Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 499
Filtrar
1.
Best Pract Res Clin Haematol ; 37(2): 101561, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39098801

RESUMO

HLA class II antigen presentation is modulated by the activity of the peptide editor HLA-DM and its antagonist HLA-DO, with their interplay controlling the peptide repertoires presented by normal and malignant cells. The role of these molecules in allogeneic hematopoietic cell transplantation (alloHCT) is poorly investigated. Balanced expression of HLA-DM and HLA-DO can influence the presentation of leukemia-associated antigens and peptides targeted by alloreactive T cells, therefore affecting both anti-leukemia immunity and the potential onset of Graft versus Host Disease. We leveraged on a large collection of bulk and single cell RNA sequencing data, available at different repositories, to comprehensively review the level and distribution of HLA-DM and HLA-DO in different cell types and tissues of the human body. The resulting expression atlas will help future investigations aiming to dissect the dual role of HLA class II peptide editing in alloHCT, and their potential impact on its clinical outcome.


Assuntos
Antígenos HLA-D , Leucemia , Humanos , Leucemia/terapia , Leucemia/imunologia , Leucemia/genética , Antígenos HLA-D/genética , Antígenos HLA-D/imunologia , Transplante de Células-Tronco Hematopoéticas , Apresentação de Antígeno , Peptídeos/imunologia , Peptídeos/genética , Aloenxertos
2.
Curr Opin Toxicol ; 382024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39086983

RESUMO

Human exposure to the metal lead (Pb) is prevalent and associated with adverse neurodevelopmental and neurodegenerative outcomes. Pb disrupts normal brain function by inducing oxidative stress and neuroinflammation, altering cellular metabolism, and displacing essential metals. Prior studies on the molecular impacts of Pb have examined bulk tissues, which collapse information across all cell types, or in targeted cells, which are limited to cell autonomous effects. These approaches are unable to represent the complete biological implications of Pb exposure because the brain is a cooperative network of highly heterogeneous cells, with cellular diversity and proportions shifting throughout development, by brain region, and with disease. New technologies are necessary to investigate whether Pb and other environmental exposures alter cell composition in the brain and whether they cause molecular changes in a cell-type-specific manner. Cutting-edge, single-cell approaches now enable research resolving cell-type-specific effects from bulk tissues. This article reviews existing Pb neurotoxicology studies with genome-wide molecular signatures and provides a path forward for the field to implement single-cell approaches with practical recommendations.

3.
Cell Syst ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39121860

RESUMO

Single-cell transcriptomics reveals significant variations in transcriptional activity across cells. Yet, it remains challenging to identify mechanisms of transcription dynamics from static snapshots. It is thus still unknown what drives global transcription dynamics in single cells. We present a stochastic model of gene expression with cell size- and cell cycle-dependent rates in growing and dividing cells that harnesses temporal dimensions of single-cell RNA sequencing through metabolic labeling protocols and cel lcycle reporters. We develop a parallel and highly scalable approximate Bayesian computation method that corrects for technical variation and accurately quantifies absolute burst frequency, burst size, and degradation rate along the cell cycle at a transcriptome-wide scale. Using Bayesian model selection, we reveal scaling between transcription rates and cell size and unveil waves of gene regulation across the cell cycle-dependent transcriptome. Our study shows that stochastic modeling of dynamical correlations identifies global mechanisms of transcription regulation. A record of this paper's transparent peer review process is included in the supplemental information.

4.
Sci Rep ; 14(1): 18258, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107568

RESUMO

Neural processing of rewarding stimuli involves several distinct regions, including the nucleus accumbens (NAc). The majority of NAc neurons are GABAergic projection neurons known as medium spiny neurons (MSNs). MSNs are broadly defined by dopamine receptor expression, but evidence suggests that a wider array of subtypes exist. To study MSN heterogeneity, we analyzed single-nucleus RNA sequencing data from the largest available rat NAc dataset. Analysis of 48,040 NAc MSN nuclei identified major populations belonging to the striosome and matrix compartments. Integration with mouse and human data indicated consistency across species and disease-relevance scoring using genome-wide association study results revealed potentially differential roles for MSN populations in substance use disorders. Additional high-resolution clustering identified 34 transcriptomically distinct subtypes of MSNs definable by a limited number of marker genes. Together, these data demonstrate the diversity of MSNs in the NAc and provide a basis for more targeted genetic manipulation of specific populations.


Assuntos
Núcleo Accumbens , Transcriptoma , Animais , Humanos , Camundongos , Ratos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Neurônios Espinhosos Médios/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/citologia , Análise de Célula Única
5.
Proc Natl Acad Sci U S A ; 121(34): e2401540121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39150785

RESUMO

Recent advances in single-cell sequencing technology have revolutionized our ability to acquire whole transcriptome data. However, uncovering the underlying transcriptional drivers and nonequilibrium driving forces of cell function directly from these data remains challenging. We address this by learning cell state vector fields from discrete single-cell RNA velocity to quantify the single-cell global nonequilibrium driving forces as landscape and flux. From single-cell data, we quantified the Waddington landscape, showing that optimal paths for differentiation and reprogramming deviate from the naively expected landscape gradient paths and may not pass through landscape saddles at finite fluctuations, challenging conventional transition state estimation of kinetic rate for cell fate decisions due to the presence of the flux. A key insight from our study is that stem/progenitor cells necessitate greater energy dissipation for rapid cell cycles and self-renewal, maintaining pluripotency. We predict optimal developmental pathways and elucidate the nucleation mechanism of cell fate decisions, with transition states as nucleation sites and pioneer genes as nucleation seeds. The concept of loop flux quantifies the contributions of each cycle flux to cell state transitions, facilitating the understanding of cell dynamics and thermodynamic cost, and providing insights into optimizing biological functions. We also infer cell-cell interactions and cell-type-specific gene regulatory networks, encompassing feedback mechanisms and interaction intensities, predicting genetic perturbation effects on cell fate decisions from single-cell omics data. Essentially, our methodology validates the landscape and flux theory, along with its associated quantifications, offering a framework for exploring the physical principles underlying cellular differentiation and reprogramming and broader biological processes through high-throughput single-cell sequencing experiments.


Assuntos
Diferenciação Celular , Reprogramação Celular , Análise de Célula Única , Transcriptoma , Análise de Célula Única/métodos , Reprogramação Celular/genética , Animais , Humanos , Perfilação da Expressão Gênica/métodos
6.
Immunol Res ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073709

RESUMO

This study uncovers the novel heterogeneity of FOXP3 + regulatory T (Treg) cells and their pivotal role in modulating immune responses during drug-induced allergic reactions, employing cutting-edge single-cell transcriptomics. We established a mouse model for drug-induced allergic reactions and utilized single-cell RNA sequencing (scRNA-seq) to analyze the transcriptomic landscapes of FOXP3 + Treg cells isolated from affected tissues. The study involved both in vitro and in vivo approaches to evaluate the impact of FOXP3 expression levels on the immunoregulatory functions of Treg cells during allergic responses. Techniques included flow cytometry, cluster analysis, principal component analysis (PCA), CCK8 and CSFE assays for cell proliferation, LDH release assays for toxicity, ELISA for cytokine profiling, and CRISPR/Cas9 technology for gene editing. Our findings revealed significant transcriptomic heterogeneity among FOXP3 + Treg cells in the context of drug-induced allergic reactions, with distinct subpopulations exhibiting unique gene expression profiles. This heterogeneity suggests specialized roles in immune regulation. We observed a decrease in the proliferative capacity and cytokine secretion of FOXP3 + Treg cells following allergic stimulation, alongside an increase in reaction toxicity. Manipulating FOXP3 expression levels directly influenced these outcomes, where FOXP3 deletion exacerbated allergic responses, whereas its overexpression mitigated them. Notably, in vivo experiments demonstrated that FOXP3 overexpression significantly reduced the severity of allergic skin reactions in mice. Our study presents novel insights into the heterogeneity and crucial immunoregulatory role of FOXP3 + Treg cells during drug-induced allergic reactions. Overexpression of FOXP3 emerges as a potential therapeutic strategy to alleviate such allergic responses. These findings contribute significantly to our understanding of immune regulation and the development of targeted treatments for drug-induced allergies.

7.
Neurobiol Dis ; 199: 106597, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38992777

RESUMO

Pediatric low grade brain tumors and neurodevelopmental disorders share proteins, signaling pathways, and networks. They also share germline mutations and an impaired prenatal differentiation origin. They may differ in the timing of the events and proliferation. We suggest that their pivotal distinct, albeit partially overlapping, outcomes relate to the cell states, which depend on their spatial location, and timing of gene expression during brain development. These attributes are crucial as the brain develops sequentially, and single-cell spatial organization influences cell state, thus function. Our underlying premise is that the root cause in neurodevelopmental disorders and pediatric tumors is impaired prenatal differentiation. Data related to pediatric brain tumors, neurodevelopmental disorders, brain cell (sub)types, locations, and timing of expression in the developing brain are scant. However, emerging single cell technologies, including transcriptomic, spatial biology, spatial high-resolution imaging performed over the brain developmental time, could be transformational in deciphering brain pathologies thereby pharmacology.


Assuntos
Encéfalo , Análise de Célula Única , Humanos , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Encéfalo/metabolismo , Criança , Transtornos do Neurodesenvolvimento/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Animais
8.
BMC Cancer ; 24(1): 926, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085784

RESUMO

BACKGROUND: As the most malignant tumor of the female reproductive system, ovarian cancer (OC) has garnered increasing attention. The Warburg effect, driven by glycolysis, accounts for tumor cell proliferation under aerobic conditions. However, the metabolic heterogeneity linked to glycolysis in OC remains elusive. METHODS: We integrated single-cell data with OC to score glycolysis level in tumor cell subclusters. This led to the identification of a subcluster predominantly characterized by glycolysis, with a strong correlation to patient prognosis. Core transcription factors were pinpointed using hdWGCNA and metaVIPER. A specific transcription factor regulatory network was then constructed. A glycolysis-related prognostic model was developed and tested for estimating OC prognosis with a total of 85 machine-learning combinations, focusing on specific upregulated genes of two subtypes. We identified IGF2 as a key within the prognostic model and investigated its impact on OC progression and drug resistance through in vitro experiments, including the transwell assay, lactate production detection, and the CCK-8 assay. RESULTS: Analysis showed that the Malignant 7 subcluster was primarily related to glycolysis. Two OC molecular subtypes, CS1 and CS2, were identified with distinct clinical, biological, and microenvironmental traits. A prognostic model was built, and IGF2 emerged as a key gene linked to prognosis. Experiments have proven that IGF2 can promote the glycolysis pathway and the malignant biological progression of OC cells. CONCLUSIONS: We developed two novel OC subtypes based on glycolysis score, established a stable prognostic model, and identified IGF2 as the marker gene. These insights provided a new avenue for exploring OC's molecular mechanisms and personalized treatment approaches.


Assuntos
Glicólise , Fator de Crescimento Insulin-Like II , Neoplasias Ovarianas , Análise de Célula Única , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/tratamento farmacológico , Glicólise/genética , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Prognóstico , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Proliferação de Células , Transcriptoma , Análise da Expressão Gênica de Célula Única
9.
Biomed Pharmacother ; 177: 117070, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964180

RESUMO

Predicting drug responses based on individual transcriptomic profiles holds promise for refining prognosis and advancing precision medicine. Although many studies have endeavored to predict the responses of known drugs to novel transcriptomic profiles, research into predicting responses for newly discovered drugs remains sparse. In this study, we introduce scDrug+, a comprehensive pipeline that seamlessly integrates single-cell analysis with drug-response prediction. Importantly, scDrug+ is equipped to predict the response of new drugs by analyzing their molecular structures. The open-source tool is available as a Docker container, ensuring ease of deployment and reproducibility. It can be accessed at https://github.com/ailabstw/scDrugplus.


Assuntos
Perfilação da Expressão Gênica , Análise de Célula Única , Transcriptoma , Análise de Célula Única/métodos , Humanos , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Estrutura Molecular , Reprodutibilidade dos Testes , Software , Descoberta de Drogas/métodos
10.
Cell ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971151

RESUMO

Homologous recombination deficiency (HRD) is prevalent in cancer, sensitizing tumor cells to poly (ADP-ribose) polymerase (PARP) inhibition. However, the impact of HRD and related therapies on the tumor microenvironment (TME) remains elusive. Our study generates single-cell gene expression and T cell receptor profiles, along with validatory multimodal datasets from >100 high-grade serous ovarian cancer (HGSOC) samples, primarily from a phase II clinical trial (NCT04507841). Neoadjuvant monotherapy with the PARP inhibitor (PARPi) niraparib achieves impressive 62.5% and 73.6% response rates per RECIST v.1.1 and GCIG CA125, respectively. We identify effector regulatory T cells (eTregs) as key responders to HRD and neoadjuvant therapies, co-occurring with other tumor-reactive T cells, particularly terminally exhausted CD8+ T cells (Tex). TME-wide interferon signaling correlates with cancer cells upregulating MHC class II and co-inhibitory ligands, potentially driving Treg and Tex fates. Depleting eTregs in HRD mouse models, with or without PARP inhibition, significantly suppresses tumor growth without observable toxicities, underscoring the potential of eTreg-focused therapeutics for HGSOC and other HRD-related tumors.

11.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000126

RESUMO

Chronic Hepatitis B virus (CHB) infection is a global health challenge, causing damage ranging from hepatitis to cirrhosis and hepatocellular carcinoma. In our study, single-cell RNA sequencing (scRNA-seq) analysis was performed in livers from mice models with chronic inflammation induced by CHB infection and we found that endothelial cells (ECs) exhibited the largest number of differentially expressed genes (DEGs) among all ten cell types. NF-κB signaling was activated in ECs to induce cell dysfunction and subsequent hepatic inflammation, which might be mediated by the interaction of macrophage-derived and cholangiocyte-derived VISFATIN/Nampt signaling. Moreover, we divided ECs into three subclusters, including periportal ECs (EC_Z1), midzonal ECs (EC_Z2), and pericentral ECs (EC_Z3) according to hepatic zonation. Functional analysis suggested that pericentral ECs and midzonal ECs, instead of periportal ECs, were more vulnerable to HBV infection, as the VISFATIN/Nampt- NF-κB axis was mainly altered in these two subpopulations. Interestingly, pericentral ECs showed increasing communication with macrophages and cholangiocytes via the Nampt-Insr and Nampt-Itga5/Itgb1 axis upon CHB infection, which contribute to angiogenesis and vascular capillarization. Additionally, ECs, especially pericentral ECs, showed a close connection with nature killer (NK) cells and T cells via the Cxcl6-Cxcr6 axis, which is involved in shaping the microenvironment in CHB mice livers. Thus, our study described the heterogeneity and functional alterations of three subclusters in ECs. We revealed the potential role of VISFATIN/Nampt signaling in modulating ECs characteristics and related hepatic inflammation, and EC-derived chemokine Cxcl16 in shaping NK and T cell recruitment, providing key insights into the multifunctionality of ECs in CHB-associated pathologies.


Assuntos
Células Endoteliais , Hepatite B Crônica , Análise de Célula Única , Animais , Hepatite B Crônica/virologia , Hepatite B Crônica/genética , Hepatite B Crônica/metabolismo , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Análise de Sequência de RNA , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Transdução de Sinais , Fígado/metabolismo , Fígado/virologia , Fígado/patologia , NF-kappa B/metabolismo , Masculino , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Humanos
12.
Artigo em Inglês | MEDLINE | ID: mdl-38996445

RESUMO

Plants possess diverse cell types and intricate regulatory mechanisms to adapt to the ever-changing environment of nature. Various strategies have been employed to study cell types and their developmental progressions, including single-cell sequencing methods which provide high-dimensional catalogs to address biological concerns. In recent years, single-cell sequencing technologies in transcriptomics, epigenomics, proteomics, metabolomics, and spatial transcriptomics have been increasingly used in plant science to reveal intricate biological relationships at the single-cell level. However, the application of single-cell technologies to plants is more limited due to the challenges posed by cell structure. This review outlines the advancements in single-cell omics technologies, their implications in plant systems, future research applications, and the challenges of single-cell omics in plant systems.


Assuntos
Genômica , Metabolômica , Plantas , Proteômica , Análise de Célula Única , Análise de Célula Única/métodos , Plantas/genética , Plantas/metabolismo , Metabolômica/métodos , Proteômica/métodos , Genômica/métodos , Epigenômica/métodos , Transcriptoma/genética
13.
J Biochem ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953373

RESUMO

In most organs, resources such as nutrients, oxygen, and physiologically active substances are unevenly supplied within the tissue spaces. Consequently, different tissue functions are exhibited in each space. This spatial heterogeneity of tissue environments arises depending on the spatial arrangement of nutrient vessels and functional vessels, leading to continuous changes in the metabolic states and functions of various cell types from regions proximal to these vessels to distant regions. This phenomenon is referred to as "zonation". Traditional analytical methods have made it difficult to investigate this zonation in detail. However, recent advancements in intravital imaging, spatial transcriptomics, and single-cell transcriptomics technologies have facilitated the discovery of "zones" in various organs and elucidated their physiological roles. Here, we outline the spatial differences in the immune system within each zone of organs. This information provides a deeper understanding of organs' immune systems.

14.
Methods Mol Biol ; 2814: 223-245, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38954209

RESUMO

Dictyostelium represents a stripped-down model for understanding how cells make decisions during development. The complete life cycle takes around a day and the fully differentiated structure is composed of only two major cell types. With this apparent reduction in "complexity," single cell transcriptomics has proven to be a valuable tool in defining the features of developmental transitions and cell fate separation events, even providing causal information on how mechanisms of gene expression can feed into cell decision-making. These scientific outputs have been strongly facilitated by the ease of non-disruptive single cell isolation-allowing access to more physiological measures of transcript levels. In addition, the limited number of cell states during development allows the use of more straightforward analysis tools for handling the ensuing large datasets, which provides enhanced confidence in inferences made from the data. In this chapter, we will outline the approaches we have used for handling Dictyostelium single cell transcriptomic data, illustrating how these approaches have contributed to our understanding of cell decision-making during development.


Assuntos
Dictyostelium , Perfilação da Expressão Gênica , Análise de Célula Única , Transcriptoma , Dictyostelium/genética , Dictyostelium/crescimento & desenvolvimento , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Análise da Expressão Gênica de Célula Única
15.
Sci Rep ; 14(1): 15384, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965316

RESUMO

Disruptions in energy homeostasis can lead to diseases like obesity and diabetes, affecting millions of people each year. Tanycytes, the adult stem cells in the hypothalamus, play crucial roles in assisting hypothalamic neurons in maintaining energy balance. Although tanycytes have been extensively studied in rodents, our understanding of human tanycytes remains limited. In this study, we utilized single-cell transcriptomics data to explore the heterogeneity of human embryonic tanycytes, investigate their gene regulatory networks, analyze their intercellular communication, and examine their developmental trajectory. Our analysis revealed the presence of two clusters of ß tanycytes and three clusters of α tanycytes in our dataset. Surprisingly, human embryonic tanycytes displayed significant similarities to mouse tanycytes in terms of marker gene expression and transcription factor activities. Trajectory analysis indicated that α tanycytes were the first to be generated, giving rise to ß tanycytes in a dorsal-ventral direction along the third ventricle. Furthermore, our CellChat analyses demonstrated that tanycytes generated earlier along the developmental lineages exhibited increased intercellular communication compared to those generated later. In summary, we have thoroughly characterized the heterogeneity of human embryonic tanycytes from various angles. We are confident that our findings will serve as a foundation for future research on human tanycytes.


Assuntos
Células Ependimogliais , Análise de Célula Única , Transcriptoma , Humanos , Células Ependimogliais/metabolismo , Células Ependimogliais/citologia , Redes Reguladoras de Genes , Camundongos , Animais , Perfilação da Expressão Gênica , Comunicação Celular/genética , Hipotálamo/metabolismo , Hipotálamo/citologia
16.
Front Immunol ; 15: 1404209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035000

RESUMO

The recent development of single cell sequencing technologies has revolutionized the state-of-art of cell biology, allowing the simultaneous measurement of thousands of genes in single cells. This technology has been applied to study the transcriptome of single cells in homeostasis and also in response to pathogenic exposure, greatly increasing our knowledge of the immune response to infectious agents. Yet the number of these studies performed in aquacultured fish species is still very limited. Thus, in the current study, we have used the 10x Genomics single cell RNA sequencing technology to study the response of rainbow trout (Oncorhynchus mykiss) peripheral blood leukocytes (PBLs) to infectious pancreatic necrosis virus (IPNV), an important trout pathogen. The study allowed us to obtain a transcriptomic profile of 12 transcriptionally distinct leukocyte cell subpopulations that included four different subsets of B cells, T cells, monocytes, two populations of dendritic-like cells (DCs), hematopoietic progenitor cells, non-specific cytotoxic cells (NCC), neutrophils and thrombocytes. The transcriptional pattern of these leukocyte subpopulations was compared in PBL cultures that had been exposed in vitro to IPNV for 24 h and mock-infected cultures. Our results revealed that monocytes and neutrophils showed the highest number of upregulated protein-coding genes in response to IPNV. Interestingly, IgM+IgD+ and IgT+ B cells also upregulated an important number of genes to the virus, but a much fainter response was observed in ccl4 + or plasma-like cells (irf4 + cells). A substantial number of protein-coding genes and genes coding for ribosomal proteins were also transcriptionally upregulated in response to IPNV in T cells and thrombocytes. Interestingly, although genes coding for ribosomal proteins were regulated in all affected PBL subpopulations, the number of such genes transcriptionally regulated was higher in IgM+IgD+ and IgT+ B cells. A further analysis dissected which of the regulated genes were common and which were specific to the different cell clusters, identifying eight genes that were transcriptionally upregulated in all the affected groups. The data provided constitutes a comprehensive transcriptional perspective of how the different leukocyte populations present in blood respond to an early viral encounter in fish.


Assuntos
Infecções por Birnaviridae , Doenças dos Peixes , Vírus da Necrose Pancreática Infecciosa , Leucócitos , Oncorhynchus mykiss , Análise de Célula Única , Animais , Oncorhynchus mykiss/imunologia , Oncorhynchus mykiss/virologia , Vírus da Necrose Pancreática Infecciosa/imunologia , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/virologia , Análise de Célula Única/métodos , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Leucócitos/imunologia , Leucócitos/virologia , Transcriptoma , Perfilação da Expressão Gênica/métodos
17.
Biomedicines ; 12(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062100

RESUMO

The tumor microenvironment (TME) is composed of various cellular components such as tumor cells, stromal cells including fibroblasts, adipocytes, mast cells, lymphatic vascular cells and infiltrating immune cells, macrophages, dendritic cells and lymphocytes. The intricate interplay between these cells influences tumor growth, metastasis and therapy failure. Significant advancements in breast cancer therapy have resulted in a substantial decrease in mortality. However, existing cancer treatments frequently result in toxicity and nonspecific side effects. Therefore, improving targeted drug delivery and increasing the efficacy of drugs is crucial for enhancing treatment outcome and reducing the burden of toxicity. In this review, we have provided an overview of how tumor and stroma-derived osteopontin (OPN) plays a key role in regulating the oncogenic potential of various cancers including breast. Next, we dissected the signaling network by which OPN regulates tumor progression through interaction with selective integrins and CD44 receptors. This review addresses the latest advancements in the roles of splice variants of OPN in cancer progression and OPN-mediated tumor-stromal interaction, EMT, CSC enhancement, immunomodulation, metastasis, chemoresistance and metabolic reprogramming, and further suggests that OPN might be a potential therapeutic target and prognostic biomarker for the evolving landscape of cancer management.

18.
Immunogenetics ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085621

RESUMO

Genome-wide association studies (GWASs) have identified genetic susceptibility loci associated with juvenile dermatomyositis (JDM). Single nucleotide polymorphisms related to phosphorylation (phosSNPs) are critical nonsynonymous mutations exerting substantial influence on gene expression regulation. The aim of this study was to identify JDM susceptibility genes in the GWAS loci by the use of phosSNPs. We explored quantitative trait loci (QTLs) among the phosSNPs associated with JDM using data from eQTL (bulk tissues and single-cell) and pQTL studies. For gene expression and protein levels significantly influenced by JDM-associated phosSNPs, we assessed their associations with JDM through MR analyses. Additionally, we conducted differential expression gene analyses, incorporating single-cell transcriptomic profiling of 6 JDM cases and 11 juvenile controls (99,396 cells). We identified 31 phosSNPs situated in the 6p21 locus that were associated with JDM. Half of these phosSNPs showed effects on gene expression in various cells and circulating protein levels. In MR analyses, we established associations between the expression levels of pivotal JDM-associated genes, including MICB, C4A, HLA-DRB1, HLA-DRB5, and PSMB9, in skin, muscle, or blood cells and circulating levels of C4A, with JDM. Utilizing single-cell eQTL data, we identified a total of 276 association signals across 14 distinct immune cell types for 28 phosSNPs. Further insights were gained through single-cell differential expression analysis, revealing differential expression of PSMB9, HLA-A, HLA-B, HLA-C, HLA-DPB1, HLA-DQA1, HLA-DQB1, and HLA-DRB1 in immune cells. The present study pinpointed phosSNPs within susceptibility genes for JDM and unraveled the intricate relationships among these SNPs, gene expression levels, and JDM.

19.
Mol Biomed ; 5(1): 24, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38937317

RESUMO

Chronic kidney disease (CKD) poses a significant global health dilemma, emerging from complex causes. Although our prior research has indicated that a deficiency in Reticulon-3 (RTN3) accelerates renal disease progression, a thorough examination of RTN3 on kidney function and pathology remains underexplored. To address this critical need, we generated Rtn3-null mice to study the consequences of RTN3 protein deficiency on CKD. Single-cell transcriptomic analyses were performed on 47,885 cells from the renal cortex of both healthy and Rtn3-null mice, enabling us to compare spatial architectures and expression profiles across 14 distinct cell types. Our analysis revealed that RTN3 deficiency leads to significant alterations in the spatial organization and gene expression profiles of renal cells, reflecting CKD pathology. Specifically, RTN3 deficiency was associated with Lars2 overexpression, which in turn caused mitochondrial dysfunction and increased reactive oxygen species levels. This shift induced a transition in renal epithelial cells from a functional state to a fibrogenic state, thus promoting renal fibrosis. Additionally, RTN3 deficiency was found to drive the endothelial-to-mesenchymal transition process and disrupt cell-cell communication, further exacerbating renal fibrosis. Immunohistochemistry and Western-Blot techniques were used to validate these observations, reinforcing the critical role of RTN3 in CKD pathogenesis. The deficiency of RTN3 protein in CKD leads to profound changes in cellular architecture and molecular profiles. Our work seeks to elevate the understanding of RTN3's role in CKD's narrative and position it as a promising therapeutic contender.


Assuntos
Progressão da Doença , Fibrose , Perfilação da Expressão Gênica , Insuficiência Renal Crônica , Análise de Célula Única , Animais , Camundongos , Fibrose/patologia , Fibrose/metabolismo , Fibrose/genética , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Rim/patologia , Rim/metabolismo , Transcriptoma , Espécies Reativas de Oxigênio/metabolismo , Transição Epitelial-Mesenquimal/genética , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/genética
20.
Biosystems ; 242: 105248, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871242

RESUMO

Single-cell transcriptome sequencing (scRNA-seq) has revolutionized our understanding of cellular processes by enabling the analysis of expression profiles at an individual cell level. This technology has shown promise in uncovering new cell types, gene functions, cell differentiation, and trajectory inference through the study of various biological processes, such as hematopoiesis. Recent scRNA-seq analysis of mouse bone marrow cells has provided a network model of hematopoietic lineage. However, all data analyses have predicted undirected network maps for the associated cell trajectories. Moreover, the debate regarding the origin of basophil cells still persists. In this work, we apply the Volatility Constrained (VC) correlation method to predict not only the network structure but also the causality or directionality between the cell types present in the hematopoietic process. Our findings suggest a dual origin of basophils, from both granulocyte/macrophage and erythrocyte progenitors, the latter being a trajectory less explored in previous research. The proposed approach and predictions may assist in developing a complete hematopoietic process map, impacting our understanding of hematopoiesis and providing a robust directional network framework for further biomedical research.


Assuntos
Linhagem da Célula , Hematopoese , Análise de Célula Única , Transcriptoma , Hematopoese/genética , Animais , Análise de Célula Única/métodos , Camundongos , Linhagem da Célula/genética , Transcriptoma/genética , Basófilos/citologia , Basófilos/metabolismo , Diferenciação Celular/genética , Redes Reguladoras de Genes , Perfilação da Expressão Gênica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA