Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 504
Filtrar
1.
Proc (Bayl Univ Med Cent) ; 37(5): 851-857, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39165802

RESUMO

Introduction: In the aftermath of anthrax bioterrorism, the US military began its smallpox immunization program in 2002. Dryvax was superseded in 2008 by ACAM2000, a second-generation smallpox vaccine, after clinical trials demonstrated favorable outcomes. However, these trials focused on significant adverse effects and provided less specific classifications and descriptions of cutaneous eruptions. The purpose of this systematic review was to investigate the clinicopathological characteristics of skin lesions that emerged in US military personnel following the reinstatement of new smallpox immunizations. Methods: PubMed, ScienceDirect, and Google Scholar were searched. The search was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, using appropriate keywords. Results: Of the 467 studies initially identified, 5 (1%) were analyzed, with a sample size of 15. There were 10 men and 4 women. The mean age of presentation was 24.3 years. The interval between inoculation and eruption was 15 days. The length of the eruption until clearance was 36.26 days. Grossly, most skin lesions were described as having papules (n = 9). Histological examination revealed vesicles with spongiotic dermatitis and eosinophils (n = 5) and a dermal hypersensitivity reaction with lymphocytic vasculitis (capillaritis) (n = 2). Definitive diagnoses included acral and vesiculopustular dermatosis (n = 7), generalized vaccinia (GV) (n = 1), and progressive vaccinia (n = 1). Concurrent or near-concurrent vaccination was administered (n = 12). Conclusion: Although rare, clinically significant skin lesions can occur after ACAM2000 administration. A feared complication of progressive vaccinia has been reported; however, to determine its causal relationship, further clinical trials are required to provide universal guidelines.

2.
Invest Educ Enferm ; 42(2)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39083830

RESUMO

Objective: To analyze the duties of wet nurses at the Hospital Real in Santiago de Compostela (Spain). The secondary objectives were to compare the mortality rate and distribution by parish of the foundlings under the care of the Royal House between 1803 and 1808; and to determine the origin of the Galician foundlings who participated in the Royal Philanthropic Expedition of the Smallpox Vaccine in 1803. Methods: Historiographic study that analyzed sorted and not sorted in series indirect positional and quantitative historical sources. Results: The duties of wet nurses during the studied period were to provide basic care and cultural instruction. The mortality rate of foundlings fluctuated during that period and their distribution by parish (functional unit of healthcare services at that time) was similar in those years, with a predominance in the provinces of A Coruña and Pontevedra. A total of 5 Galician foundlings from the House analyzed were part of the smallpox vaccine expedition, their names were Juan Antonio, Jacinto, Gerónimo María, Francisco Florencio and Juan Francisco. Conclusion: During the observed period the wet nurses of the Hospital Real of Santiago de Compostela were in charge of pediatric care. Wet nurses were vital in the role of keeping the foundlings alive and can be considered as one of the forerunners of the pediatric nurse profession at that time.


Assuntos
Vacina Antivariólica , Humanos , Espanha , História do Século XIX , Vacina Antivariólica/história , Recursos Humanos de Enfermagem Hospitalar/história , Recursos Humanos de Enfermagem Hospitalar/organização & administração
3.
J Med Humanit ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037562

RESUMO

The spread of the coronavirus SARS-CoV-2 has stimulated eschatological speculation. To the environmentalist and liberal diagnostician that had already been warning about the Anthropocene and the breakdown of post-Cold War global harmony, an alarm has now been added that in its worst prognosis estimates that, in 2020, we only started witnessing the beginning of a staggered health debacle. The idea of the world, as conceptual support for an imaginary community with global reach, has become a crisis. The world, an object often invoked by theoretical speculation over the last 30 years, has been now decreed finished. However, infectious diseases, in their epidemic and pandemic form, have devastated different societies at different times. This paper parallels two historical scenarios and a series of texts dealing with contagious diseases to shed light on the idea of (the end of) the world. The analysis centres on documents that bear witness to the importation of smallpox and other diseases into America and its spread during the European invasion and colonization. By recovering the concept of Pachakuti, a radical turnaround that can be understood as "end of one world", this paper shows that the chronicles reporting on the outbreaks of smallpox in America document a material end of the world for subjects who were not protagonists of history. The current end of the world is, on the contrary, that which would correspond to the protagonist of our phase of globalization and, eventually, to his world-which makes it more resonant and absolute.

4.
Emerg Microbes Infect ; 13(1): 2387442, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39082272

RESUMO

A large outbreak of monkeypox occurred in 2022, and most people lack immunity to orthopoxvirus. Smallpox vaccination is essential for preventing further smallpox outbreaks. This study evaluated the effectiveness, protection, safety, and cross-immunogenicity of smallpox vaccine in preventing monkeypox infection. PubMed, Embase, Scopus, and Web of Science were searched from database inception to 10 March 2024. We included studies involving "monkeypox virus" and "vaccinations", and excluded reviews, animal studies, and articles with missing or duplicate data. A total of 37 studies with 57,693 participants were included in the final analysis. The effectiveness data showed that monkeypox infection rates were lower in the smallpox-vaccinated group than in the unvaccinated group (risk ratio [RR]: 0.46; 95% confidence interval [CI]: 0.31-0.68). The protection data showed that smallpox vaccination effectively reduced the risk of severe monkeypox infection (RR: 0.61; 95% CI: 0.42-0.87). Third-generation vaccines showed greater efficacy (RR: 0.36, 95% CI: 0.22-0.56) than first-generation vaccines. The number of doses of smallpox vaccine has no significant effect on monkeypox. Safety data showed that adverse reactions after smallpox vaccination were mainly mild and included local erythema, swelling, induration, itching, and pain. Meanwhile, we found that smallpox vaccination could induce the production of neutralizing antibodies against monkeypox. Our findings offer compelling evidence supporting the clinical application of the smallpox vaccine for preventing monkeypox and advocate that high-risk groups should be prioritized for receiving one dose of the smallpox vaccine if the vaccine stockpile is low.


Assuntos
Mpox , Vacina Antivariólica , Vacina Antivariólica/imunologia , Vacina Antivariólica/administração & dosagem , Vacina Antivariólica/efeitos adversos , Humanos , Mpox/prevenção & controle , Mpox/imunologia , Mpox/epidemiologia , Vacinação , Monkeypox virus/imunologia , Varíola/prevenção & controle , Varíola/imunologia , Eficácia de Vacinas , Imunogenicidade da Vacina , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Animais
5.
J Gen Virol ; 105(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38861287

RESUMO

Increased human-to-human transmission of monkeypox virus (MPXV) is cause for concern, and antibodies directed against vaccinia virus (VACV) are known to confer cross-protection against Mpox. We used 430 serum samples derived from the Scottish patient population to investigate antibody-mediated cross-neutralization against MPXV. By combining electrochemiluminescence immunoassays with live-virus neutralization assays, we show that people born when smallpox vaccination was routinely offered in the United Kingdom have increased levels of antibodies that cross-neutralize MPXV. Our results suggest that age is a risk factor of Mpox infection, and people born after 1971 are at higher risk of infection upon exposure.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Monkeypox virus , Mpox , Vacina Antivariólica , Humanos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacina Antivariólica/imunologia , Vacina Antivariólica/administração & dosagem , Adulto , Pessoa de Meia-Idade , Monkeypox virus/imunologia , Adulto Jovem , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Mpox/imunologia , Mpox/prevenção & controle , Feminino , Adolescente , Idoso , Masculino , Proteção Cruzada/imunologia , Escócia , Fatores Etários , Testes de Neutralização , Criança , Vacinação , Varíola/prevenção & controle , Varíola/imunologia , Pré-Escolar , Reações Cruzadas , Idoso de 80 Anos ou mais
6.
Int J Infect Dis ; 146: 107132, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38942168

RESUMO

OBJECTIVES: The 2022 mpox epidemic reached a peak in Belgium and the rest of Europe in July 2022, after which it unexpectedly subsided. This study investigates epidemiological, behavioral, and immunological factors behind the waning of the epidemic in Belgium. METHODS: We investigated temporal evolutions in the characteristics and behavior of mpox patients using national surveillance data and data from a prospective registry of mpox patients in the Institute of Tropical Medicine (Antwerp). We studied behavioral changes in the population at risk using a survey among HIV-preexposure prophylaxis (PrEP) users. We determined the seroprevalence of anti-orthopoxvirus antibodies among HIV-PrEP users across four-time points in 2022. RESULTS: Mpox patients diagnosed at the end of the epidemic had less sexual risk behavior compared to those diagnosed earlier: they engaged less in sex at mass events, had fewer sexual partners, and were less likely to belong to the sexual network's central group. Among HIV-PrEP users there were no notable changes in sexual behavior. Anti-orthopoxvirus seroprevalence did not notably increase before the start of national vaccination campaigns. CONCLUSION: The observed changes in group immunity and behavior in the population at greater risk of exposure to mpox seem unable to explain the waning of the mpox epidemic. A change in the profile of mpox patients might have contributed to the decline in cases.


Assuntos
Infecções por HIV , Comportamento Sexual , Humanos , Bélgica/epidemiologia , Estudos Soroepidemiológicos , Masculino , Adulto , Infecções por HIV/epidemiologia , Pessoa de Meia-Idade , Feminino , Profilaxia Pré-Exposição , Estudos Prospectivos , Assunção de Riscos , Anticorpos Antivirais/sangue
7.
Vaccine ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906763

RESUMO

INTRODUCTION: Before the global mpox outbreak which began in 2022, the real-world vaccine effectiveness (VE) of mpox vaccines was unknown. We quantified the VE in the global population of 3rd generation or later mpox vaccines (MVA-BN, LC16m8, OrthopoxVac) compared with unvaccinated or other vaccinated states for infection, hospitalization and death. VE was stratified by 1-dose and 2-doses and post-exposure prophylaxis (PEP). METHODS: Studies were included if they measured vaccine efficacy or effectiveness in humans. Animal studies and immunogenicity studies were excluded. MEDLINE, Web of Science, Google Scholar, Embase, MedRxiv and grey literature were searched from January 1st, 1970, with the last search run on November 3, 2023 (Prospero, CRD42022345240). Risk of publication bias was assessed via funnel plots and Egger's test, and study quality via Newcastle-Ottawa scales. RESULTS: A total of 11,892 records were identified via primary search, 3,223 via citation chasing. Thirty-three studies were identified of 3rd generation vaccines, 32 of which were MVA-BN. Two additional studies were re-analysis of existing data. Most of these studies were focused on gay, bisexual, or other men who have sex with men between the ages of 18-49 in May to October of 2022. VE of 1 dose of MVA-BN was 76% (95%CI 64-88%) from twelve studies. VE of 2 doses was 82% (95%CI 72-92%) from six studies. VE of MVA-BN PEP against mpox was 20% (95%CI -24-65%) from seven studies. All VE are calculated from random effects estimates. 18/33(55%) studies were rated as poor, 3/33(9%) as fair and 12/33(36%) as good. Studies included in the meta-analysis had higher quality: 11/16 (69%) were rated as good quality. CONCLUSION: Both 1 and 2 doses of MVA-BN are highly effective at preventing mpox. Effectiveness estimates, specifically of PEP are limited by immortal time bias, predominant mode of mpox transmission, and real-world vaccine timing of administration.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38881417

RESUMO

Using the examples of plague, smallpox, and HIV/AIDS, the present essay argues for the benefits of incorporating the evolutionary histories of pathogens, beyond visible epidemic spikes within human populations, into our understanding of what pandemics actually are as epidemiological phenomena. The pandemic arc - which takes the pathogen as the defining "actor" in a pandemic, from emergence to local proliferation to globalization - offers a framework capable of bringing together disparate aspects not only of the manifestations of disease but also of human involvement in the pandemic process. Pathogens may differ, but there are common patterns in disease emergence and proliferation that distinguish those diseases that become pandemic, dispersed through human communities regionally or globally. The same methods of genomic analysis that allow tracking the evolutionary development of a modern pathogen such as SARS-CoV-2 also allow us to trace pandemics into the past. Reconstruction of these pandemic arcs brings new elements of these stories into view, recovering the experiences of regions and populations hitherto overlooked by Eurocentric narratives. This expanded global history of infectious diseases, in turn, lays a groundwork for reconceiving what ambitions a truly global health might aim for.

9.
Microbiol Spectr ; 12(6): e0046524, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38700327

RESUMO

Smallpox is a highly contagious human disease caused by the variola virus. Although the disease was eliminated in 1979 due to its highly contagious nature and historical pathogenicity, with a mortality rate of up to 30%, this virus is an important candidate for biological weapons. Currently, vaccines are the critical measures to prevent this virus infection and spread. In this study, we designed a peptide vaccine using immunoinformatics tools, which have the potential to activate human immunity against variola virus infection efficiently. The design of peptides derives from vaccine-candidate proteins showing protective potential in vaccinia WR strains. Potential non-toxic and nonallergenic T-cell and B-cell binding and cytokine-inducing epitopes were then screened through a priority prediction using special linkers to connect B-cell epitopes and T-cell epitopes, and an appropriate adjuvant was added to the vaccine construction to enhance the immunogenicity of the peptide vaccine. The 3D structure display, docking, and free energy calculation analysis indicate that the binding affinity between the vaccine peptide and Toll-like receptor 3 is high, and the vaccine receptor complex is highly stable. Notably, the vaccine we designed is obtained from the protective protein of the vaccinia and combined with preventive measures to avoid side effects. This vaccine is highly likely to produce an effective and safe immune response against the variola virus infection in the body. IMPORTANCE: In this work, we designed a vaccine with a cluster of multiple T-cell/B-cell epitopes, which should be effective in inducing systematic immune responses against variola virus infection. Besides, this work also provides a reference in vaccine design for preventing monkeypox virus infection, which is currently prevalent.


Assuntos
Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T , Vacina Antivariólica , Varíola , Vacinas de Subunidades Antigênicas , Vírus da Varíola , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/genética , Humanos , Vacina Antivariólica/imunologia , Vírus da Varíola/imunologia , Vírus da Varíola/genética , Varíola/prevenção & controle , Varíola/imunologia , Linfócitos T/imunologia , Linfócitos B/imunologia , Simulação de Acoplamento Molecular , Peptídeos/imunologia , Peptídeos/química , Imunoinformática
10.
Emerg Microbes Infect ; 13(1): 2356153, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38767199

RESUMO

Men who have sex with men and people living with HIV are disproportionately affected in the 2022 multi-country monkeypox epidemic. The smallpox vaccine can induce cross-reactive antibodies against the monkeypox virus (MPXV) and reduce the risk of infection. Data on antibodies against MPXV induced by historic smallpox vaccination in people with HIV are scarce. In this observational study, plasma samples were collected from people living with and without HIV in Shenzhen, China. We measured antibodies binding to two representative proteins of vaccinia virus (VACV; A27L and A33R) and homologous proteins of MPXV (A29L and A35R) using an enzyme-linked immunosorbent assay. We compared the levels of these antibodies between people living with and without HIV. Stratified analyses were performed based on the year of birth of 1981 when the smallpox vaccination was stopped in China. Plasma samples from 677 people living with HIV and 746 people without HIV were tested. A consistent pattern was identified among the four antibodies, regardless of HIV status. VACV antigen-reactive and MPXV antigen-reactive antibodies induced by historic smallpox vaccination were detectable in the people born before 1981, and antibody levels reached a nadir during or after 1981. The levels of smallpox vaccine-induced antibodies were comparable between people living with HIV and those without HIV. Our findings suggest that the antibody levels against MPXV decreased in both people living with and without HIV due to the cessation of smallpox vaccination.


Assuntos
Anticorpos Antivirais , Infecções por HIV , Monkeypox virus , Vacina Antivariólica , Humanos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Masculino , Vacina Antivariólica/imunologia , Vacina Antivariólica/administração & dosagem , Infecções por HIV/imunologia , Infecções por HIV/epidemiologia , Infecções por HIV/virologia , Adulto , Feminino , China/epidemiologia , Pessoa de Meia-Idade , Monkeypox virus/imunologia , Varíola/imunologia , Varíola/prevenção & controle , Varíola/epidemiologia , Varíola/história , Vacinação , Mpox/imunologia , Mpox/epidemiologia , Mpox/história , Reações Cruzadas/imunologia , Adulto Jovem , Ensaio de Imunoadsorção Enzimática , Vaccinia virus/imunologia
11.
Vaccine ; 42(16): 3578-3584, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38704259

RESUMO

The smallpox vaccine developed by Jenner in 1798 was successfully introduced in France in 1800 with the support of Napoleon Bonaparte. The medals and tokens (coin-like medals) issued to encourage early-day vaccination activities are described in the context of the changing political situation in that country. In 1800 a private society of subscribers, led by the Duke of La Rochefoucauld-Liancourt was created, along with a Vaccine Committee charged with evaluating the safety and efficacy of vaccination before deciding if vaccination should be extended to the entire population. The Vaccine Committee published a positive report in 1803, and in 1804, the Ministry of the Interior established the "Society for the extinction of smallpox in France by means of the propagation of the vaccine". The creation of the Society made smallpox vaccination an official activity of the empire, facilitating collaboration between government agencies. The vaccine institution, established by Napoleon in 1804, continued its functions until 1820 when the Royal Academy of Medicine was created and took over those functions. This case exemplifies the collaboration that was needed between science and politics to rapidly bring the recently developed smallpox vaccine to the needed population.


Assuntos
Vacina Antivariólica , Varíola , Vacinação , Vacina Antivariólica/história , França , Humanos , Varíola/prevenção & controle , Varíola/história , História do Século XIX , História do Século XVIII , Vacinação/história
12.
Adv Exp Med Biol ; 1451: 21-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38801569

RESUMO

In the last 4 years, the world has experienced two pandemics of bat-borne viruses. Firstly, in 2019 the SARS-CoV-2 pandemic started and has been causing millions of deaths around the world. In 2022, a Monkeypox pandemic rose in various countries of the world. Those pandemics have witnessed movements and initiatives from healthcare and research institutions to establish a worldwide understanding to battle any future pandemics and biological threats. One Health concept is a modern, comprehensive, unifying ways to improve humans, animals, and ecosystems' health. This concept shows how much they are intertwined and related to one another, whether it is an environmental, or a pathological relation. This review aims to describe Poxviridae and its impact on the One Health concept, by studying the underlying causes of how poxviruses can affect the health of animals, humans, and environments. Reviewing the effect of disease transmission between animal to human, human to human, and animal to animal with pox viruses as a third party to achieve a total understanding of infection and viral transmission. Thus, contributing to enhance detection, diagnosis, research, and treatments regarding the application of One Health.


Assuntos
Saúde Única , Infecções por Poxviridae , Poxviridae , Humanos , Animais , Infecções por Poxviridae/virologia , Infecções por Poxviridae/transmissão , Infecções por Poxviridae/epidemiologia , Poxviridae/fisiologia , Poxviridae/patogenicidade , Poxviridae/genética , COVID-19/virologia , COVID-19/transmissão , COVID-19/epidemiologia , Zoonoses/virologia , Zoonoses/transmissão , Zoonoses/epidemiologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Pandemias , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Zoonoses Virais/epidemiologia
13.
Adv Exp Med Biol ; 1451: 139-149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38801576

RESUMO

Variola virus is an anthroponotic agent that belongs to the orthopoxvirus family. It is an etiological agent of smallpox, an ancient disease that caused massive mortality of human populations. Twentieth century has witnessed the death of about 300 million people due to the unavailability of an effective vaccine. Early detection is the primary strategy to prevent an outbreak of smallpox. Variola virus forms the characteristic pus-filled pustules and centrifugal rash distribution in the infected patients while transmission occurs mainly through respiratory droplets during the early stage of infection. No antiviral drugs are approved for variola virus till date. Generation of first-generation vaccines helped in the eradication of smallpox which was declared by the World Health Organization.


Assuntos
Varíola , Vírus da Varíola , Humanos , Vírus da Varíola/patogenicidade , Vírus da Varíola/genética , Vírus da Varíola/fisiologia , Varíola/virologia , Varíola/prevenção & controle , Varíola/transmissão , Animais , Vacina Antivariólica/imunologia , Surtos de Doenças/prevenção & controle
14.
Adv Exp Med Biol ; 1451: 205-217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38801580

RESUMO

The family Poxviridae is a large family of viruses with a ubiquitous distribution, subdivided into two subfamilies: Chordopoxvirinae (poxviruses of vertebrates) and Entomopoxvirinae (poxviruses of insects). Only three species from the first subfamily, Orthopoxvirus (OPV), Molluscipoxvirus and Parapoxvirus, can infect the human being. In the paediatric population, viruses belonging to the first two subfamilies have the greatest importance. Following the eradication of smallpox in 1980, vaccination of the general population was discontinued after careful consideration of the risks and benefits. However, nearly all children and most of the world's population had little to no protection against OPV. The aim of this chapter is to review the current evidence on the aetiology, clinical manifestations, diagnosis and management of Poxviridae infections in children.


Assuntos
Infecções por Poxviridae , Poxviridae , Humanos , Criança , Infecções por Poxviridae/virologia , Infecções por Poxviridae/epidemiologia , Infecções por Poxviridae/diagnóstico , Poxviridae/classificação , Poxviridae/genética , Poxviridae/patogenicidade , Pré-Escolar , Lactente , Animais
15.
Adv Exp Med Biol ; 1451: 183-204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38801579

RESUMO

Poxviridae family includes several viruses that infecting humans usually causes skin lesions only, but in some cases their clinical course is complicated by viral pneumonia (with or without bacterial superinfections). Historically variola virus has been the poxviridae most frequently associated with the development of pneumonia with many large outbreaks worldwide before its eradication in 1980. It is still considered a biological threat for its potential in biological warfare and bioterrorism. Smallpox pneumonia can be severe with the onset of acute respiratory distress syndrome (ARDS) and death. Vaccinia virus, used for vaccination against smallpox exceptionally, in immunocompromised patients, can induce generalized (with also lung involvement) severe disease after vaccination. MPXV virus occasionally can cause pneumonia particularly in immunocompromised patients. The pathophysiology of poxviridae pneumonia is still an area of active research; however, in animal models these viruses can cause both direct damage to the lower airways epithelium and a hyperinflammatory syndrome, like a cytokine storm. Multiple mechanisms of immune evasion have also been described. The treatment of poxviridae pneumonia is mainly based on careful supportive care. Despite the absence of randomized clinical trials in patients with poxviridae pneumonia there are antiviral drugs, such as tecovirimat, cidofovir and brincidofovir, FDA-approved for use in smallpox and also available under an expanded access protocol for treatment of MPXV. There are 2 (replication-deficient modified vaccinia Ankara and replication-competent vaccinia virus) smallpox vaccines FDA-approved with the first one also approved for prevention of MPXV in adults that are at high risk of infection.


Assuntos
Antivirais , Infecções por Poxviridae , Humanos , Animais , Infecções por Poxviridae/tratamento farmacológico , Infecções por Poxviridae/virologia , Infecções por Poxviridae/imunologia , Antivirais/uso terapêutico , Pneumonia Viral/virologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/complicações , Poxviridae/patogenicidade , Poxviridae/fisiologia , Poxviridae/genética , Vaccinia virus/patogenicidade , Vaccinia virus/fisiologia , Varíola/virologia , Varíola/prevenção & controle , Vírus da Varíola/patogenicidade , Vírus da Varíola/genética
16.
Adv Exp Med Biol ; 1451: 273-287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38801584

RESUMO

Smallpox was a significant cause of mortality for over three thousand years, amounting to 10% of deaths yearly. Edward Jenner discovered smallpox vaccination in 1796, which rapidly became a smallpox infection preventive practice throughout the world and eradicated smallpox infection by 1980. After smallpox eradication, monkeypox vaccines have been used primarily in research and in outbreaks in Africa, where the disease is endemic. In the present, the vaccines are being used for people who work with animals or in high-risk areas, as well as for healthcare workers treating patients with monkeypox. Among all orthopoxviruses (OPXV), monkeypox viral (MPXV) infection occurs mainly in cynomolgus monkeys, natural reservoirs, and occasionally causes severe multi-organ infection in humans, who were the incidental hosts. The first case of the present epidemic of MXPV was identified on May 7, 2022, and rapidly increased the number of cases. In this regard, the WHO declared the outbreak, an international public health emergency on July 23, 2022. The first monkeypox vaccine was developed in the 1960s by the US Army and was based on the vaccinia virus, which is also used in smallpox vaccines. In recent years, newer monkeypox vaccines have been developed based on other viruses such as Modified Vaccinia Ankara (MVA). These newer vaccines are safer and can provide longer-lasting immunity with fewer side effects. For the future, there is ongoing research to improve the current vaccines and to develop new ones. One notable advance has been the development of a recombinant vaccine that uses a genetically modified vaccinia virus to express monkeypox antigens. This vaccine has shown promising results in pre-clinical trials and is currently undergoing further testing in clinical trials. Another recent development has been the use of a DNA vaccine, which delivers genetic material encoding monkeypox antigens directly into cells. This type of vaccine has shown effectiveness in animal studies and is also undergoing clinical testing in humans. Overall, these recent advances in monkeypox vaccine development hold promise for protecting individuals against this potentially serious disease.


Assuntos
Vacina Antivariólica , Humanos , Animais , Vacina Antivariólica/imunologia , Varíola/prevenção & controle , Varíola/imunologia , Varíola/epidemiologia , Varíola/história , História do Século XXI , História do Século XX , Mpox/prevenção & controle , Mpox/epidemiologia , Mpox/imunologia , Infecções por Poxviridae/prevenção & controle , Infecções por Poxviridae/imunologia , Infecções por Poxviridae/epidemiologia , Poxviridae/imunologia , Poxviridae/genética , Monkeypox virus/imunologia , Monkeypox virus/genética , Vacinação , Vacinas Virais/imunologia , Desenvolvimento de Vacinas
17.
Adv Exp Med Biol ; 1451: 301-316, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38801586

RESUMO

The smallpox infection with the variola virus was one of the most fatal disorders until a global eradication was initiated in the twentieth century. The last cases were reported in Somalia 1977 and as a laboratory infection in the UK 1978; in 1980, the World Health Organization (WHO) declared smallpox for extinct. The smallpox virus with its very high transmissibility and mortality is still a major biothreat, because the vaccination against smallpox was stopped globally in the 1980s. For this reason, new antivirals (cidofovir, brincidofovir, and tecovirimat) and new vaccines (ACAM2000, LC16m8 and Modified Vaccine Ankara MVA) were developed. For passive immunization, vaccinia immune globulin intravenous (VIGIV) is available. Due to the relationships between orthopox viruses such as vaccinia, variola, mpox (monkeypox), cowpox, and horsepox, the vaccines (LC16m8 and MVA) and antivirals (brincidofovir and tecovirimat) could also be used in the mpox outbreak with positive preliminary data. As mutations can result in drug resistance against cidofovir or tecovirimat, there is need for further research. Further antivirals (NIOCH-14 and ST-357) and vaccines (VACΔ6 and TNX-801) are being developed in Russia and the USA. In conclusion, further research for treatment and prevention of orthopox infections is needed and is already in progress. After a brief introduction, this chapter presents the smallpox and mpox disease and thereafter full overviews on antiviral treatment and vaccination including the passive immunization with vaccinia immunoglobulins.


Assuntos
Antivirais , Mpox , Vacina Antivariólica , Varíola , Varíola/prevenção & controle , Varíola/epidemiologia , Varíola/imunologia , Varíola/história , Humanos , Antivirais/uso terapêutico , Vacina Antivariólica/imunologia , Vacina Antivariólica/uso terapêutico , Mpox/epidemiologia , Mpox/prevenção & controle , Mpox/imunologia , Vacinação/métodos , Vírus da Varíola/imunologia , Vírus da Varíola/genética , Animais , Citosina/análogos & derivados , Citosina/uso terapêutico , Monkeypox virus/imunologia , Monkeypox virus/patogenicidade , Monkeypox virus/genética , Imunização Passiva/métodos , Organofosfonatos/uso terapêutico , Isoindóis/uso terapêutico , Cidofovir/uso terapêutico , Imunoglobulinas Intravenosas/uso terapêutico , Benzamidas , Ftalimidas
18.
Adv Exp Med Biol ; 1451: 317-330, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38801587

RESUMO

Monkeypox has been endemic in Congo and Nigeria for at least five decades. Since early May 2022, there have been numerous unprecedented outbreaks throughout the world in places without any previously reported cases. While a majority of the diagnosed cases have been within Europe and the Americas, several cases have occurred in non-endemic African countries. As of December 2022, 82,999 cases had been reported globally, prompting concern among the World Health Organization (WHO) members. While the WHO has not labeled this epidemic a Global Health Emergency, member states have begun to put forward plans to consolidate their emergency vaccine stockpiles and share the limited number of vaccines made by the single FDA-approved manufacturer, Bavarian Nordic. Many countries are concerned about how vaccines will be shared. Some of the larger donor States are positioned to be the biggest beneficiaries of vaccine sharing, while States from areas that have been suffering from the virus since the 1970s have not been allocated any. This pattern of vaccine distribution echoes that seen during the early part of the COVID-19 pandemic. Due to the similarities between Monkeypox and Smallpox, contact precautions and vaccination seem to be effective strategies to combat its rapid spread. We aim to evaluate how an eradication program model similar to that used for Smallpox can be applied to Monkeypox, and whether it can address vaccine inequity. To do this, we use a multi-pronged approach targeting disease surveillance, vaccine awareness, manufacturing, cost, and distribution strategies.


Assuntos
Saúde Global , Mpox , Humanos , Mpox/epidemiologia , Mpox/prevenção & controle , Mpox/imunologia , Vacina Antivariólica/imunologia , Monkeypox virus/imunologia , Monkeypox virus/genética , Vacinação , Organização Mundial da Saúde , Disparidades em Assistência à Saúde
19.
Adv Exp Med Biol ; 1451: 399-412, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38801593

RESUMO

Historically, biological agents have been used to target various populations. One of the earliest examples could be the catastrophic effect of smallpox in Australia in the eighteenth century (as alleged by some historians). Modern biological techniques can be used to both create or provide protection against various agents of biological warfare. Any microorganism (viruses, bacteria, and fungi) or its toxins can be used as biological agents. Minnesota Department of Health has listed Smallpox (variola major) as a category A bioterrorism agent, even though it has been eradicated in 1980 through an extensive vaccination campaign. Category A agents are considered the highest risk to public health. Laboratory-associated outbreaks of poxviruses could cause unprecedented occupational hazards. Only two WHO-approved BSL-4 facilities in the United States and Russia are allowed to perform research on the variola virus. So, poxviruses present themselves as a classical case of a dual-use dilemma, since research with them can be used for both beneficial and harmful purposes. Although the importance of ethics in scientific research requires no further elaboration, ethical norms assume greater significance during experimentation with poxviruses. In this chapter, we will update the readers on the sensitive nature of conducting research with poxviruses, and how these viruses can be a source of potential biological weapons. Finally, specified ethical guidelines are explored to ensure safe research practices in virology.


Assuntos
Armas Biológicas , Guerra Biológica , Humanos , Armas Biológicas/ética , Guerra Biológica/ética , Poxviridae/genética , Bioterrorismo/ética , Bioterrorismo/prevenção & controle , Animais , Varíola/prevenção & controle , Varíola/virologia , Infecções por Poxviridae/virologia , Infecções por Poxviridae/prevenção & controle , Pesquisa Biomédica/ética
20.
Pediatr Clin North Am ; 71(3): 529-549, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754940

RESUMO

This article considers ethical considerations surrounding pediatric vaccine development for pandemic preparedness, examines some historical cases of pediatric vaccines developed during past smallpox, influenza, and 2019 coronavirus disease pandemics, and discusses the current state of vaccine development for pandemic preparedness, including vaccines against smallpox/mpox, influenza, anthrax, and Ebola that are included in the US Strategic National Stockpile and vaccines being developed against priority pathogens identified by the World Health Organization.


Assuntos
Desenvolvimento de Vacinas , Humanos , Criança , Pandemias/prevenção & controle , COVID-19/prevenção & controle , COVID-19/epidemiologia , Vacinas , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA