Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1264359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39308980

RESUMO

Introduction: Modern understanding of the concept of genetic diversity must include the study of both nuclear and organellar DNA, which differ greatly in terms of their structure, organization, gene content and distribution. This study comprises an analysis of the genetic diversity of the smut fungus Sporisorium reilianum f. sp. zeae from a mitochondrial perspective. Methods: Whole-genome sequencing data was generated from biological samples of S. reilianum collected from different geographical regions. Multiple sequence alignment and gene synteny analysis were performed to further characterize genetic diversity in the context of mitogenomic polymorphisms. Results: Mitochondria of strains collected in China contained unique sequences. The largest unique sequence stretch encompassed a portion of cox1, a mitochondrial gene encoding one of the subunits that make up complex IV of the mitochondrial electron transport chain. This unique sequence had high percent identity to the mitogenome of the related species Sporisorium scitamineum and Ustilago bromivora. Discussion: The results of this study hint at potential horizontal gene transfer or mitochondrial genome recombination events during the evolutionary history of basidiomycetes. Additionally, the distinct polymorphic region detected in the Chinese mitogenome provides the ideal foundation to develop a diagnostic method to discern between mitotypes and enhance knowledge on the genetic diversity of this organism.

2.
Fungal Syst Evol ; 13: 91-110, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39135882

RESUMO

The smut fungal genus Anthracoidea contains more than 100 species that parasitize hosts predominantly in the sedge genus Carex. Anthracoidea species are mainly found in the boreal zones of the Northern Hemisphere and many species have an arctic-alpine distribution. Recent re-organization of the taxonomy of the main host genus Carex questions current understanding of host associations in Anthracoidea. Host specificity for many of the species in this genus is considered to be quite broad and a host spectrum of over 10 host species is common. One aim of the study is to understand the potential influence that host taxonomy has on the evolutionary patterns of Anthracoidea. Additionally, by including more specimens, we clarify host specificity and species delimitation in Anthracoidea sempervirentis, a prevalent species occurring on different host species in different Carex subgroups using molecular data. Host colonization patterns within Anthracoidea are complex, and different subclades of Carex have been colonized several times independently, whereas clades of related Anthracoidea species often occur on Carex species from the same host clade. Parasites previously thought to be Anthracoidea sempervirentis occurring on the different Carex host are shown to be at least four distinct species that are restricted to individual host species. Three new species, Anthracoidea ferrugineae on Carex ferruginea from the Alps and the Carpathians, A. firmae on Carex firma from the Alps, and A. kitaibelianae on Carex kitaibeliana from mountains in the Balkan Peninsula, are described and illustrated. An emended description of Anthracoidea sempervirentis is also provided. Anthracoidea sempervirentis in its emended circumscription consists of two clades that correspond to respective clades within Carex sempervirens. The study shows that host colonization in Anthracoidea is more complex than current host taxonomy suggests. Further, including several specimens per host species results in a much higher diversity within Anthracoidea than previously assumed. Citation: Kemler M, Denchev TT, Feige A, Denchev CM, Begerow D (2024). Host specificity in the fungal plant parasite Anthracoidea sempervirentis (Anthracoideaceae, Ustilaginales) reveals three new species and indicates a potential split in the host plant Carex sempervirens. Fungal Systematics and Evolution 13: 91-110. doi: 10.3114/fuse.2024.13.04.

3.
Bio Protoc ; 14(8): e4978, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38686345

RESUMO

Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) has become the state of the art for mutagenesis in filamentous fungi. Here, we describe a ribonucleoprotein complex (RNP)-mediated CRISPR/Cas9 for mutagenesis in Sporisorium reilianum. The efficiency of the method was tested in vitro with a cleavage assay as well as in vivo with a GFP-expressing S. reilianum strain. We applied this method to generate frameshift- and knock-out mutants in S. reilianum without a resistance marker by using an auto-replicating plasmid for selection. The RNP-mediated CRISPR/Cas9 increased the mutagenesis efficiency, can be applied for all kinds of mutations, and enables a marker-free genome editing in S. reilianum. Key features • First CRISPR/Cas9 application in S. reilianum. • Generation of S. reilianum mutants without genomic integration of resistance marker. • Allows the generation of multiple gene knockouts as well as deletion of large genomic regions.

4.
Mol Plant Microbe Interact ; 37(3): 250-263, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416124

RESUMO

Fungal pathogens deploy a set of molecules (proteins, specialized metabolites, and sRNAs), so-called effectors, to aid the infection process. In comparison to other plant pathogens, smut fungi have small genomes and secretomes of 20 Mb and around 500 proteins, respectively. Previous comparative genomic studies have shown that many secreted effector proteins without known domains, i.e., novel, are conserved only in the Ustilaginaceae family. By analyzing the secretomes of 11 species within Ustilaginaceae, we identified 53 core homologous groups commonly present in this lineage. By collecting existing mutants and generating additional ones, we gathered 44 Ustilago maydis strains lacking single core effectors as well as 9 strains containing multiple deletions of core effector gene families. Pathogenicity assays revealed that 20 of these 53 mutant strains were affected in virulence. Among the 33 mutants that had no obvious phenotypic changes, 13 carried additional, sequence-divergent, structurally similar paralogs. We report a virulence contribution of seven previously uncharacterized single core effectors and of one effector family. Our results help to prioritize effectors for understanding U. maydis virulence and provide genetic resources for further characterization. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Basidiomycota , Ustilaginales , Ustilago , Virulência/genética , Ustilago/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Zea mays/microbiologia
5.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37847611

RESUMO

To complete its parasitic lifecycle, Salmacisia buchloëana, a biotrophic fungus, manipulates reproductive organ development, meristem determinacy, and resource allocation in its dioecious plant host, buffalograss (Bouteloua dactyloides; Poaceae). To gain insight into S. buchloëana's ability to manipulate its host, we sequenced and assembled the 20.1 Mb genome of S. buchloëana into 22 chromosome-level pseudomolecules. Phylogenetic analysis suggests that S. buchloëana is nested within the genus Tilletia and diverged from Tilletia caries and Tilletia walkeri ∼40 MYA. We find that S. buchloëana contains a novel chromosome arm with no syntenic relationship to other publicly available Tilletia genomes, and that genes on the novel arm are upregulated upon infection, suggesting that this unique chromosomal segment may have played a critical role in S. buchloëana's evolution and host specificity. Salmacisia buchloëana has one of the largest fractions of serine peptidases (1.53% of the proteome) and one of the highest GC contents (62.3%) in all classified fungi. Analysis of codon base composition indicated that GC content is controlled more by selective constraints than directional mutation, and that S. buchloëana has a unique bias for the serine codon UCG. Finally, we identify 3 inteins within the S. buchloëana genome, 2 of which are located in a gene often used in fungal taxonomy. The genomic and transcriptomic resources generated here will aid plant pathologists and breeders by providing insight into the extracellular components contributing to sex determination in dioecious grasses.


Assuntos
Basidiomycota , Parasitos , Poaceae , Animais , Filogenia , Genoma Fúngico , Plantas , Códon , Serina , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
6.
J Fungi (Basel) ; 9(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38132785

RESUMO

A common feature of many plant-colonizing organisms is the exploitation of plant signaling and developmental pathways to successfully establish and proliferate in their hosts. Auxins are central plant growth hormones, and their signaling is heavily interlinked with plant development and immunity responses. Smuts, as one of the largest groups in basidiomycetes, are biotrophic specialists that successfully manipulate their host plants and cause fascinating phenotypes in so far largely enigmatic ways. This review gives an overview of the growing understanding of how and why smut fungi target the central and conserved auxin growth signaling pathways in plants.

7.
Planta ; 259(1): 27, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112830

RESUMO

MAIN CONCLUSION: Integrated transcriptome and metabolome analysis have unveiled the physiological and molecular responses of rhubarb to infection by smut fungi. Rhubarb is an important medicinal plant that is easily infected by smut fungi during its growth. Thus far, no research on the influence of smut fungi on the growth of rhubarb and its secondary metabolism has been conducted. In this study, petioles of Chinese rhubarb (Rheum officinale) [healthy or infected with smut fungus (Thecaphora schwarzmaniana)] were characterized. Microscopic structure, global gene expression profiling, global metabolic profiling, and key enzyme activity and metabolite levels in infected plants were analyzed. Infection by smut fungi resulted in numerous holes inside the petiole tissue and led to visible tumors on the external surface of the petiole. Through metabolic changes, T. schwarzmaniana induced the production of specific sugars, lipids, and amino acids, and inhibited the metabolism of phenolics and flavonoids in R. officinale. The concentrations of key medicinal compounds (anthraquinones) were decreased because of smut fungus infection. In terms of gene expression, the presence of T. schwarzmaniana led to upregulation of the genes associated with nutrient (sugar, amino acid, etc.) transport and metabolism. The gene expression profiling showed a stimulated cell division activity (the basis of tumor formation). Although plant antioxidative response was enhanced, the plant defense response against pathogen was suppressed by T. schwarzmaniana, as indicated by the expression profiling of genes involved in biotic and abiotic stress-related hormone signaling and the synthesis of plant disease resistance proteins. This study demonstrated physiological and molecular changes in R. officinale under T. schwarzmaniana infection, reflecting the survival tactics employed by smut fungus for parasitizing rhubarb.


Assuntos
Rheum , Transcriptoma , Rheum/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Perfilação da Expressão Gênica , Metaboloma
8.
New Phytol ; 240(5): 1976-1989, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37680042

RESUMO

Ribotoxins are secreted ribonucleases that specifically target and cleave the universally conserved sarcin-ricin loop sequence of rRNA, which leads to inhibition of protein biosynthesis and subsequently to cell death. We have identified and characterized a secreted Ribo1 protein of plant pathogenic smut fungi. Heterologous expression in different model systems showed that smut Ribo1 has cytotoxic activity against bacteria, yeast, host and nonhost plants. Recombinant expression of Ribo1 in Nicotiana benthamiana induced plant cell death; however, an active site mutant induced cell death only when expressed as a secreted protein. In the maize smut Ustilago maydis, transcription of Ribo1 is specifically induced in early infection stages. While a knockout mutant revealed that Ribo1 is dispensable for U. maydis virulence, the overexpression of Ribo1 in planta had a strong dominant negative effect on virulence and induced host defense responses including cell death. Our findings suggest a function of Ribo1 during the epiphytic development rather than for invasive colonization of the host. Accordingly, in the presence of the biocontrol bacteria Pantoea sp., which were isolated from maize leaves, the ribo1 knockout mutant was significantly impaired in virulence. Together, we conclude that Ribo1 enables smut fungi to compete with host-associated bacteria during epiphytic development.


Assuntos
Doenças das Plantas , Ustilago , Doenças das Plantas/microbiologia , Ustilago/genética , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Virulência , Zea mays/microbiologia
9.
BMC Genomics ; 24(1): 321, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37312063

RESUMO

BACKGROUND: The Ustilaginales comprise hundreds of plant-parasitic fungi with a characteristic life cycle that directly links sexual reproduction and parasitism: One of the two mating-type loci codes for a transcription factor that not only facilitates mating, but also initiates the infection process. However, several species within the Ustilaginales have no described parasitic stage and were historically assigned to the genus Pseudozyma. Molecular studies have shown that the group is polyphyletic, with members being scattered in various lineages of the Ustilaginales. Together with recent findings of conserved fungal effectors in these non-parasitic species, this raises the question if parasitism has been lost recently and in multiple independent events or if there are hitherto undescribed parasitic stages of these fungi. RESULTS: In this study, we sequenced genomes of five Pseudozyma species together with six parasitic species from the Ustilaginales to compare their genomic capability to perform two central functions in sexual reproduction: mating and meiosis. While the loss of sexual capability is assumed in certain lineages and asexual species are common in Asco- and Basidiomycota, we were able to successfully annotate potentially functional mating and meiosis genes that are conserved throughout the whole group. CONCLUSION: Our data suggest that at least the key functions of a sexual lifestyle are maintained in the analyzed genomes, challenging the current understanding of the so-called asexual species with respect to their evolution and ecological role.


Assuntos
Ustilaginales , Ustilaginales/genética , Reprodução/genética , Genômica , Comunicação Celular , Meiose/genética
10.
J Fungi (Basel) ; 9(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37233304

RESUMO

The smut fungus Ustilago esculenta obligately parasitizes Zizania latifolia and induces smut galls at the stem tips of host plants. Previous research identified a putative secreted protein, Ue943, which is required for the biotrophic phase of U. esculenta but not for the saprophytic phase. Here, we studied the role of Ue943 during the infection process. Conserved homologs of Ue943 were found in smut fungi. Ue943 can be secreted by U. esculenta and localized to the biotrophic interface between fungi and plants. It is required at the early stage of colonization. The Ue943 deletion mutant caused reactive oxygen species (ROS) production and callose deposition in the host plant at 1 and 5 days post inoculation, which led to failed colonization. The virulence deficiency was restored by overexpressing gene Ue943 or Ue943:GFP. Transcriptome analysis further showed a series of changes in plant hormones following ROS production when the host plant was exposed to ΔUe943. We hypothesize that Ue943 might be responsible for ROS suppression or avoidance of recognition by the plant immune system. The mechanism underlying Ue943 requires further study to provide more insights into the virulence of smut fungi.

11.
New Phytol ; 236(4): 1455-1470, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35944559

RESUMO

Plant biotrophic pathogens employ secreted molecules, called effectors, to suppress the host immune system and redirect the host's metabolism and development in their favour. Putative effectors of the gall-inducing maize pathogenic fungus Ustilago maydis were analysed for their ability to induce auxin signalling in plants. Using genetic, biochemical, cell-biological, and bioinformatic approaches we functionally elucidate a set of five, genetically linked effectors, called Topless (TPL) interacting protein (Tips) effectors that induce auxin signalling. We show that Tips induce auxin signalling by interfering with central corepressors of the TPL family. CRISPR-Cas9 mutants and deletion strain analysis indicate that the auxin signalling inducing subcluster effectors plays a redundant role in virulence. Although none of the Tips seem to have a conserved interaction motif, four of them bind solely to the N-terminal TPL domain and, for Tip1 and Tip4, we demonstrate direct competition with auxin/indole-3-acetic acid transcriptional repressors for their binding to TPL class of corepressors. Our findings reveal that TPL proteins, key regulators of growth-defence antagonism, are a major target of the U. maydis effectome.


Assuntos
Ustilago , Ustilago/genética , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Zea mays/microbiologia , Ácidos Indolacéticos/metabolismo , Proteínas Correpressoras/metabolismo
12.
J Fungi (Basel) ; 8(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35330271

RESUMO

The family of Ustilaginaceae belongs to the order of Basidiomycetes. Despite their plant pathogenicity causing, e.g., corn smut disease, they are also known as natural producers of value-added chemicals such as extracellular glycolipids, organic acids, and polyols. Here, we present 17 high-quality draft genome sequences (N50 > 1 Mb) combining third-generation nanopore and second-generation Illumina sequencing. The data were analyzed with taxonomical genome-based bioinformatics methods such as Percentage of Conserved Proteins (POCP), Average Nucleotide Identity (ANI), and Average Amino Acid Identity (AAI) analyses indicating that a reclassification of the Ustilaginaceae family might be required. Further, conserved core genes were determined to calculate a phylogenomic core genome tree of the Ustilaginaceae that also supported the results of the other phylogenomic analysis. In addition, to genomic comparisons, secondary metabolite clusters (e.g., itaconic acid, mannosylerythritol lipids, and ustilagic acid) of biotechnological interest were analyzed, whereas the sheer number of clusters did not differ much between species.

13.
J Fungi (Basel) ; 7(12)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34947062

RESUMO

Plant pathogenic fungi must be able to degrade host cell walls in order to penetrate and invade plant tissues. Among the plant cell wall degrading enzymes (PCWDEs) produced, xylanases are of special interest since its degradation target, xylan, is one of the main structural polysaccharides in plant cell walls. In the biotrophic fungus Ustilago maydis, attempts to characterize PCWDEs required for virulence have been unsuccessful, most likely due to functional redundancy. In previous high-throughput screening, we found one xylanase to be important for U. maydis infection. Here, we characterize the entire U. maydis endo-xylanase family, comprising two enzymes from the glycoside hydrolase (GH) 10 family, Xyn1 and Xyn2, one from GH11, Xyn11A, and one from GH43, Xyn3. We show that all endo-xylanases except Xyn3 are secreted and involved in infection in a non-redundant manner, suggesting different roles for each xylanase in this process. Taking a closer look inside the plant during the pathogenic process, we observed that all secreted xylanases were necessary for fungal proliferation. Finally, we found that at least Xyn11A accumulated in the apoplast of the infected plant after three days, highlighting the role of these enzymes as important secreted proteins during fungal proliferation inside plant tissues.

14.
J Fungi (Basel) ; 7(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34436129

RESUMO

The biotrophic fungus Ustilago maydis secretes a plethora of uncharacterized effector proteins and causes smut disease in maize. Among the effector genes that are up-regulated during the biotrophic growth in maize, we identified vp1 (virulence promoting 1), which has an expression that was up-regulated and maintained at a high level throughout the life cycle of the fungus. We characterized Vp1 by applying in silico analysis, reverse genetics, phenotypic assessment, microscopy, and protein localization and provided a fundamental understanding of the Vp1 protein in U. maydis. The reduction in fungal virulence and colonization in the vp1 mutant suggests the virulence-promoting function of Vp1. The deletion studies on the NLS (nuclear localization signal) sequence and the protein localization study revealed that the C-terminus of Vp1 is processed after secretion in plant apoplast and could localize to the plant nucleus. The Ustilago hordei ortholog UhVp1 lacks NLS localized in the plant cytoplasm, suggesting that the orthologs might have a distinct subcellular localization. Further complementation studies of the Vp1 orthologs in related smut fungi revealed that none of them could complement the virulence function of U. maydis Vp1, suggesting that UmVp1 could acquire a specialized function via sequence divergence.

15.
Fungal Genet Biol ; 152: 103565, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33991665

RESUMO

Fungal dimorphism is a phenomenon by which a fungus can grow both as a yeast form and a hyphal form. It is frequently related to pathogenicity as different growth forms are more suitable for different functions during a life cycle. Among dimorphic plant pathogens, the corn smut fungus Ustilago maydis serves as a model organism to understand fungal dimorphism and its effect on pathogenicity. However, there is a lack of data on whether mechanisms elucidated from model species are broadly applicable to other fungi. In this study, two non-model plant-associated species in the smut fungus subphylum (Ustilaginomycotina), Tilletiopsis washingtonensis and Meira miltonrushii, were selected to compare dimorphic mechanisms in these to those in U. maydis. We sequenced transcriptomic profiles during both yeast and hyphal growth in these two species using Tween40, a lipid mimic, as a trigger for hyphal growth. We then compared our data with previously published data from U. maydis and a fourth but unrelated dimorphic phytopathogen, Ophiostoma novo-ulmi. Comparative transcriptomics was performed to identify common genes upregulated during hyphal growth in all four dimorphic species. Intriguingly, T. washingtonensis shares the least similarities of transcriptomic alteration (hyphal growth versus yeast growth) with the others, although it is closely related to M. miltonrushii and U. maydis. This suggests that phylogenetic relatedness is not correlated with transcriptomic similarity under the same biological phenomenon. Among commonly expressed genes in the four species, genes in cell energy production and conversion, amino acid transport and metabolism and cytoskeleton are significantly enriched. Considering dimorphism genes characterized in U. maydis, as well as hyphal tip-associated genes from the literature, we found only genes encoding the cell end marker Tea4/TeaC and the kinesin motor protein Kin3 concordantly expressed in all four species. This suggests a divergence in species-specific mechanisms for dimorphic transition and hyphal growth.


Assuntos
Fungos/genética , Fungos/metabolismo , Hifas/crescimento & desenvolvimento , Hifas/genética , Hifas/metabolismo , Plantas/microbiologia , Transcriptoma , Basidiomycota/genética , Fungos/classificação , Fungos/crescimento & desenvolvimento , Ophiostoma , Filogenia , Ustilaginales , Ustilago/genética , Ustilago/crescimento & desenvolvimento , Ustilago/metabolismo , Leveduras , Zea mays/microbiologia
16.
New Phytol ; 231(1): 399-415, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33786841

RESUMO

Ustilago maydis is a biotrophic fungus causing smut disease in corn. The infectious forms are dikaryotic hyphae. Here we analyze mutants lacking the nlt1 transcription factor and investigate why these mutants are unable to induce leaf tumors. The study involved reverse genetics, complementation, epistasis analysis, microscopy, gene expression analysis by quantitative reverse transcriptase PCR and virulence assays. We show that nlt1 mutants colonize maize leaves efficiently but fail to undergo karyogamy and are attenuated in late proliferation. Nlt1 activates transcription of ros1, a transcription factor controlling karyogamy, and represses see1, an effector previously shown to contribute to leaf tumor induction. In mononuclate solopathogenic strains, nlt1 mutants cause attenuated leaf tumor formation. In actively dividing maize organs, nlt1 mutants undergo karyogamy and induce tumor formation. Sporisorium reilianum, a smut fungus unable to induce leaf tumors, possesses an ortholog of nlt1 that controls the fusion of dikaryotic nuclei late in infection during cob colonization. Our results have established a regulatory connection between nlt1, ros1 and see1 and suggest the existence of two stages contributing to leaf tumor formation, one before nuclear fusion and involving nlt1 and one after karyogamy that is nlt1 independent.


Assuntos
Tumores de Planta/microbiologia , Ustilago/patogenicidade , Zea mays/microbiologia , Basidiomycota , Proteínas Fúngicas/genética , Doenças das Plantas , Folhas de Planta , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Ustilago/genética , Zea mays/genética
17.
J Fungi (Basel) ; 7(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33573033

RESUMO

The family Ustilaginaceae (belonging to the smut fungi) are known for their plant pathogenicity. Despite the fact that these plant diseases cause agricultural yield reduction, smut fungi attracted special attention in the field of industrial biotechnology. Ustilaginaceae show a versatile product spectrum such as organic acids (e.g., itaconate, malate, succinate), polyols (e.g., erythritol, mannitol), and extracellular glycolipids, which are considered value-added chemicals with potential applications in the pharmaceutical, food, and chemical industries. This study focused on itaconate as a platform chemical for the production of resins, plastics, adhesives, and biofuels. During this work, 72 different Ustilaginaceae strains from 36 species were investigated for their ability to (co-) consume the CO2-derived substrates acetate and formate, potentially contributing toward a carbon-neutral itaconate production. The fungal growth and product spectrum with special interest in itaconate was characterized. Ustilago maydis MB215 and Ustilago rabenhorstiana NBRC 8995 were identified as promising candidates for acetate metabolization whereas Ustilago cynodontis NBRC 7530 was identified as a potential production host using formate as a co-substrate enhancing the itaconate production. Selected strains with the best itaconate production were characterized in more detail in controlled-batch bioreactor experiments confirming the co-substrate utilization. Thus, a proof-of-principle study was performed resulting in the identification and characterization of three promising Ustilaginaceae biocatalyst candidates for carbon-neutral itaconate production contributing to the biotechnological relevance of Ustilaginaceae.

18.
Fungal Syst Evol ; 8: 39-47, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35005571

RESUMO

A smut fungus that hinders wiregrass restoration efforts in longleaf pine-grassland ecosystems was collected from Aristida stricta and A. beyrichiana (Poaceae) in three states in the southeastern USA. Morphological and phylogenetic characteristics of this fungus were examined. These data show that the specimens from both plant species were infected by the same fungus and represent a new species of Langdonia. The new species differs morphologically from other species of Langdonia by teliospores being solitary and not compacted into spore balls. Spore wall ornamentation and teliospore size also differ from other Langdonia species. Phylogenetic analyses of DNA sequences of the ITS, LSU, and EF-1α supported separation of the species from A. stricta and A. beyrichiana from other Langdonia species. Based on these results, a new species, Langdonia walkerae, is proposed.

19.
Mol Plant Microbe Interact ; 34(4): 448-452, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33369501

RESUMO

Here, we present the first complete chromosome-level genome assembly of the smut fungus strain Sporisorium panici-leucophaei SPL10A, the causal agent of the sourgrass (Digitaria insularis) smut disease. Combining Illumina paired-end and Nanopore long reads, we generated a final assembly composed of 23 chromosomes (22 nuclear and one mitochondrial) with 18,915,934 bp. Gene prediction accomplished using extrinsic evidence from the sugarcane smut fungus Sporisorium scitamineum originated a total of 6,402 protein-encoding genes. The secretome (388 proteins) and the effectorome repertoires (68 candidates) were also predicted, given their crucial roles in plant-pathogen interactions. The complete telomere-to-telomere chromosome sequences of this poorly studied fungus will provide a valuable resource for future comparative genomic studies among smuts to unravel their underlying pathogenicity mechanisms.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Saccharum , Ustilaginales , Basidiomycota , Cromossomos , Doenças das Plantas
20.
J Fungi (Basel) ; 6(4)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339287

RESUMO

The corn smut fungus Ustilago maydis serves as a model species for studying fungal dimorphism and its role in phytopathogenic development. The pathogen has two growth phases: a saprobic yeast phase and a pathogenic filamentous phase. Dimorphic transition of U. maydis involves complex processes of signal perception, mating, and cellular reprogramming. Recent advances in improvement of reference genomes, high-throughput sequencing and molecular genetics studies have been expanding research in this field. However, the biology of other non-model species is frequently overlooked. This leads to uncertainty regarding how much of what is known in U. maydis is applicable to other dimorphic fungi. In this review, we will discuss dimorphic fungi in the aspects of physiology, reproductive biology, genomics, and molecular genetics. We also perform comparative analyses between U. maydis and other fungi in Ustilaginomycotina, the subphylum to which U. maydis belongs. We find that lipid/hydrophobicity is a potential common cue for dimorphic transition in plant-associated dimorphic fungi. However, genomic profiles alone are not adequate to explain dimorphism across different fungi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA