Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drones ; 8(3): 1-15, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-39027417

RESUMO

Laboratory and field tests examined the potential for unmanned aircraft system (UAS) rotor wash effects on gas and particle measurements from a biomass combustion source. Tests compared simultaneous placement of two sets of CO and CO2 gas sensors and PM2.5 instruments on a UAS body and on a vertical or horizontal extension arm beyond the rotors. For 1 Hz temporal concentration comparisons, correlations of body versus arm placement for the PM2.5 particle sensors yielded R2 = 0.85 and for both gas sensor pairs exceeded R2 of 0.90. Increasing the timestep to 10 s average concentrations throughout the burns improved the R2 value for the PM2.5 to 0.95 from 0.85. Finally, comparison of whole-test average concentrations further increased the correlations between body- and arm-mounted sensors, exceeding R2 of 0.98 for both gases and particle measurements. Evaluation of PM2.5 emission factors with single factor ANOVA analyses showed no significant differences between the values derived from the arm, either vertical or horizontal, and those from the body. These results suggest that rotor wash effects on body- and arm-mounted sensors are minimal in scenarios where short duration, time-averaged concentrations are used to calculate emission factors and whole-area flux values.

2.
Glob Chang Biol ; 30(6): e17367, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840430

RESUMO

Wildfire activity is increasing globally. The resulting smoke plumes can travel hundreds to thousands of kilometers, reflecting or scattering sunlight and depositing particles within ecosystems. Several key physical, chemical, and biological processes in lakes are controlled by factors affected by smoke. The spatial and temporal scales of lake exposure to smoke are extensive and under-recognized. We introduce the concept of the lake smoke-day, or the number of days any given lake is exposed to smoke in any given fire season, and quantify the total lake smoke-day exposure in North America from 2019 to 2021. Because smoke can be transported at continental to intercontinental scales, even regions that may not typically experience direct burning of landscapes by wildfire are at risk of smoke exposure. We found that 99.3% of North America was covered by smoke, affecting a total of 1,333,687 lakes ≥10 ha. An incredible 98.9% of lakes experienced at least 10 smoke-days a year, with 89.6% of lakes receiving over 30 lake smoke-days, and lakes in some regions experiencing up to 4 months of cumulative smoke-days. Herein we review the mechanisms through which smoke and ash can affect lakes by altering the amount and spectral composition of incoming solar radiation and depositing carbon, nutrients, or toxic compounds that could alter chemical conditions and impact biota. We develop a conceptual framework that synthesizes known and theoretical impacts of smoke on lakes to guide future research. Finally, we identify emerging research priorities that can help us better understand how lakes will be affected by smoke as wildfire activity increases due to climate change and other anthropogenic activities.


Assuntos
Ecossistema , Lagos , Fumaça , Incêndios Florestais , Fumaça/análise , América do Norte , Monitoramento Ambiental
3.
Sci Total Environ ; 888: 163439, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37196956

RESUMO

Recently, extreme wildfires have damaged important ecosystems worldwide and have affected urban areas miles away due to long-range transport of smoke plumes. We performed a comprehensive analysis to clarify how smoke plumes from Pantanal and Amazon forests wildfires and sugarcane harvest burning also from interior of the state of São Paulo (ISSP) were transported and injected into the atmosphere of the Metropolitan Area of São Paulo (MASP), where they worsened air quality and increased greenhouse gas (GHG) levels. To classify event days, multiple biomass burning fingerprints as carbon isotopes, Lidar ratio and specific compounds ratios were combined with back trajectories modeling. During smoke plume event days in the MASP fine particulate matter concentrations exceeded the WHO standard (>25 µg m-3), at 99 % of the air quality monitoring stations, and peak CO2 excess were 100 % to 1178 % higher than non-event days. We demonstrated how external pollution events such as wildfires pose an additional challenge for cities, regarding public health threats associated to air quality, and reinforces the importance of GHG monitoring networks to track local and remote GHG emissions and sources in urban areas.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios , Saccharum , Incêndios Florestais , Poluentes Atmosféricos/análise , Brasil , Ecossistema , Serina Proteases Associadas a Proteína de Ligação a Manose/análise , Poluição do Ar/análise , Material Particulado/análise , Fumaça/análise , Florestas , Monitoramento Ambiental
4.
Sensors (Basel) ; 23(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37050621

RESUMO

Smoke plumes emitted from wildland-urban interface (WUI) wildfires contain toxic chemical substances that are harmful to human health, mainly due to the burning of synthetic components. Accurate measurement of these air toxics is necessary for understanding their impacts on human health. However, air pollution is typically measured using ground-based sensors, manned airplanes, or satellites, which all provide low-resolution data. Unmanned Aerial Vehicles (UAVs) have the potential to provide high-resolution spatial and temporal data due to their ability to hover in specific locations and maneuver with precise trajectories in 3-D space. This study investigates the use of an octocopter UAV, equipped with a customized air quality sensor package and a volatile organic compound (VOC) air sampler, for the purposes of collecting and analyzing air toxics data from wildfire plumes. The UAV prototype developed has been successfully tested during several prescribed fires conducted by the California Department of Forestry and Fire Protection (CAL FIRE). Data from these experiments were analyzed with emphasis on the relationship between the air toxics measured and the different types of vegetation/fuel burnt. BTEX compounds were found to be more abundant for hardwood burning compared to grassland burning, as expected.

5.
J Res Natl Inst Stand Technol ; 106(1): 231-78, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-27500022

RESUMO

For more than a decade NIST conducted research to understand, measure and predict the important features of burning oil on water. Results of that research have been included in nationally recognized guidelines for approval of intentional burning. NIST measurements and predictions have played a major role in establishing in situ burning as a primary oil spill response method. Data are given for pool fire burning rates, smoke yield, smoke particulate size distribution, smoke aging, and polycyclic aromatic hydrocarbon content of the smoke for crude and fuel oil fires with effective diameters up to 17.2 m. New user-friendly software, ALOFT, was developed to quantify the large-scale features and trajectory of wind blown smoke plumes in the atmosphere and estimate the ground level smoke particulate concentrations. Predictions using the model were tested successfully against data from large-scale tests. ALOFT software is being used by oil spill response teams to help assess the potential impact of intentional burning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA