Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348762

RESUMO

In this study, the oxidation of methionine is used as a proxy to model the gamma radiation-induced changes in single-use bags; these changes lead to the formation of acids, radicals, and hydroperoxides. The mechanisms of formation of these reactive species and of methionine oxidation are discussed. With the help of reaction kinetics, the optimal conditions for the use of these single-use bags minimizing the impact of radical chemistry are highlighted. Biopharmaceutical bags gamma irradiated from 0 kGy to 260 kGy and aged from 0 to 36 months were filled with a methionine solution to follow the oxidation of the methionine. The methionine sulfoxide was measured with HPLC after different storage times (0, 3, 10, 14, 17, and 21 days). Three main results were analyzed through a design of experiments: the oxidative induction time, the methionine sulfoxide formation rate, and the maximum methionine sulfoxide concentration detected. A key aspect of the study is that it highlights that methionine is oxidized not necessarily directly by hydro(gen) peroxide but throughperacid, and likely peracetic acid. The answers to the design of experiments were considered to obtain the desirability domain for the optimization of the conditions of use for the single-use bags limiting the oxidation of methionine as well as the release of reactive species thereof.

2.
Methods Mol Biol ; 2095: 105-123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31858465

RESUMO

Increasing the cultivation volume from small to large scale can be a rather complex and challenging process when the method of aeration and mixing is different between scales. Orbitally shaken bioreactors (OSBs) utilize the same hydrodynamic principles that define the success of smaller-scale cultures, which are developed on an orbitally shaken platform, and can simplify scale-up. Here we describe the basic working principles of scale-up in terms of the volumetric oxygen transfer coefficient (kLa) and mixing time and how to define these parameters experimentally. The scale-up process from an Erlenmeyer flask shaken on an orbital platform to an orbitally shaken single-use bioreactor (SB10-X, 12 L) is described in terms of both fed-batch and perfusion-based processes. The fed-batch process utilizes a recombinant variant of the mammalian cell line, Chinese hamster ovary (CHO), to express a biosimilar of a therapeutic monoclonal antibody. The perfusion-based process utilizes either an alternating tangential flow filtration (ATF) or a tangential flow filtration (TFF) system for cell retention to cultivate an avian cell line, AGE1.CR.pIX, for the propagation of influenza A virus, H1N1, in high cell density. Based on two example cell cultivations, processes outline the advantages that come with using an orbitally shaken bioreactor for scaling-up a process. The described methods are also applicable to other suspension cell lines.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Técnicas de Cultura Celular por Lotes/instrumentação , Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Perfusão/métodos , Cultura de Vírus/métodos , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Aves/imunologia , Aves/metabolismo , Células CHO , Contagem de Células , Células Cultivadas , Cricetulus , Glicosilação , Vírus da Influenza A Subtipo H1N1/imunologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Vacinas/biossíntese , Vacinas/isolamento & purificação
3.
Biotechnol Prog ; 34(2): 362-369, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29226613

RESUMO

The increasing application of regenerative medicine has generated a growing demand for stem cells and their derivatives. Single-use bioreactors offer an attractive platform for stem cell expansion owing to their scalability for large-scale production and feasibility of meeting clinical-grade standards. The current work evaluated the capacity of a single-use bioreactor system (1 L working volume) for expanding Meg01 cells, a megakaryocytic (MK) progenitor cell line. Oxygen supply was provided by surface aeration to minimize foaming and orbital shaking was used to promote oxygen transfer. Oxygen transfer rates (kL a) of shaking speeds 50, 100, and 125 rpm were estimated to be 0.39, 1.12, and 10.45 h-1 , respectively. Shaking speed was a critical factor for optimizing cell growth. At 50 rpm, Meg01 cells exhibited restricted growth due to insufficient mixing. A negative effect occurred when the shaking speed was increased to 125 rpm, likely caused by high hydrodynamic shear stress. The bioreactor culture achieved the highest growth profile when shaken at 100 rpm, achieving a total expansion rate up to 5.7-fold with a total cell number of 1.2 ± 0.2 × 109 cells L-1 . In addition, cells expanded using the bioreactor system could maintain their potency to differentiate following the MK lineage, as analyzed from specific surface protein and morphological similarity with the cells grown in the conventional culturing system. Our study reports the impact of operational variables such as shaking speed for growth profile and MK differentiation potential of a progenitor cell line in a single-use bioreactor. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:362-369, 2018.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Leucemia Megacarioblástica Aguda/patologia , Carbono/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Desenho de Equipamento , Humanos , Leucemia Megacarioblástica Aguda/metabolismo , Oxigênio/metabolismo , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA