Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Front Oncol ; 14: 1433874, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132501

RESUMO

Background: Increasing evidence reveals the involvement of mitochondria and macrophage polarisation in tumourigenesis and progression. This study aimed to establish mitochondria and macrophage polarisation-associated molecular signatures to predict prognosis in gastric cancer (GC) by single-cell and transcriptional data. Methods: Initially, candidate genes associated with mitochondria and macrophage polarisation were identified by differential expression analysis and weighted gene co-expression network analysis. Subsequently, candidate genes were incorporated in univariateCox analysis and LASSO to acquire prognostic genes in GC, and risk model was created. Furthermore, independent prognostic indicators were screened by combining risk score with clinical characteristics, and a nomogram was created to forecast survival in GC patients. Further, in single-cell data analysis, cell clusters and cell subpopulations were yielded, followed by the completion of pseudo-time analysis. Furthermore, a more comprehensive immunological analysis was executed to uncover the relationship between GC and immunological characteristics. Ultimately, expression level of prognostic genes was validated through public datasets and qRT-PCR. Results: A risk model including six prognostic genes (GPX3, GJA1, VCAN, RGS2, LOX, and CTHRC1) associated with mitochondria and macrophage polarisation was developed, which was efficient in forecasting the survival of GC patients. The GC patients were categorized into high-/low-risk subgroups in accordance with median risk score, with the high-risk subgroup having lower survival rates. Afterwards, a nomogram incorporating risk score and age was generated, and it had significant predictive value for predicting GC survival with higher predictive accuracy than risk model. Immunological analyses revealed showed higher levels of M2 macrophage infiltration in high-risk subgroup and the strongest positive correlation between risk score and M2 macrophages. Besides, further analyses demonstrated a better outcome for immunotherapy in low-risk patients. In single-cell and pseudo-time analyses, stromal cells were identified as key cells, and a relatively complete developmental trajectory existed for stromal C1 in three subclasses. Ultimately, expression analysis revealed that the expression trend of RGS2, GJA1, GPX3, and VCAN was consistent with the results of the TCGA-GC dataset. Conclusion: Our findings demonstrated that a novel prognostic model constructed in accordance with six prognostic genes might facilitate the improvement of personalised prognosis and treatment of GC patients.

2.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38960404

RESUMO

Recent advances in microfluidics and sequencing technologies allow researchers to explore cellular heterogeneity at single-cell resolution. In recent years, deep learning frameworks, such as generative models, have brought great changes to the analysis of transcriptomic data. Nevertheless, relying on the potential space of these generative models alone is insufficient to generate biological explanations. In addition, most of the previous work based on generative models is limited to shallow neural networks with one to three layers of latent variables, which may limit the capabilities of the models. Here, we propose a deep interpretable generative model called d-scIGM for single-cell data analysis. d-scIGM combines sawtooth connectivity techniques and residual networks, thereby constructing a deep generative framework. In addition, d-scIGM incorporates hierarchical prior knowledge of biological domains to enhance the interpretability of the model. We show that d-scIGM achieves excellent performance in a variety of fundamental tasks, including clustering, visualization, and pseudo-temporal inference. Through topic pathway studies, we found that d-scIGM-learned topics are better enriched for biologically meaningful pathways compared to the baseline models. Furthermore, the analysis of drug response data shows that d-scIGM can capture drug response patterns in large-scale experiments, which provides a promising way to elucidate the underlying biological mechanisms. Lastly, in the melanoma dataset, d-scIGM accurately identified different cell types and revealed multiple melanin-related driver genes and key pathways, which are critical for understanding disease mechanisms and drug development.


Assuntos
Aprendizado Profundo , RNA-Seq , Análise da Expressão Gênica de Célula Única , Humanos , Algoritmos , Biologia Computacional/métodos , Redes Neurais de Computação , RNA-Seq/métodos , Análise da Expressão Gênica de Célula Única/métodos
3.
Front Bioinform ; 4: 1417428, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040140

RESUMO

Rapid advancements in high-throughput single-cell RNA-seq (scRNA-seq) technologies and experimental protocols have led to the generation of vast amounts of transcriptomic data that populates several online databases and repositories. Here, we systematically examined large-scale scRNA-seq databases, categorizing them based on their scope and purpose such as general, tissue-specific databases, disease-specific databases, cancer-focused databases, and cell type-focused databases. Next, we discuss the technical and methodological challenges associated with curating large-scale scRNA-seq databases, along with current computational solutions. We argue that understanding scRNA-seq databases, including their limitations and assumptions, is crucial for effectively utilizing this data to make robust discoveries and identify novel biological insights. Such platforms can help bridge the gap between computational and wet lab scientists through user-friendly web-based interfaces needed for democratizing access to single-cell data. These platforms would facilitate interdisciplinary research, enabling researchers from various disciplines to collaborate effectively. This review underscores the importance of leveraging computational approaches to unravel the complexities of single-cell data and offers a promising direction for future research in the field.

4.
Genes (Basel) ; 15(7)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39062661

RESUMO

In recent years, there has been a growing interest in profiling multiomic modalities within individual cells simultaneously. One such example is integrating combined single-cell RNA sequencing (scRNA-seq) data and single-cell transposase-accessible chromatin sequencing (scATAC-seq) data. Integrated analysis of diverse modalities has helped researchers make more accurate predictions and gain a more comprehensive understanding than with single-modality analysis. However, generating such multimodal data is technically challenging and expensive, leading to limited availability of single-cell co-assay data. Here, we propose a model for cross-modal prediction between the transcriptome and chromatin profiles in single cells. Our model is based on a deep neural network architecture that learns the latent representations from the source modality and then predicts the target modality. It demonstrates reliable performance in accurately translating between these modalities across multiple paired human scATAC-seq and scRNA-seq datasets. Additionally, we developed CrossMP, a web-based portal allowing researchers to upload their single-cell modality data through an interactive web interface and predict the other type of modality data, using high-performance computing resources plugged at the backend.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , RNA-Seq , Análise de Célula Única , Análise de Célula Única/métodos , Humanos , RNA-Seq/métodos , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Software , Internet , Transcriptoma/genética , Análise de Sequência de RNA/métodos , Cromatina/genética , Cromatina/metabolismo , Análise da Expressão Gênica de Célula Única
5.
ArXiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699169

RESUMO

Rapid advancements in high-throughput single-cell RNA-seq (scRNA-seq) technologies and experimental protocols have led to the generation of vast amounts of genomic data that populates several online databases and repositories. Here, we systematically examined large-scale scRNA-seq databases, categorizing them based on their scope and purpose such as general, tissue-specific databases, disease-specific databases, cancer-focused databases, and cell type-focused databases. Next, we discuss the technical and methodological challenges associated with curating large-scale scRNA-seq databases, along with current computational solutions. We argue that understanding scRNA-seq databases, including their limitations and assumptions, is crucial for effectively utilizing this data to make robust discoveries and identify novel biological insights. Furthermore, we propose that bridging the gap between computational and wet lab scientists through user-friendly web-based platforms is needed for democratizing access to single-cell data. These platforms would facilitate interdisciplinary research, enabling researchers from various disciplines to collaborate effectively. This review underscores the importance of leveraging computational approaches to unravel the complexities of single-cell data and offers a promising direction for future research in the field.

6.
Mol Syst Biol ; 20(7): 744-766, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38811801

RESUMO

The advent of high-throughput single-cell genomics technologies has fundamentally transformed biological sciences. Currently, millions of cells from complex biological tissues can be phenotypically profiled across multiple modalities. The scaling of computational methods to analyze and visualize such data is a constant challenge, and tools need to be regularly updated, if not redesigned, to cope with ever-growing numbers of cells. Over the last few years, metacells have been introduced to reduce the size and complexity of single-cell genomics data while preserving biologically relevant information and improving interpretability. Here, we review recent studies that capitalize on the concept of metacells-and the many variants in nomenclature that have been used. We further outline how and when metacells should (or should not) be used to analyze single-cell genomics data and what should be considered when analyzing such data at the metacell level. To facilitate the exploration of metacells, we provide a comprehensive tutorial on the construction and analysis of metacells from single-cell RNA-seq data ( https://github.com/GfellerLab/MetacellAnalysisTutorial ) as well as a fully integrated pipeline to rapidly build, visualize and evaluate metacells with different methods ( https://github.com/GfellerLab/MetacellAnalysisToolkit ).


Assuntos
Genômica , Análise de Célula Única , Análise de Célula Única/métodos , Genômica/métodos , Humanos , Biologia Computacional/métodos , Software , Animais
7.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38701421

RESUMO

Cancer is a complex cellular ecosystem where malignant cells coexist and interact with immune, stromal and other cells within the tumor microenvironment (TME). Recent technological advancements in spatially resolved multiplexed imaging at single-cell resolution have led to the generation of large-scale and high-dimensional datasets from biological specimens. This underscores the necessity for automated methodologies that can effectively characterize molecular, cellular and spatial properties of TMEs for various malignancies. This study introduces SpatialCells, an open-source software package designed for region-based exploratory analysis and comprehensive characterization of TMEs using multiplexed single-cell data. The source code and tutorials are available at https://semenovlab.github.io/SpatialCells. SpatialCells efficiently streamlines the automated extraction of features from multiplexed single-cell data and can process samples containing millions of cells. Thus, SpatialCells facilitates subsequent association analyses and machine learning predictions, making it an essential tool in advancing our understanding of tumor growth, invasion and metastasis.


Assuntos
Análise de Célula Única , Software , Microambiente Tumoral , Análise de Célula Única/métodos , Humanos , Neoplasias/patologia , Aprendizado de Máquina , Biologia Computacional/métodos
8.
Heliyon ; 10(10): e31191, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38803925

RESUMO

To decipher the interactions between various components of the tumor microenvironment (TME) and tumor cells in a preserved spatial context, a multiparametric approach is essential. In this pursuit, imaging mass cytometry (IMC) emerges as a valuable tool, capable of concurrently analyzing up to 40 parameters at subcellular resolution. In this study, a set of antibodies was selected to spatially resolve multiple cell types and TME elements, including a comprehensive panel targeted at dissecting the heterogeneity of cancer-associated fibroblasts (CAF), a pivotal TME component. This antibody panel was standardized and optimized using formalin-fixed paraffin-embedded tissue (FFPE) samples from different organs/lesions known to express the markers of interest. The final composition of the antibody panel was determined based on the performance of conjugated antibodies in both immunohistochemistry (IHC) and IMC. Tissue images were segmented employing the Steinbock framework. Unsupervised clustering of single-cell data was carried out using a bioinformatics pipeline developed in R program. This paper provides a detailed description of the staining procedure and analysis workflow. Subsequently, the panel underwent validation on clinical FFPE samples from head and neck squamous cell carcinoma (HNSCC). The panel and bioinformatics pipeline established here proved to be robust in characterizing different TME components of HNSCC while maintaining a high degree of spatial detail. The platform we describe shows promise for understanding the clinical implications of TMA heterogeneity in large patient cohorts with FFPE tissues available in diagnostic biobanks worldwide.

9.
PeerJ ; 12: e17184, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560451

RESUMO

Background: Single-cell annotation plays a crucial role in the analysis of single-cell genomics data. Despite the existence of numerous single-cell annotation algorithms, a comprehensive tool for integrating and comparing these algorithms is also lacking. Methods: This study meticulously investigated a plethora of widely adopted single-cell annotation algorithms. Ten single-cell annotation algorithms were selected based on the classification of either reference dataset-dependent or marker gene-dependent approaches. These algorithms included SingleR, Seurat, sciBet, scmap, CHETAH, scSorter, sc.type, cellID, scCATCH, and SCINA. Building upon these algorithms, we developed an R package named scAnnoX for the integration and comparative analysis of single-cell annotation algorithms. Results: The development of the scAnnoX software package provides a cohesive framework for annotating cells in scRNA-seq data, enabling researchers to more efficiently perform comparative analyses among the cell type annotations contained in scRNA-seq datasets. The integrated environment of scAnnoX streamlines the testing, evaluation, and comparison processes among various algorithms. Among the ten annotation tools evaluated, SingleR, Seurat, sciBet, and scSorter emerged as top-performing algorithms in terms of prediction accuracy, with SingleR and sciBet demonstrating particularly superior performance, offering guidance for users. Interested parties can access the scAnnoX package at https://github.com/XQ-hub/scAnnoX.


Assuntos
Análise de Célula Única , Software , Algoritmos , Genômica , Existencialismo
10.
Genes (Basel) ; 15(3)2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540327

RESUMO

It is well known how sequencing technologies propelled cellular biology research in recent years, providing incredible insight into the basic mechanisms of cells. Single-cell RNA sequencing is at the front in this field, with single-cell ATAC sequencing supporting it and becoming more popular. In this regard, multi-modal technologies play a crucial role, allowing the possibility to simultaneously perform the mentioned sequencing modalities on the same cells. Yet, there still needs to be a clear and dedicated way to analyze these multi-modal data. One of the current methods is to calculate the Gene Activity Matrix (GAM), which summarizes the accessibility of the genes at the genomic level, to have a more direct link with the transcriptomic data. However, this concept is not well defined, and it is unclear how various accessible regions impact the expression of the genes. Moreover, the transcription process is highly regulated by the transcription factors that bind to the different DNA regions. Therefore, this work presents a continuation of the meta-analysis of Genomic-Annotated Gene Activity Matrix (GAGAM) contributions, aiming to investigate the correlation between the TF expression and motif information in the different functional genomic regions to understand the different Transcription Factors (TFs) dynamics involved in different cell types.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica/genética , DNA/metabolismo , Genômica , Genoma
11.
Adv Sci (Weinh) ; 11(19): e2307835, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38483032

RESUMO

Transformer-based models have revolutionized single cell RNA-seq (scRNA-seq) data analysis. However, their applicability is challenged by the complexity and scale of single-cell multi-omics data. Here a novel single-cell multi-modal/multi-task transformer (scmFormer) is proposed to fill up the existing blank of integrating single-cell proteomics with other omics data. Through systematic benchmarking, it is demonstrated that scmFormer excels in integrating large-scale single-cell multimodal data and heterogeneous multi-batch paired multi-omics data, while preserving shared information across batchs and distinct biological information. scmFormer achieves 54.5% higher average F1 score compared to the second method in transferring cell-type labels from single-cell transcriptomics to proteomics data. Using COVID-19 datasets, it is presented that scmFormer successfully integrates over 1.48 million cells on a personal computer. Moreover, it is also proved that scmFormer performs better than existing methods on generating the unmeasured modality and is well-suited for spatial multi-omic data. Thus, scmFormer is a powerful and comprehensive tool for analyzing single-cell multi-omics data.


Assuntos
COVID-19 , Proteômica , Análise de Célula Única , Análise de Célula Única/métodos , Proteômica/métodos , Humanos , COVID-19/genética , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , SARS-CoV-2/genética , Biologia Computacional/métodos , Software
12.
Discov Oncol ; 15(1): 70, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460046

RESUMO

BACKGROUND: Skin cutaneous melanoma (SKCM) is a highly lethal cancer, ranking among the top four deadliest cancers. This underscores the urgent need for novel biomarkers for SKCM diagnosis and prognosis. Anoikis plays a vital role in cancer growth and metastasis, and this study aims to investigate its prognostic value and mechanism of action in SKCM. METHODS: Utilizing consensus clustering, the SKCM samples were categorized into two distinct clusters A and B based on anoikis-related genes (ANRGs), with the B group exhibiting lower disease-specific survival (DSS). Gene set enrichment between distinct clusters was examined using Gene Set Variation Analysis (GSVA) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. RESULTS: We created a predictive model based on three anoikis-related differently expressed genes (DEGs), specifically, FASLG, IGF1, and PIK3R2. Moreover, the mechanism of these prognostic genes within the model was investigated at the cellular level using the single-cell sequencing dataset GSE115978. This analysis revealed that the FASLG gene was highly expressed on cluster 1 of Exhausted CD8( +) T (Tex) cells. CONCLUSIONS: In conclusion, we have established a novel classification system for SKCM based on anoikis, which carries substantial clinical implications for SKCM patients. Notably, the elevated expression of the FASLG gene on cluster 1 of Tex cells could significantly impact SKCM prognosis through anoikis, thus offering a promising target for the development of immunotherapy for SKCM.

13.
Transl Oncol ; 43: 101918, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38412662

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a prevalent malignancy of the digestive tract. A new prognostic scoring model for colon adenocarcinoma (COAD) is developed in this study based on the genes involved in tumor cell-mediated killing of T cells (GSTTKs), accurately stratifying COAD patients, thus improving the current status of personalized treatment. METHOD: The GEO and TCGA databases served as the sources of the data for the COAD cohort. This study identified GSTTKs-related genes in COAD through single-factor Cox analysis. These genes were used to categorize COAD patients into several subtypes via unsupervised clustering analysis. The biological pathways and tumor microenvironments of different subgroups were compared. We performed intersection analysis between different subtypes to obtain intersection genes. Single-factor Cox regression analysis and Lasso-Cox analysis were conducted to establish clinical prognostic models. Two methods are used to assess the accuracy of model predictions: ROC and Kaplan-Meier analysis. Next, the prediction model was further validated in the validation cohort. Differential immune cell infiltration between various risk categories was identified via single sample gene set enrichment analysis (ssGSEA). The COAD model's gene expression was validated via single-cell data analysis and experiments. RESULT: We established two distinct GSTTKs-related subtypes. Biological processes and immune cell tumor invasion differed significantly between various subtypes. Clinical prognostic models were created using five GSTTKs-related genes. The model's risk score independently served as a prognostic factor. COAD patients were classified as low- or high-risk depending on their risk scores. Patients in the low-risk category recorded a greater chance of surviving. The outcomes from the validation cohort match those from the training set. Risk scores and several tumor-infiltrating immune cells were strongly correlated, according to ssGSEA. Single-cell data illustrated that the model's genes were linked to several immune cells. The experimental results demonstrated a significant increase in the expression of HOXC6 in colon cancer tissue. CONCLUSION: Our research findings established a new gene signature for COAD. This gene signature helps to accurately stratify the risk of COAD patients and improve the current status of individualized care.

14.
J Cell Mol Med ; 28(1): e18009, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37882107

RESUMO

The complex interplay between tumour cells and the tumour microenvironment (TME) underscores the necessity for gaining comprehensive insights into disease progression. This study centres on elucidating the elusive the elusive role of endothelial cells within the TME of head and neck squamous cell carcinoma (HNSCC). Despite their crucial involvement in angiogenesis and vascular function, the mechanistic diversity of endothelial cells among HNSCC patients remains largely uncharted. Leveraging advanced single-cell RNA sequencing (scRNA-Seq) technology and the Scissor algorithm, we aimed to bridge this knowledge gap and illuminate the intricate interplay between endothelial cells and patient prognosis within the context of HNSCC. Here, endothelial cells were categorized into Scissorhigh and Scissorlow subtypes. We identified Scissor+ endothelial cells exhibiting pro-tumorigenic profiles and constructed a prognostic risk model for HNSCC. Additionally, four biomarkers also were identified by analysing the gene expression profiles of patients with HNSCC and a prognostic risk prediction model was constructed based on these genes. Furthermore, the correlations between endothelial cells and prognosis of patients with HNSCC were analysed by integrating bulk and single-cell sequencing data, revealing a close association between SHSS and the overall survival (OS) of HNSCC patients with malignant endothelial cells. Finally, we validated the prognostic model by RT-qPCR and IHC analysis. These findings enhance our comprehension of TME heterogeneity at the single-cell level and provide a prognostic model for HNSCC.


Assuntos
Células Endoteliais , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Algoritmos , Carcinogênese , Microambiente Tumoral
15.
bioRxiv ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-37961235

RESUMO

Tumors are complex assemblies of cellular and acellular structures patterned on spatial scales from microns to centimeters. Study of these assemblies has advanced dramatically with the introduction of high-plex spatial profiling. Image-based profiling methods reveal the intensities and spatial distributions of 20-100 proteins at subcellular resolution in 103-107 cells per specimen. Despite extensive work on methods for extracting single-cell data from these images, all tissue images contain artefacts such as folds, debris, antibody aggregates, optical aberrations and image processing errors that arise from imperfections in specimen preparation, data acquisition, image assembly, and feature extraction. We show that these artefacts dramatically impact single-cell data analysis, obscuring meaningful biological interpretation. We describe an interactive quality control software tool, CyLinter, that identifies and removes data associated with imaging artefacts. CyLinter greatly improves single-cell analysis, especially for archival specimens sectioned many years prior to data collection, such as those from clinical trials.

16.
Heliyon ; 9(12): e22648, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107322

RESUMO

Background: Studies have shown that the circulating tumor cells (CTCs) play a key role for invasion and formation of distant metastases in prostate cancer (PCa). However, few CTCs-related genes (CRGs) have been developed for biochemical recurrence (BCR) prediction and clinical applications of PCa patients. Materials and methods: Bioinformatics analysis with public PCa datasets were used to investigate the relationship between the differentially expressed CRGs and BCR. Lasso-COX regression analysis was used to constructed and validated a CRGs-based BCR prediction signature for PCa. Single-cell data were used to validate the expression levels of signature genes in different cell types and then explored the cell-cell communication relationships. Finally, the expression levels of signature genes were verified and the CRGs involved in immunotherapy response were further identified. Results: Thirteen CRGs were differentially expressed and closely associated with BCR in PCa. Then we constructed and validated a BCR prediction signature for PCa patients based on 3 differentially expressed CRGs (EMID1, SPP1 and UBE2C), and the signature was an independent factor to predict BCR for PCa. Single-cell data showed the specific expression patterns of the signature genes, while the SPP1 pathway plays an important role in cell-cell communication. Further analyses suggested UBE2C was highly expressed in BCR group and high expression of UBE2C had a better response for patients who received immunotherapy. Moreover, the expression levels of UBE2C in CTCs were higher than other cells and tissues, indicated that UBE2C may affect the BCR event of PCa patients through CTCs. Conclusion: Our findings demonstrated that CRGs were significantly associated with BCR and immunotherapy efficacy in PCa and CRGs may influence the BCR event through CTCs.

17.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014067

RESUMO

Background: Cancer is a complex cellular ecosystem where malignant cells coexist and interact with immune, stromal, and other cells within the tumor microenvironment. Recent technological advancements in spatially resolved multiplexed imaging at single-cell resolution have led to the generation of large-scale and high-dimensional datasets from biological specimens. This underscores the necessity for automated methodologies that can effectively characterize the molecular, cellular, and spatial properties of tumor microenvironments for various malignancies. Results: This study introduces SpatialCells, an open-source software package designed for region-based exploratory analysis and comprehensive characterization of tumor microenvironments using multiplexed single-cell data. Conclusions: SpatialCells efficiently streamlines the automated extraction of features from multiplexed single-cell data and can process samples containing millions of cells. Thus, SpatialCells facilitates subsequent association analyses and machine learning predictions, making it an essential tool in advancing our understanding of tumor growth, invasion, and metastasis.

18.
Patterns (N Y) ; 4(9): 100829, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37720335

RESUMO

The spatial organization of various cell types within the tissue microenvironment is a key element for the formation of physiological and pathological processes, including cancer and autoimmune diseases. Here, we present S3-CIMA, a weakly supervised convolutional neural network model that enables the detection of disease-specific microenvironment compositions from high-dimensional proteomic imaging data. We demonstrate the utility of this approach by determining cancer outcome- and cellular-signaling-specific spatial cell-state compositions in highly multiplexed fluorescence microscopy data of the tumor microenvironment in colorectal cancer. Moreover, we use S3-CIMA to identify disease-onset-specific changes of the pancreatic tissue microenvironment in type 1 diabetes using imaging mass-cytometry data. We evaluated S3-CIMA as a powerful tool to discover novel disease-associated spatial cellular interactions from currently available and future spatial biology datasets.

19.
Comput Biol Med ; 165: 107382, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37634463

RESUMO

The organization and interaction between hepatocytes and other hepatic non-parenchymal cells plays a pivotal role in maintaining normal liver function and structure. Although spatial heterogeneity within the tumor micro-environment has been proven to be a fundamental feature in cancer progression, the role of liver tissue topology and micro-environmental factors in the context of liver damage in chronic infection has not been widely studied yet. We obtained images from 110 core needle biopsies from a cohort of chronic hepatitis B patients with different fibrosis stages according to METAVIR score. The tissue sections were immunofluorescently stained and imaged to determine the locations of CD45 positive immune cells and HBsAg-negative and HBsAg-positive hepatocytes within the tissue. We applied several descriptive techniques adopted from ecology, including Getis-Ord, the Shannon Index and the Morisita-Horn Index, to quantify the extent to which immune cells and different types of liver cells co-localize in the tissue biopsies. Additionally, we modeled the spatial distribution of the different cell types using a joint log-Gaussian Cox process and proposed several features to quantify spatial heterogeneity. We then related these measures to the patient fibrosis stage by using a linear discriminant analysis approach. Our analysis revealed that the co-localization of HBsAg-negative hepatocytes with immune cells and the co-localization of HBsAg-positive hepatocytes with immune cells are equally important factors for explaining the METAVIR score in chronic hepatitis B patients. Moreover, we found that if we allow for an error of 1 on the METAVIR score, we are able to reach an accuracy of around 80%. With this study we demonstrate how methods adopted from ecology and applied to the liver tissue micro-environment can be used to quantify heterogeneity and how these approaches can be valuable in biomarker analyses for liver topology.


Assuntos
Hepatite B Crônica , Humanos , Antígenos de Superfície da Hepatite B , Fígado/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Fibrose , Cirrose Hepática
20.
Cells ; 12(15)2023 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-37566049

RESUMO

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for investigating cellular biology at an unprecedented resolution, enabling the characterization of cellular heterogeneity, identification of rare but significant cell types, and exploration of cell-cell communications and interactions. Its broad applications span both basic and clinical research domains. In this comprehensive review, we survey the current landscape of scRNA-seq analysis methods and tools, focusing on count modeling, cell-type annotation, data integration, including spatial transcriptomics, and the inference of cell-cell communication. We review the challenges encountered in scRNA-seq analysis, including issues of sparsity or low expression, reliability of cell annotation, and assumptions in data integration, and discuss the potential impact of suboptimal clustering and differential expression analysis tools on downstream analyses, particularly in identifying cell subpopulations. Finally, we discuss recent advancements and future directions for enhancing scRNA-seq analysis. Specifically, we highlight the development of novel tools for annotating single-cell data, integrating and interpreting multimodal datasets covering transcriptomics, epigenomics, and proteomics, and inferring cellular communication networks. By elucidating the latest progress and innovation, we provide a comprehensive overview of the rapidly advancing field of scRNA-seq analysis.


Assuntos
Comunicação Celular , Análise da Expressão Gênica de Célula Única , Reprodutibilidade dos Testes , Comunicação Celular/genética , Análise por Conglomerados , Epigenômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA