RESUMO
Emerging printed large-area polymer light-emitting diodes (PLEDs) are essential for manufacturing flat-panel displays and solid lighting devices. However, it is challenging to obtain large-area and stable ultradeep-blue PLEDs because of the lack of light-emitting conjugated polymers (LCPs) with robust deep-blue emissions, excellent morphological stabilities, and high charging abilities. Here, a novel unsymmetrically substituted polydiarylfluorene (POPSAF) is obtained with stable narrowband emission for large-area printed displays via triphenylamine (TPA) spirofunctionalization of LCPs. POPSAF films show narrowband and stable ultradeep-blue emission with a full width at half maximum (FWHM) of 36 nm, associated with their intrachain excitonic behavior without obvious polaron formation. Compared to controlled poly[4-(octyloxy)-9,9-diphenylfluoren-2,7-diyl]-co-[5-(octyloxy)-9,9-diphenylfluoren-2,7-diyl] (PODPF), excellent charge transport is observed in the POPSAF films because of the intrinsic hole transport ability of the TPA units. Large-area PLEDs are fabricated via blade-coating with an emission area of 9 cm2, which exhibit uniform ultradeep-blue emission with an FWHM of 36 nm and corresponding Commission internationale de l'éclairage (CIE) coordinates of (0.155, 0.072). These findings are attributed to the synergistic effects of robust emission, stable morphology, and printing capacity. Finally, preliminary printed passive matrix (PM) PLED displays with 20 × 20 pixels monochromes are fabricated, confirmed the effectiveness of spirofunctionalization in optoelectronics.
RESUMO
Large-area polymer light-emitting diodes (PLEDs) manufactured by printing are required for flat-panel lighting and displays. Nevertheless, it remains challenging to fabricate large-area and stable deep-blue PLEDs with narrowband emission due to the difficulties in precisely tuning film uniformity and obtaining single-exciton emission. Herein, efficient and stable large-area deep-blue PLEDs with narrowband emission are prepared from encapsulated polydiarylfluorene. Encapsulated polydiarylfluorenes presented an efficient and stable deep-blue emission (peak: 439 nm; full width at half maximum (FWHM): 39 nm) in the solid state due to their single-chain emission behavior without inter-backbone chain aggregation. Large-area uniform blade-coated films (16 cm2 ) are also fabricated with excellent smoothness and morphology. Benefitting from efficient emission and excellent printed capacity, the blade-coated PLEDs with a device area of 9 mm2 realized uniform deep-blue emission (FWHM: 38 nm; CIE: 0.153, 0.067), with a corresponding maximum external quantum efficiency and the brightness comparable to those of devices based on spin-coated films. Finally, considering the essential role of deep-blue LEDs, a preliminary patterned PLED array with a pixel size of 800 × 1000 µm2 and a monochrome display is fabricated, highlighting potential full-color display applications.