mixed effects model. RESULTS: Of the 60 included participants (51.7% female; mean ± SD age, 25.4 ± 3.3 years; body mass index, 22.6 ± 2.1 kg·m-2), 53 completed the study (19 in the barefoot habituation group, 18 in the shod habituation group, and 16 in the passive control group). Acutely, running barefoot versus shod influenced foot strike index and ankle, foot, and knee angles at ground contact (P < .001), as well as vertical average loading rate (P = .003), peak force (P < .001), contact time (P < .001), flight time (P < .001), step length (P < .001), and cadence (P < .001). No differences were found for average force (P = .391). After the barefoot habituation period, participants exhibited more anterior foot placement (P = .006) when running barefoot, while no changes were observed in the footwear condition. Furthermore, barefoot habituation increased the vertical average loading rates in both conditions (barefoot, P = .01; shod, P = .003) and average vertical ground-reaction forces for shod running (P = .039). All other outcomes (ankle, foot, and knee angles at ground contact and flight time, contact time, cadence, and peak forces) did not change significantly after the 8-week habituation. CONCLUSION: Changing acutely from shod to barefoot running in a habitually shod population increased the foot strike index and reduced ground-reaction force and loading rates. After the habituation to barefoot running, the foot strike index was further increased, while the force and average loading rates also increased as compared with the acute barefoot running situation. The increased average loading rate is contradictory to other studies on acute adaptations of barefoot running. CLINICAL RELEVANCE: A habituation to barefoot running led to increased vertical average loading rates. This finding was unexpected and questions the generalizability of acute adaptations to long-term barefoot running. Sports medicine professionals should consider these adaptations in their recommendations regarding barefoot running as a possible measure for running injury prevention. REGISTRATION: DRKS00011073 (German Clinical Trial Register).


Assuntos
Pé/fisiologia , Corrida/fisiologia , Sapatos , Adulto , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Índice de Massa Corporal , Teste de Esforço , Feminino , Marcha/fisiologia , Humanos , Cinética , Articulação do Joelho/fisiologia , Masculino , Estudos Prospectivos , Método Simples-Cego , Adulto Jovem
10.
Eur J Sport Sci ; 19(5): 621-627, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30422752

RESUMO

Biological maturation is associated with physiological changes which in turn affect motor performance. No study has assessed the association between growing up habitually shod versus habitually barefoot and motor performance in the context of maturation, so this approach is unique. The purpose of this study was to examine the influence of biological maturity on motor performance dependent on the participants' footwear habits. Sixty-five German habitually shod (mean age 13.28 ± 0.83 years) and fifty-five South African habitually barefoot (mean age 13.38 ± 0.87 years) participants were included. Dynamic postural control was determined via backward balancing, explosive strength by standing long jump and sprinting performance based on a 20-m sprinting test. All tests were performed barefoot and shod. Biological maturation was calculated by using the maturity offset value. Linear mixed models were used to analyse interactions between the maturity offset value, footwear habits and motor performance. Throughout maturation, there was a significant difference between habitually barefoot and habitually shod balance performance (P = 0.001). Maturation led to balance improvements in habitually barefoot adolescents, but not in habitually shod adolescents. No such differences could be observed for standing long jump and 20-m sprint performance. Maturity offset was a significant predictor for jumping and sprinting performances (P < 0.001), independent of being habitually barefoot or habitually shod. Better performances could be observed in more mature subjects. Biological maturation seems to be a relevant predictor for motor performance characteristics for the jumping and sprinting performance in adolescents.


Assuntos
Desempenho Atlético/fisiologia , Destreza Motora , Sapatos , Adolescente , Estudos Transversais , Teste de Esforço , Pé/fisiologia , Alemanha , Humanos , Masculino , Equilíbrio Postural , Corrida/fisiologia , África do Sul
11.
J Hum Kinet ; 64: 13-23, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30429895

RESUMO

This study aimed to explore the effects of strike patterns and shoe conditions on foot loading during running. Twelve male runners were required to run under shoe (SR) and barefoot conditions (BR) with forefoot (FFS) and rearfoot strike patterns (RFS). Kistler force plates and the Medilogic insole plantar pressure system were used to collect kinetic data. SR with RFS significantly reduced the maximum loading rate, whereas SR with FFS significantly increased the maximum push-off force compared to BR. Plantar pressure variables were more influenced by the strike patterns (15 out of 18 variables) than shoe conditions (7 out of 18 variables). The peak pressure of midfoot and heel regions was significantly increased in RFS, but appeared in a later time compared to FFS. The influence of strike patterns on running, particularly on plantar pressure characteristics, was more significant than that of shoe conditions. Heel-toe running caused a significant impact force on the heel, whereas wearing cushioned shoes significantly reduced the maximum loading rate. FFS running can prevent the impact caused by RFS. However, peak plantar pressure was centered at the forefoot for a long period, thereby inducing a potential risk of injury in the metatarsus/phalanx.

12.
Eur J Appl Physiol ; 118(12): 2699-2706, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30267226

RESUMO

PURPOSE: Although barefoot balancing has shown to be more challenging compared to shod balancing, it is still unclear whether this may also influence the balance learning effects. The purpose of this study was to explore the impact of barefoot and shod exercising on learning of a dynamic balance task. METHODS: Sixty healthy and physically active adults (mean age 25.3 ± 3.4 years) were randomly allocated into one of three groups (barefoot, shod and controls). The barefoot and shod intervention groups exercised once weekly over 7 weeks on a stability platform with an unstable surface. Each training session included 15 trials over 30 s. Before and after the intervention period, all participants completed two balance tests (stability platform and Balance Error Scoring System = BESS) under barefoot and shod conditions. Group effects in stability gains (pre to post-test differences) were analysed using ANOVA. Development of balance learning curves during the intervention period was analysed using a mixed effects model. RESULTS: Balance times improved in both intervention groups (p < 0.001, 95% CI barefoot 5.82-9.22 s, shod 7.51-10.92 s) compared to controls. The barefoot intervention group showed a significantly less sloped balance learning curve compared to the shod intervention group (p = 0.033). No changes over time or differences between groups were found for the BESS test. CONCLUSIONS: Improvements in the dynamic balance task did not differ between individuals exercising barefoot or with footwear although the progression was slower in the barefoot group. The lack of changes in the BESS supports the task-specificity of balance learning effects.


Assuntos
Aprendizagem , Equilíbrio Postural , Sapatos/efeitos adversos , Adulto , Exercício Físico/fisiologia , Pé/fisiologia , Humanos , Masculino
13.
Orthop J Sports Med ; 6(6): 2325967118779862, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29977947

RESUMO

BACKGROUND: Despite the increasing incidence of Achilles tendon (AT) ruptures, there is a lack of information on the possible risks associated with regular running and walking for exercise after an injury. There are some known kinematic gait changes after an AT rupture, especially at the knee. However, it is not clear whether runners with AT ruptures may be at risk for secondary knee injuries during shod or barefoot running/walking. PURPOSE/HYPOTHESIS: The purpose of this study was to compare the kinematics and kinetics of barefoot walking and barefoot and shod running between athletes with a history of AT ruptures and a healthy control group. We hypothesized that there would be increased knee joint loads in the affected limb of the AT rupture group, especially during shod running. STUDY DESIGN: Controlled laboratory study. METHODS: Ten patients who had undergone surgical treatment of a unilateral acute AT rupture (6.1 ± 3.7 years postoperatively ) and 10 control participants were matched according to age, sex, physical activity, weight, height, and footfall type. The kinematics and kinetics of barefoot walking and barefoot and shod running were recorded using a high-speed motion capture system synchronized with force platforms. RESULTS: The main outcome measures were lower extremity joint angles and moments during the stance phase of walking and running. After AT repair, athletes had increased internal knee abduction moments during shod and barefoot running compared with the healthy control group (P < .05, η2 > 0.14). There were no significant differences in kinematics and kinetics during walking between the AT rupture and healthy control groups (P ≥ .05). CONCLUSION: After an AT rupture, athletes had increased internal knee abduction moments during running compared with the healthy control group. CLINICAL RELEVANCE: The increased abduction loads on the knee in patients with an AT rupture could lead to further running-related injuries. However, barefoot walking may be used as a proprioceptive exercise without an increased risk of overuse injuries in these patients.

14.
J Athl Train ; 53(4): 379-385, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29528687

RESUMO

CONTEXT: Anterior cruciate ligament (ACL) injuries often occur during jump landings and can have detrimental short-term and long-term functional effects on quality of life. Despite frequently performing jump landings, dancers have lower incidence rates of ACL injury than other jump-landing athletes. Planned versus unplanned activities and footwear may explain differing ACL-injury rates among dancers and nondancers. Still, few researchers have compared landing biomechanics between dancers and nondancers. OBJECTIVE: To compare the landing biomechanics of dancers and nondancers during single-legged (SL) drop-vertical jumps. DESIGN: Cross-sectional study. SETTING: Laboratory. PATIENTS OR OTHER PARTICIPANTS: A total of 39 healthy participants, 12 female dancers (age = 20.9 ± 1.8 years, height = 166.4 ± 6.7 cm, mass = 63.2 ± 16.4 kg), 14 female nondancers (age = 20.2 ± 0.9 years, height = 168.9 ± 5.0 cm, mass = 61.6 ± 7.7 kg), and 13 male nondancers (age = 22.2 ± 2.7 years, height = 180.6 ± 9.7 cm, mass = 80.8 ± 13.2 kg). INTERVENTION(S): Participants performed SL-drop-vertical jumps from a 30-cm-high box in a randomized order in 2 activity (planned, unplanned) and 2 footwear (shod, barefoot) conditions while a 3-dimensional system recorded landing biomechanics. MAIN OUTCOME MEASURE(S): Overall peak sagittal-plane and frontal-plane ankle-, knee-, and hip-joint kinematics (joint angles) were compared across groups using separate multivariate analyses of variance followed by main-effects testing and pairwise-adjusted Bonferroni comparisons as appropriate ( P < .05). RESULTS: No 3-way interactions existed for sagittal-plane or frontal-plane ankle (Wilks λ = 0.85, P = .11 and Wilks λ = 0.96, P = .55, respectively), knee (Wilks λ = 1.00, P = .93 and Wilks λ = 0.94, P = .36, respectively), or hip (Wilks λ = 0.99, P = .88 and Wilks λ = 0.97, P = .62, respectively) kinematics. We observed no group × footwear interactions for sagittal-plane or frontal-plane ankle (Wilks λ = 0.94, P = .43 and Wilks λ = 0.96, P = .55, respectively), knee (Wilks λ = 0.97, P = .60 and Wilks λ = 0.97, P = .66, respectively), or hip (Wilks λ = 0.99, P = .91 and Wilks λ = 1.00, P = .93, respectively) kinematics, and no group × activity interactions were noted for ankle frontal-plane (Wilks λ = 0.92, P = .29) and sagittal- and frontal-plane knee (Wilks λ = 0.99, P = .81 and Wilks λ = 0.98, P = .77, respectively) and hip (Wilks λ = 0.88, P = .13 and Wilks λ = 0.85, P = .08, respectively) kinematics. A group × activity interaction (Wilks λ = 0.76, P = .02) was present for ankle sagittal-plane kinematics. Main-effects testing revealed different ankle frontal-plane angles across groups ( F2,28 = 3.78, P = .04), with male nondancers having greater ankle inversion than female nondancers ( P = .05). CONCLUSIONS: Irrespective of activity type or footwear, female nondancers landed with similar hip and knee kinematics but greater peak ankle eversion and less peak ankle dorsiflexion (ie, positions associated with greater ACL injury risk). Ankle kinematics may differ between groups due to different landing strategies and training used by dancers. Dancers' training should be examined to determine if it results in a reduced occurrence of biomechanics related to ACL injury during SL landing.


Assuntos
Lesões do Ligamento Cruzado Anterior/fisiopatologia , Dança/fisiologia , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos/fisiologia , Estudos Transversais , Dança/lesões , Feminino , Articulação do Quadril/fisiologia , Humanos , Articulação do Joelho/fisiologia , Masculino , Movimento/fisiologia , Qualidade de Vida , Fatores Sexuais , Adulto Jovem
15.
Gait Posture ; 58: 220-222, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28806710

RESUMO

The purpose of this study was to determine the foot strike patterns (FSPs) and neutral support (no INV/EVE and no foot rotation) in children, as well as to determine the influence of shod/unshod conditions and sex. A total of 713 children, aged 6 to 16 years, participated in this study (Age=10.28±2.71years, body mass index [BMI]=19.70±3.91kg/m2, 302 girls and 411 boys). A sagittal and frontal-plane video (240Hz) was recorded using a high-speed camcorder, to record the following variables: rearfoot strike (RFS), midfoot strike (MFS), forefoot strike (FFS), inversion/eversion (INV/EVE) and foot rotation on initial contact. RFS prevalence was similar between boys and girls in both shod and unshod conditions. In the unshod condition there was a significant reduction (p<0.001) of RFS prevalence both in boys (shod condition=83.95% vs. 62.65% unshod condition) and in girls (shod condition=87.85% vs. 62.70% unshod condition). No significant differences were found in INV/EVE and foot rotation between sex groups. In the unshod condition there was a significant increase (p<0.001) of neutral support (no INV/EVE) both in boys (shod condition=12.55% vs. 22.22% unshod condition) and in girls (shod condition=17.9% vs. 28.15% unshod condition). In addition, in the unshod condition there is a significant reduction (p<0.001) of neutral support (no foot rotation) both in boys (shod condition=21.55% vs. 11.10% unshod condition) and in girls (shod condition=21.05% vs. 11.95% unshod condition). In children, RFS prevalence is lower than adult's population. Additionally, barefoot running reduced the prevalence of RFS and INV/EVE, however increased foot rotation.


Assuntos
Pé/fisiologia , Corrida/fisiologia , Sapatos , Adolescente , Fenômenos Biomecânicos/fisiologia , Criança , Feminino , Humanos , Masculino , Rotação , Fatores Sexuais
16.
Gait Posture ; 55: 12-14, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28407504

RESUMO

An estimated 78% of women regularly walk in high heels. However, up to 58% complain about low back pain, which is commonly thought to be caused by increased lumbar lordosis. However, the extent to which a subject's posture is modified by high-heeled shoes during dynamic activities remains unknown. Therefore, we sought to evaluate whether low- or high-heeled shoes influence the kinematics of the pelvis and the spine during walking. Twenty-three inexperienced women, and seventeen women experienced in wearing high-heeled shoes, all aged 20-55 years, were measured barefoot and while wearing low- (4cm) and high-heeled (10cm) shoes during gait at a self-selected speed. A 22-camera motion capture system was used to assess the gait patterns for each condition. No significant inter-experience-group kinematic differences were found. In contrast to the results of some studies, our results show that the heels' height does indeed influence the motion of the pelvis and the spine during walking, whereby low-heeled shoes influenced the subjects' trunk kinematics during gait less than high-heeled shoes compared to barefooted walking. However, inexperienced high-heel wearers showed less thoracic curvature angle while wearing high-heels than while wearing low-heels. Importantly, both groups exhibited significantly lower maximum and minimal lumbar and thoracic curvature angles when wearing high-heeled shoes compared to the barefoot condition. As a result, it seems that low back pain might be associated with other factors induced by high-heels.


Assuntos
Marcha/fisiologia , Lordose/reabilitação , Sapatos , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos , Feminino , Calcanhar , Humanos , Pessoa de Meia-Idade , Postura , Reprodutibilidade dos Testes , Adulto Jovem
17.
Sports Biomech ; 16(2): 166-176, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27595311

RESUMO

Research has focused on parameters that are associated with injury risk, e.g. vertical acceleration. These parameters can be influenced by running on different surfaces or at different running speeds, but the relationship between them is not completely clear. Understanding the relationship may result in training guidelines to reduce the injury risk. In this study, thirty-five participants with three different levels of running experience were recruited. Participants ran on three different surfaces (concrete, synthetic running track, and woodchip trail) at two different running speeds: a self-selected comfortable speed and a fixed speed of 3.06 m/s. Vertical acceleration of the lower leg was measured with an accelerometer. The vertical acceleration was significantly lower during running on the woodchip trail in comparison with the synthetic running track and the concrete, and significantly lower during running at lower speed in comparison with during running at higher speed on all surfaces. No significant differences in vertical acceleration were found between the three groups of runners at fixed speed. Higher self-selected speed due to higher performance level also did not result in higher vertical acceleration. These results may show that running on a woodchip trail and slowing down could reduce the injury risk at the tibia.


Assuntos
Meio Ambiente , Corrida/fisiologia , Tíbia/fisiologia , Aceleração , Fenômenos Biomecânicos , Feminino , Marcha/fisiologia , Humanos , Masculino , Fatores de Risco , Corrida/lesões , Tíbia/lesões , Adulto Jovem
18.
Gait Posture ; 50: 207-211, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27649512

RESUMO

Kinetic and kinematic responses during walking vary by footwear condition. Load carriage also influences gait patterns, but it is unclear how an external load influences barefoot walking. Twelve healthy adults (5 women, 7 men) with no known gait abnormalities participated in this study (age=23±3years, height=1.73±0.11m, and mass=70.90±12.67kg). Ground reaction forces and 3D motion were simultaneously collected during overground walking at 1.5ms-1 in four conditions: Barefoot Unloaded, Shod Unloaded, Barefoot Loaded, and Shod Loaded. Barefoot walking reduced knee and hip joint ranges of motion, as well as stride length, stance time, swing time, and double support time. Load carriage increased stance and double support times. The 15% body weight load increased GRFs ∼15%. Walking barefoot reduced peak anteroposterior GRFs but not peak vertical GRFs. Load carriage increased hip, knee, and ankle joint moments and powers, while walking barefoot increased knee and hip moments and powers. Thus, spatiotemporal and kinematic adjustments to walking barefoot decrease GRFs but increase knee and hip kinetic measures during overground walking. The ankle seems to be less affected by these footwear conditions. Regardless of footwear, loading requires larger GRFs, joint loads, and joint powers.


Assuntos
Marcha/fisiologia , Extremidade Inferior/fisiologia , Sapatos , Caminhada/fisiologia , Suporte de Carga/fisiologia , Adulto , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Feminino , Articulação do Quadril/fisiologia , Humanos , Cinética , Articulação do Joelho/fisiologia , Masculino , Adulto Jovem
19.
Am J Sports Med ; 44(6): 1439-46, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26951073

RESUMO

BACKGROUND: Minimalist running shoes (MRS) are lightweight, are extremely flexible, and have little to no cushioning. It has been thought that MRS will enhance running performance and decrease injury risk. PURPOSE: To compare physical characteristics, fitness performance, and injury risks associated with soldiers wearing MRS and those wearing traditional running shoes (TRS). STUDY DESIGN: Case series; Level of evidence, 4. METHODS: Participants were men in a United States Army brigade (N = 1332). Physical characteristics and Army Physical Fitness Test data were obtained by survey. Fitness performance testing was administered at the brigade, and the types of footwear worn were identified by visual inspection. Shoe types were categorized into 2 groups: TRS (stability, cushioning, and motion control) and MRS. Injuries from the previous 12 months were obtained from the Defense Medical Surveillance System. A t test was used to determine mean differences between personal characteristics, training, and fitness performance metrics by shoe type. Hazard ratios and 95% CIs were calculated to determine injury risk by shoe type, controlling for other risk factors. RESULTS: A majority of soldiers wore cushioning shoes (57%), followed by stability shoes (24%), MRS (17%), and motion control shoes (2%). Soldiers wearing MRS were slightly younger than those wearing TRS (P < .01); performed more push-ups, sit-ups, and pull-ups (P < .01); and ran faster during the 2-mile run (P = .01). When other risk factors were controlled, there was no difference in injury risk for running shoe type between soldiers wearing MRS compared with TRS. CONCLUSIONS: Soldiers who chose to wear MRS were younger and had higher physical performance scores compared with soldiers wearing TRS. When these differences are controlled, use of MRS does not appear to be associated with higher or lower injury risk in this population.


Assuntos
Traumatismos do Pé/epidemiologia , Militares , Aptidão Física , Corrida/lesões , Sapatos/efeitos adversos , Adulto , Traumatismos do Pé/etiologia , Humanos , Incidência , Masculino , Militares/estatística & dados numéricos , Modelos de Riscos Proporcionais , Fatores de Risco , Estados Unidos/epidemiologia , Adulto Jovem
20.
Knee Surg Sports Traumatol Arthrosc ; 24(4): 1402-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24902926

RESUMO

PURPOSE: The ankle rearfoot complex consists of the ankle and subtalar joints. This is an observational study on two test conditions of the rearfoot complex. Using high-speed biplane fluoroscopy, we present a method to measure rearfoot kinematics during normal gait and compare rearfoot kinematics between barefoot and shod gait. METHODS: Six male subjects completed a walking trial while biplane fluoroscopy images were acquired during stance phase. Bone models of the calcaneus and tibia were reconstructed from computed tomography images and aligned with the biplane fluoroscopy images. An optimization algorithm was used to determine the three-dimensional position of the bones and calculate rearfoot kinematics. RESULTS: Peak plantarflexion was higher (barefoot: 9.1°; 95% CI 5.2:13.0; shod: 5.7°; 95% CI 3.6:7.8; p = 0.015) and neutral plantar/dorsiflexion occurred later in the stance phase (barefoot: 31.1%; 95% CI 23.6:38.6; shod: 17.7%; 95% CI 14.4:21.0; p = 0.019) during barefoot walking compared to shod walking. An eversion peak of 8.7° (95% CI 1.9:15.5) occurred at 27.8% (95% CI 18.4:37.2) of stance during barefoot walking, while during shod walking a brief inversion to 1.2° (95% CI -2.1:4.5; p = 0.021) occurred earlier (11.5% of stance; 95% CI 0.2:22.8; p = 0.008) during stance phase. The tibia was internally rotated relative to the calcaneus throughout stance phase in both conditions (barefoot: 5.1° (95% CI -1.4:11.6); shod: 3.6° (95% CI -0.4:7.6); ns.). CONCLUSIONS: Biplane fluoroscopy can allow for detailed quantification of dynamic in vivo ankle kinematics during barefoot and shod walking conditions. This methodology could be used in the future to study hindfoot pathology after trauma, for congenital disease and after sports injuries such as instability. LEVEL OF EVIDENCE: II.


Assuntos
Articulação do Tornozelo/diagnóstico por imagem , Pé/diagnóstico por imagem , Sapatos , Caminhada/fisiologia , Adulto , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos/fisiologia , Calcâneo/diagnóstico por imagem , Calcâneo/fisiologia , Fluoroscopia , Pé/fisiologia , Humanos , Imageamento Tridimensional , Masculino , Tíbia/diagnóstico por imagem , Tíbia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA