Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
2.
Biomed Eng Online ; 23(1): 51, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835079

RESUMO

BACKGROUND: Functional electrical stimulation (FES) is a rehabilitation technique that enables functional improvements in patients with motor control impairments. This study presents an original design and prototyping method for a smart sleeve for FES applications. The article explains how to integrate a carbon-based dry electrode into a textile structure and ensure an electrical connection between the electrodes and the stimulator for effective delivery of the FES. It also describes the materials and the step-by-step manufacturing processes. RESULTS: The carbon-based dry electrode is integrated into the textile substrate by a thermal compression molding process on an embroidered conductive matrix. This matrix is composed of textile silver-plated conductive yarns and is linked to the stimulator. Besides ensuring the electrical connection, the matrix improves the fixation between the textile substrate and the electrode. The stimulation intensity, the perceived comfort and the muscle torque generated by the smart FES sleeve were compared to hydrogel electrodes. The results show a better average comfort and a higher average stimulation intensity with the smart FES sleeve, while there were no significant differences for the muscle torque generated. CONCLUSIONS: The integration of the proposed dry electrodes into a textile is a viable solution. The wearable FES system does not negatively impact the electrodes' performance, and tends to improve it. Additionally, the proposed prototyping method is applicable to an entire garment in order to target all muscles. Moreover, the process is feasible for industrial production and commercialization since all materials and processes used are already available on the market.


Assuntos
Eletrodos , Têxteis , Humanos , Estimulação Elétrica/instrumentação , Desenho de Equipamento , Masculino , Adulto , Condutividade Elétrica , Carbono/química , Torque
3.
Molecules ; 29(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731513

RESUMO

The various wastes generated by silkworm silk textiles that are no longer in use are increasing, which is causing considerable waste and contamination. This issue has attracted widespread attention in countries that use a lot of silk. Therefore, enhancing the mechanical properties of regenerated silk fibroin (RSF) and enriching the function of silk are important directions to expand the comprehensive utilization of silk products. In this paper, the preparation of RSF/Al2O3 nanoparticles (NPs) hybrid fiber with different Al2O3 NPs contents by wet spinning and its novel performance are reported. It was found that the RSF/Al2O3 NPs hybrid fiber was a multifunctional fiber material with thermal insulation and UV resistance. Natural light tests showed that the temperature rise rate of RSF/Al2O3 NPs hybrid fibers was slower than that of RSF fibers, and the average temperature rose from 29.1 °C to about 35.4 °C in 15 min, while RSF fibers could rise to about 40.1 °C. UV absorption tests showed that the hybrid fiber was resistant to UV radiation. Furthermore, the addition of Al2O3 NPs may improve the mechanical properties of the hybrid fibers. This was because the blending of Al2O3 NPs promoted the self-assembly of ß-sheets in the RSF reaction mixture in a dose-dependent manner, which was manifested as the RSF/Al2O3 NPs hybrid fibers had more ß-sheets, crystallinity, and a smaller crystal size. In addition, RSF/Al2O3 NPs hybrid fibers had good biocompatibility and durability in micro-alkaline sweat environments. The above performance makes the RSF/Al2O3 NPs hybrid fibers promising candidates for application in heat-insulating and UV-resistant fabrics as well as military clothing.


Assuntos
Óxido de Alumínio , Fibroínas , Nanopartículas , Raios Ultravioleta , Fibroínas/química , Nanopartículas/química , Óxido de Alumínio/química , Animais , Bombyx , Temperatura Alta , Humanos , Seda/química
4.
Sensors (Basel) ; 24(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38733025

RESUMO

Concussions, a prevalent public health concern in the United States, often result from mild traumatic brain injuries (mTBI), notably in sports such as American football. There is limited exploration of smart-textile-based sensors for measuring the head impacts associated with concussions in sports and recreational activities. In this paper, we describe the development and construction of a smart textile impact sensor (STIS) and validate STIS functionality under high magnitude impacts. This STIS can be inserted into helmet cushioning to determine head impact force. The designed 2 × 2 STIS matrix is composed of a number of material layered structures, with a sensing surface made of semiconducting polymer composite (SPC). The SPC dimension was modified in the design iteration to increase sensor range, responsiveness, and linearity. This was to be applicable in high impact situations. A microcontroller board with a biasing circuit was used to interface the STIS and read the sensor's response. A pendulum test setup was constructed to evaluate various STISs with impact forces. A camera and Tracker software were used to monitor the pendulum swing. The impact forces were calculated by measuring the pendulum bob's velocity and acceleration. The performance of the various STISs was measured in terms of voltage due to impact force, with forces varying from 180 to 722 N. Through data analysis, the threshold impact forces in the linear range were determined. Through an analysis of linear regression, the sensors' sensitivity was assessed. Also, a simplified model was developed to measure the force distribution in the 2 × 2 STIS areas from the measured voltages. The results showed that improving the SPC thickness could obtain improved sensor behavior. However, for impacts that exceeded the threshold, the suggested sensor did not respond by reflecting the actual impact forces, but it gave helpful information about the impact distribution on the sensor regardless of the accurate expected linear response. Results showed that the proposed STIS performs satisfactorily within a range and has the potential to be used in the development of an e-helmet with a large STIS matrix that could cover the whole head within the e-helmet. This work also encourages future research, especially on the structure of the sensor that could withstand impacts which in turn could improve the overall range and performance and would accurately measure the impact in concussion-causing impact ranges.


Assuntos
Traumatismos Craniocerebrais , Dispositivos de Proteção da Cabeça , Têxteis , Humanos , Concussão Encefálica/diagnóstico , Concussão Encefálica/fisiopatologia , Desenho de Equipamento
5.
Adv Sci (Weinh) ; 11(25): e2402196, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38650164

RESUMO

Fiber-based artificial muscles are promising for smart textiles capable of sensing, interacting, and adapting to environmental stimuli. However, the application of current artificial muscle-based textiles in wearable and engineering fields has largely remained a constraint due to the limited deformation, restrictive stimulation, and uncomfortable. Here, dual-responsive yarn muscles with high contractile actuation force are fabricated by incorporating a very small fraction (<1 wt.%) of Ti3C2Tx MXene/cellulose nanofibers (CNF) composites into self-plied and twisted wool yarns. They can lift and lower a load exceeding 3400 times their own weight when stimulated by moisture and photothermal. Furthermore, the yarn muscles are coiled homochirally or heterochirally to produce spring-like muscles, which generated over 550% elongation or 83% contraction under the photothermal stimulation. The actuation mechanism, involving photothermal/moisture-mechanical energy conversion, is clarified by a combination of experiments and finite element simulations. Specifically, MXene/CNF composites serve as both photothermal and hygroscopic agents to accelerate water evaporation under near-infrared (NIR) light and moisture absorption from ambient air. Due to their low-cost facile fabrication, large scalable dimensions, and robust strength coupled with dual responsiveness, these soft actuators are attractive for intelligent textiles and devices such as self-adaptive textiles, soft robotics, and wearable information encryption.


Assuntos
Têxteis , Animais , Nanofibras/química , Órgãos Artificiais , Lã/química , Celulose/química , Dispositivos Eletrônicos Vestíveis
6.
Materials (Basel) ; 17(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673102

RESUMO

This study demonstrates a novel methodology for developing a textile-based adsorption sensor via mixed solvent dyeing with aggregation-induced emission (AIE) dyes on recycled fabrics. AIE dyes were incorporated into the fabrics using a mixed solvent dyeing method with a co-solvent mixture of H2O and organic solvents. This method imparted unique fluorescence properties to fabrics, altering fluorescence intensity or wavelength based on whether the AIE dye molecules were in an isolated or aggregated state on the fabrics. The precise control of the H2O fraction to organic solvent during dyeing was crucial for influencing fluorescence intensity and sensing characteristics. These dyed fabrics exhibited reactive thermochromic and vaporchromic properties, with changes in fluorescence intensity corresponding to variations in temperature and exposure to volatile organic solvents (VOCs). Their superior characteristics, including a repetitive fluorescence switching property and resistance to photo-bleaching, enhance their practicality across various applications. Consequently, the smart fabrics dyed with AIE dye not only find applications in clothing and fashion design but demonstrate versatility in various fields, extending to sensing temperature, humidity, and hazardous chemicals.

7.
Adv Mater ; 36(16): e2312590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38227454

RESUMO

Fiber solar cells as promising wearable power supplies have attracted increasing attentions recently, while further breakthrough on their power conversion efficiency (PCE) and realization of multicolored appearances remain urgent needs particularly in real-world applications. Here, a fiber-dye-sensitized solar cell (FDSSC) integrated with a light diffusion layer composed of alumina/polyurethane film on the outmost encapsulating tube and a light conversion layer made from phosphors/TiO2/poly(vinylidene fluoride-co-hexafluoropropylene) film on the inner counter electrode is designed. The incident light is diffused to more surfaces of fiber electrodes, then converted on counter electrode and reflected to neighboring photoanode, so the FDSSC efficiently takes advantage of the fiber shape for remarkably enhanced light harvesting, producing a record PCE of 13.11%. These efficient FDSSCs also realize color-tunable appearances, improving their designability and compatibility with textiles. They are further integrated with fiber batteries as power systems, providing a power solution for wearables and emerging smart textiles.

8.
Small ; 20(23): e2308404, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38148325

RESUMO

Whereas thermal comfort and healthcare management during long-term wear are essentially required for wearable system, simultaneously achieving them remains challenge. Herein, a highly comfortable and breathable smart textile for personal healthcare and thermal management is developed, via assembling stimuli-responsive core-sheath dual network that silver nanowires(AgNWs) core interlocked graphene sheath induced by MXene. Small MXene nanosheets with abundant groups is proposed as a novel "dispersant" to graphene according to "like dissolves like" theory, while simultaneously acting as "cross-linker" between AgNWs and graphene networks by filling the voids between them. The core-sheath heterogeneous interlocked conductive fiber induced by MXene "cross-linking" exhibits a reliable response to various mechanical/electrical/light stimuli, even under large mechanical deformations(100%). The core-sheath conductive fiber-enabled smart textile can adapt to movements of human body seamlessly, and convert these mechanical deformations into character signals for accurate healthcare monitoring with rapid response(440 ms). Moreover, smart textile with excellent Joule heating and photothermal effect exhibits instant thermal energy harvesting/storage during the stimuli-response process, which can be developed as self-powered thermal management and dynamic camouflage when integrated with phase change and thermochromic layer. The smart fibers/textiles with core-sheath heterogeneous interlocked structures hold great promise in personalized healthcare and thermal management.


Assuntos
Condutividade Elétrica , Têxteis , Humanos , Nanofios/química , Prata/química , Medicina de Precisão/métodos , Dispositivos Eletrônicos Vestíveis , Temperatura , Grafite/química
9.
ACS Sens ; 8(12): 4801-4809, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38090758

RESUMO

Industrially scalable pressure-sensitive smart textile sensors have been developed using graphite-polyurethane (G-PU) composite materials by the plasma-assisted dip-pad-dry-cure method. The advantage of this technique is that it is easy, simple, and suitable for high-volume production with industrially available machinery. The sandwich structure sensor has been constructed with the pressure-sensitive textile semiconductor and embroidery electrodes for manufacturing a single sensor and sensor matrix, which can detect touch, pressure, movement, etc., and send information wirelessly (via smartphone) to the user in real-time. The sensibility, hysteresis behavior, repeatability, and stability against washing, martindale abrasion, etc. of the piezoresistive polyester (PES) textile sensor have been optimized by the plasma-assisted semiconductive coating. The smart textile sensor built into this work provides flexibility, breathability, and wearability and can be easily integrated into wearable items allowing for object detection by scanning their weight, movement, interactive floor mate, and seat sensor mate for dynamic posture detection and sensor hand glove to translate finger movement into sign language (e.g., text or audio able). All necessary electronics and software associated with the relevant application have been developed to demonstrate the effectiveness of the products in a real-world demonstration, which encourages the widespread use of smart textile piezoresistive sensors for a variety of applications in flexible electronics sectors.


Assuntos
Dispositivos Eletrônicos Vestíveis , Têxteis , Movimento , Eletrônica , Poliuretanos/química
10.
Technol Health Care ; 31(6): 2423-2434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38042996

RESUMO

BACKGROUND: Unsupervised sports activities could cause traumas, about 70% of them are those of the low extremities. To avoid traumas, the athlete should be aware of dangerous forces acting within low extremity joints. Research in gait analysis indicated that plantar pressure alteration rate correlates with the gait pace. Thus, the changes in plantar pressure should correlate with the accelerations of extremities, and with the forces, acting in the joints. Smart socks provide a budget solution for the measurement of plantar pressure. OBJECTIVE: To estimate the correlation between the plantar pressure, measured using smart socks, and forces, acting in the joints of the lower extremities. METHODS: The research is case study based. The volunteer performed a set of squats. The arbitrary plantar pressure-related data were obtained using originally developed smart socks with embedded knitted pressure sensors. Simultaneously, the lower extremity motion data were recorded using two inertial measurement units, attached to the tight and the ankle, from which the forces acted in the knee joint were estimated. The simplest possible model of knee joint mechanics was used to estimate force. RESULTS: The estimates of the plantar pressure and knee joint forces demonstrate a strong correlation (r= 0.75, P< 0.001). The established linear regression equation enables the calculation of the knee joint force with an uncertainty of 22% using the plantar pressure estimate. The accuracy of the classification of the joint force as excessive, i.e., being more than 90% of the maximal force, was 82%. CONCLUSION: The results demonstrate the feasibility of the smart socks for the estimation of the forces in the knee joints. Smart socks therefore could be used to develop excessive joint force alert devices, that could replace less convenient inertial sensors.


Assuntos
Marcha , Articulação do Joelho , Humanos , Estudos de Viabilidade , Articulação do Tornozelo , Análise da Marcha , Fenômenos Biomecânicos
11.
ACS Appl Mater Interfaces ; 15(41): 48584-48600, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37787649

RESUMO

This study introduces the development of a thermally responsive shape-morphing fabric using low-melting-point polyamide shape memory actuators. To facilitate the blending of biomaterials, we report the synthesis and characterization of a biopolyamide with a relatively low melting point. Additionally, we present a straightforward and solvent-free method for the compatibilization of starch particles with the synthesized biopolyamide, aiming to enhance the sustainability of polyamide and customize the actuation temperature. Subsequently, homogeneous dispersion of up to 70 wt % compatibilized starch particles into the matrix is achieved. The resulting composites exhibit excellent mechanical properties comparable to those reported for soft and tough materials, making them well suited for textile integration. Furthermore, cyclic thermomechanical tests were conducted to evaluate the shape memory and shape recovery of both plain polyamide and composites. The results confirmed their remarkable shape recovery properties. To demonstrate the potential application of biocomposites in textiles, a heat-responsive fabric was created using thermoresponsive shape memory polymer actuators composed of a biocomposite containing 50 wt % compatibilized starch. This fabric demonstrates the ability to repeatedly undergo significant heat-induced deformations by opening and closing pores, thereby exposing hidden functionalities through heat stimulation. This innovative approach provides a convenient pathway for designing heat-responsive textiles, adding value to state-of-the-art smart textiles.

12.
Sensors (Basel) ; 23(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37837159

RESUMO

Work-related musculoskeletal disorders (WMSDs) are often caused by repetitive lifting, making them a significant concern in occupational health. Although wearable assist devices have become the norm for mitigating the risk of back pain, most spinal assist devices still possess a partially rigid structure that impacts the user's comfort and flexibility. This paper addresses this issue by presenting a smart textile-actuated spine assistance robotic exosuit (SARE), which can conform to the back seamlessly without impeding the user's movement and is incredibly lightweight. To detect strain on the spine and to control the smart textile automatically, a soft knitting sensor that utilizes fluid pressure as a sensing element is used. Based on the soft knitting hydraulic sensor, the robotic exosuit can also feature the ability of monitoring and rectifying human posture. The SARE is validated experimentally with human subjects (N = 4). Through wearing the SARE in stoop lifting, the peak electromyography (EMG) signals of the lumbar erector spinae are reduced by 22.8% ± 12 for lifting 5 kg weights and 27.1% ± 14 in empty-handed conditions. Moreover, the integrated EMG decreased by 34.7% ± 11.8 for lifting 5 kg weights and 36% ± 13.3 in empty-handed conditions. In summary, the artificial muscle wearable device represents an anatomical solution to reduce the risk of muscle strain, metabolic energy cost and back pain associated with repetitive lifting tasks.


Assuntos
Movimento , Postura , Humanos , Eletromiografia , Coluna Vertebral , Dor nas Costas , Remoção , Fenômenos Biomecânicos
13.
ACS Appl Mater Interfaces ; 15(39): 46085-46097, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37732796

RESUMO

Lanthanide organometallic complexes exhibit strong luminescence characteristics, owing to their antenna effects. The f-d energy level transition causes this phenomenon, which occurs when ligands and the external electrons of lanthanide metals coordinate. Based on this phenomenon, we used two lanthanide metals, europium (Eu) and terbium (Tb), in the present study as the metal center for iminodiacetic acid ligands. Further, we developed the resulting fluorescent organometallic complex as a smart material. The ligand-metal bond in the material functioned as a metal chelating agent and a cross-linking agent in a dynamically coordinated form, thereby prompting the material to self-heal. Temperature-sensitive poly-N-isopropylacrylamide was incorporated into the material as the polymer backbone. Afterward, we combined it with water-soluble poly(vinyl alcohol) and an additional ligand from poly(acrylic acid) to fabricate a high-performance hydrogel composite material. The shrinkage and expansion of the polymer form a grid between the materials. Because of the different coordination stabilities of Eu3+ and Tb3+, the corresponding material exhibits environmental responses toward excitation wavelength, temperature, and pH, thus generating different colors. When used in fabrics, the cross-linking mechanism of the material effectively looped the material between fabric fibers; furthermore, the temperature sensitivity of the polymer adjusted the size of pores between fabric fibers. At relatively higher temperatures (>32 °C), the polymer structure shrank, fiber pores expanded, and air permeability improved. Thus, this material appears to be promising for use in smart textiles.

14.
Polymers (Basel) ; 15(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37631489

RESUMO

Multifunctional fiber materials play a key role in the field of smart textiles. Temperature sensing and active thermal management are two important functions of smart fabrics, but few studies have combined both functions in a single fiber material. In this work, we demonstrate a temperature-sensing and in situ heating functionalized conductive polymer microfiber by exploiting its high electrical conductivity and thermoelectric properties. The conductive polymer microfibers were prepared by wet-spinning the PEDOT:PSS aqueous dispersion with ionic liquid additives, which was used to enhance the electrical and mechanical properties of the final microfibers. The thermoelectric properties of these microfibers were further studied. Due to their excellent flexibility and mechanical properties, these fibers can be easily integrated into commercial fabrics for the manufacture of smart textiles through knitting. We further demonstrated a smart glove with integrated temperature-sensing and in situ heating functions, and further explored thermoelectric fiber-based temperature-sensing array fabric. These works combine the thermoelectric properties and heating function of conductive polymer fibers, providing new insights that enable further development of high-performance, multifunctional wearable smart textiles.

15.
Materials (Basel) ; 16(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37445152

RESUMO

In this paper, a smart office chair with movable textile sensors to monitor sitting position during the workday is presented. The system consists of a presence textile capacitive sensor with different levels of activation with a signal conditioning device. The proposed system was integrated into an office chair to detect postures that could provoke musculoskeletal disorders or discomfort. The microcontroller measured the capacitance by means of a cycle count method and provided the position information in real time. The information could be analysed to set up warnings to prevent incorrect postures or the necessity to move. Five participants assumed a series of postures, and the results showed the workability of the proposed smart chair. The chair can be provided as a new tool for companies, hospitals, or other institutions to detect incorrect postures and monitor the postures of people with reduced mobility. This tool can optimise control procedures or prevent occupational risks.

16.
Materials (Basel) ; 16(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37297095

RESUMO

In order to facilitate the design freedom for the implementation of textile-integrated electronics, we seek flexible transparent conductive electrodes (TCEs) that can withstand not only the mechanical stresses encountered during use but also the thermal stresses of post-treatment. The transparent conductive oxides (TCO) typically used for this purpose are rigid in comparison to the fibers or textiles they are intended to coat. In this paper, a TCO, specifically aluminum-doped zinc oxide (Al:ZnO), is combined with an underlying layer of silver nanowires (Ag-NW). This combination brings together the advantages of a closed, conductive Al:ZnO layer and a flexible Ag-NW layer, forming a TCE. The result is a transparency of 20-25% (within the 400-800 nm range) and a sheet resistance of 10 Ω/sq that remains almost unchanged, even after post-treatment at 180 °C.

17.
Adv Sci (Weinh) ; 10(22): e2206665, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37208801

RESUMO

Mobile health technology and activity tracking with wearable sensors enable continuous unobtrusive monitoring of movement and biophysical parameters. Advancements in clothing-based wearable devices have employed textiles as transmission lines, communication hubs, and various sensing modalities; this area of research is moving towards complete integration of circuitry into textile components. A current limitation for motion tracking is the need for communication protocols demanding physical connection of textile with rigid devices, or vector network analyzers (VNA) with limited portability and lower sampling rates. Inductor-capacitor (LC) circuits are ideal candidates as textile sensors can be easily implemented with textile components and allow wireless communication. In this paper, the authors report a smart garment that can sense movement and wirelessly transmit data in real time. The garment features a passive LC sensor circuit constructed of electrified textile elements that sense strain and communicate through inductive coupling. A portable, lightweight reader (fReader) is developed for achieving a faster sampling rate than a downsized VNA to track body movement, and for wirelessly reading sensor information suitable for deployment with a smartphone. The smart garment-fReader system monitors human movement in real-time and exemplifies the potential of textile-based electronics moving forward.


Assuntos
Têxteis , Dispositivos Eletrônicos Vestíveis , Humanos , Movimento (Física) , Movimento
18.
Sensors (Basel) ; 23(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36904777

RESUMO

The immobility of patients confined to continuous bed rest continues to raise a couple of very serious challenges for modern medicine. In particular, the overlooking of sudden onset immobility (as in acute stroke) and the delay in addressing the underlying conditions are of utmost importance for the patient and, in the long term, for the medical and social systems. This paper describes the design principles and concrete implementation of a new smart textile material that can form the substrate of intensive care bedding, that acts as a mobility/immobility sensor in itself. The textile sheet acts as a multi-point pressure-sensitive surface that sends continuous capacitance readings through a connector box to a computer running a dedicated software. The design of the capacitance circuit ensures enough individual points to provide an accurate description of the overlying shape and weight. We describe the textile composition and circuit design as well as the preliminary data collected during testing to demonstrate the validity of the complete solution. These results suggest that the smart textile sheet is a very sensitive pressure sensor and can provide continuous discriminatory information to allow for the very sensitive, real-time detection of immobility.


Assuntos
Acidente Vascular Cerebral , Dispositivos Eletrônicos Vestíveis , Humanos , Repouso em Cama , Têxteis , Capacitância Elétrica
19.
Polymers (Basel) ; 15(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36771969

RESUMO

Three-dimensional printing technology is being increasingly applied in a multitude of sectors. However, this technology is not generally applied in the same way as in other sectors, possibly due to the difficulty of adhesion between the polymer and the textile substrate. A textile garment is subjected to wear and tear during its lifetime, and a low tensile strength or rubbing resistance hinders a garment in most of the applications of this type of research. This study examined the influence of the characteristics of the cotton textile substrate, such as the weave structure and the yarn thickness, on the tensile strength of a 3D-printed element with conductive filament. Starting from the fabric with the highest tensile strength, different prints were made using this technology to incorporate conductive and heating properties into the fabric. The results validate the possibility of providing new properties to the textile by means of this technology; however, the correct selection of the textile used as a base substrate is important.

20.
Adv Sci (Weinh) ; 10(11): e2207298, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36782105

RESUMO

The growing demand for sustained self-powered devices with multifunctional sensing networks is one of the main challenges for smart textiles, which are the critical elements for the future Internet of Things (IoT) and Point of Care (POC). Here, cellulose-based smart textile is integrated with dynamic Schottky diode (DSD) to generate sustained power source (current density of 8.9 mA m⁻2 ) for self-powered built-in sensing network. In response to normal and shear motions, a pressure sensor with a sensitivity of 0.12 KPa⁻1 and an impact sensor are demonstrated, respectively. The woven structure of the textile contributes to signal amplification, which can also form a matrix of sensing elements for distributed sensing. The proposed strategy of fabricating self-powered and multifunctional sensing networks with smart textiles shows tremendous potential for future intelligent society.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA