Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Plants (Basel) ; 13(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38202448

RESUMO

Histosols cover about 8-10% of Lithuania's territory and most of this area is covered with nutrient-rich organic soils (Terric Histosols). Greenhouse gas (GHG) emissions from drained Histosols contribute more than 25% of emissions from the Land Use, Land Use Change and Forestry (LULUCF) sector. In this study, as the first step of examining the carbon dioxide (CO2) fluxes in these soils, total soil CO2 efflux and several environmental parameters (temperature of air and topsoil, soil chemical composition, soil moisture, and water table level) were measured in drained Terric Histosols under three native forest stands and perennial grasslands in the growing seasons of 2020 and 2021. The drained nutrient-rich organic soils differed in terms of concentrations of soil organic carbon and total nitrogen, as well as soil organic carbon and total nitrogen ratio. The highest rate of total soil CO2 efflux was found in the summer months. Overall, the rate was statistically significant and strongly correlated only with soil and air temperature. A trend emerged that total soil CO2 efflux was 30% higher in perennial grassland than in forested land. Additional work is still needed to estimate the net CO2 balance of these soils.

2.
Environ Monit Assess ; 195(7): 876, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37351715

RESUMO

Soil CO2 efflux (Fsoil) is a significant contributor of labile CO2 to the atmosphere. The Himalayas, a global climate hotspot, condense several climate zones on account of their elevational gradients, thus, creating an opportunity to investigate the Fsoil trends in different climate zones. Presently, the studies in the Indian Himalayan region are localized to a particular forest type, climate zone, or area of interest, such as seasonal variation. We used a portable infrared gas analyzer to investigate the Fsoil rates in Himalayan tropical to alpine scrub forest along a 3100-m elevational gradient. Several study parameters such as seasons, forest types, tree species identity, age of trees, distance from tree base, elevation, climatic factors, and soil physico-chemical and enzymatic parameters were investigated to infer their impact on Fsoil regulation. Our results indicate the warm and wet rainy season Fsoil rates to be 3.8 times higher than the cold and relatively dry winter season. The tropical forest types showed up to 11 times higher Fsoil rates than the alpine scrub forest. The temperate Himalayan blue pine and tropical dipterocarp sal showed significant Fsoil rates, while the alpine Rhododendron shrubs the least. Temperature and moisture together regulate the rainy season Fsoil maxima. Spatially, Fsoil rates decreased with distance from the tree base (ρ = - 0.301; p < 0.0001). Nepalese alder showed a significant positive increase in Fsoil with stem girth (R2 = 0.7771; p = 0.048). Species richness (r, 0.81) and diversity (r, 0.77) were significantly associated with Fsoil, while elevation and major edaphic properties showed a negative association. Surface litter inclusion presented an elevation-modulated impact. Temperature sensitivity was exorbitantly higher in the sub-tropical pine (Q10, 11.80) and the alpine scrub (Q10, 9.08) forests. We conclude that the rise in atmospheric temperature and the reduction in stand density could enhance the Fsoil rates on account of increased temperature sensitivity.


Assuntos
Dióxido de Carbono , Pinus , Solo/química , Monitoramento Ambiental , Florestas , Árvores , Índia
3.
Sci Total Environ ; 874: 162348, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36822416

RESUMO

As it is responsible for the second largest CO2 flux in the terrestrial ecosystem, the accurate estimation and prediction of soil respiration (SR) are necessary, especially for forest ecosystems, which are a major contributor to the total terrestrial SR. Spatial variation is one of the challenges affecting the accurate estimation and prediction of forest SR in ecosystems. Although a number of studies have examined spatial variation in SR within individual forests, the magnitude and patterns of spatial variation in SR within forest ecosystems (CV of SR [%]) remain unexplored at the global scale. In this study, we collected 94 field observation studies to demonstrate the range and pattern of the CV of SR, and to clarify the controlling factors. Through our analysis, the CV of SR was found to range from 1.8 % to 89.3 % on the global scale; it was highest in the equatorial zone (39.0 % ± 13.8 %) and followed by the warm temperate zone (32.6 ± 14.5 %) and the snow zone (30.0 % ± 16.3 %). There was a significant negative correlation between the CV of SR and soil water content, bulk density, fine root biomass, and elevation at both the global scale and in each climatic zone (P < 0.01). Other factors such as total nitrogen content, mean of diameter at breast height, slope, etc., were also significantly correlated with the CV of SR, but the correlation was different among climatic zones. This study provides an overall perspective of the CV of SR by clarifying the range, patterns, and controlling factors at both the global scale and in each climatic zone. However, further research is needed, especially regarding the mechanisms between the CV of SR and its controlling factors.


Assuntos
Ecossistema , Solo , Florestas , Biomassa , Nitrogênio , Carbono , Árvores
4.
Plants (Basel) ; 11(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36501430

RESUMO

Soil respiration in forests contributes to significant carbon dioxide emissions from terrestrial ecosystems but it varies both spatially and seasonally. Both abiotic and biotic factors influence soil respiration but their relative contribution to spatial and seasonal variability remains poorly understood, which leads to uncertainty in models of global C cycling and predictions of future climate change. Here, we hypothesize that tree diversity, soil diversity, and soil properties contribute to local-scale variability of soil respiration but their relative importance changes in different seasons. To test our hypothesis, we conducted seasonal soil respiration measurements along a local-scale environmental gradient in a temperate forest in Northeast China, analyzed spatial variability of soil respiration and tested the relationships between soil respiration and a variety of abiotic and biotic factors including topography, soil chemical properties, and plant and soil diversity. We found that soil respiration varied substantially across the study site, with spatial coefficients of variation (CV) of 29.1%, 27.3% and 30.8% in spring, summer, and autumn, respectively. Soil respiration was consistently lower at high soil water content, but the influence of other factors was seasonal. In spring, soil respiration increased with tree diversity and biomass but decreased with soil fungal diversity. In summer, soil respiration increased with soil temperature, whereas in autumn, soil respiration increased with tree diversity but decreased with increasing soil nutrient content. However, soil nutrient content indirectly enhanced soil respiration via its effect on tree diversity across seasons, and forest stand structure indirectly enhanced soil respiration via tree diversity in spring. Our results highlight that substantial differences in soil respiration at local scales was jointly explained by soil properties (soil water content and soil nutrients), tree diversity, and soil fungal diversity but the relative importance of these drivers varied seasonally in our temperate forest.

5.
Chemosphere ; 309(Pt 2): 136654, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36183885

RESUMO

Humic acid originating from lignite is a popular resource of organic fertilizer. The effects of humic acid application on crop biomass and soil CO2 emission charged the regional agro-ecosystem carbon balance. Two kinds of humic acid, obtained from lignite via H2O2-oxidation (OHA) and KOH-activation (AHA), were applied in a wheat-maize rotation located field at three levels of 500 (OHA1; AHA1), 1000 (OHA2; AHA2), and 1500 kg hm-2 (OHA3; AHA3), only chemical fertilizer treatment (CF) as control to investigate the change of soil CO2 emission, crop yield and ecosystem carbon balance in 2016-2019. During the four experimental years, the trend of cumulative efflux of soil CO2 was increasing in medium and high dosage humic acid treatments. The grain yield of wheat and maize had the same trend as the cumulative efflux of soil CO2 due to the increase of soil NO3--N and soil available P directly affected by humic acid application. The main factor of cumulative soil CO2 efflux improvement was soil NO3--N and soil available P in 2016, while soil available potassium became key factor in 2019 with the step regression. Net ecosystem productivity (NEP) was used to assess ecosystem carbon balance, which was positive values showed atmospheric CO2 sink under all the fertilization treatments and increased with the increase of humic acid use level. AHA2 and AHA3 treatments charged the higher NEP in 2019 than 2016. Meanwhile, AHA treatment presented a higher NEP average than OHA treatment with the same applied level. Crop yield and soil available P was the directly positive factor to NEP over four years under the fertilization by SEM analysis. It is recommended that AHA be applied at 1000 kg hm-2 together with chemical fertilizers to achieve the higher crop yield and a sink of the atmospheric CO2 in agricultural fields in North China.


Assuntos
Fertilizantes , Solo , Fertilizantes/análise , Substâncias Húmicas/análise , Zea mays , Triticum , Carbono/análise , Ecossistema , Dióxido de Carbono/análise , Carvão Mineral/análise , Agricultura , Peróxido de Hidrogênio/análise , Potássio/análise
6.
Glob Chang Biol ; 28(6): 2095-2110, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34927319

RESUMO

Under ongoing global climate change, drought periods are predicted to increase in frequency and intensity in the future. Under these circumstances, it is crucial for tree's survival to recover their restricted functionalities quickly after drought release. To elucidate the recovery of carbon (C) transport rates in c. 70-year-old Norway spruce (Picea abies [L.] KARST.) after 5 years of recurrent summer droughts, we conducted a continuous whole-tree 13 C labeling experiment in parallel with watering. We determined the arrival time of current photoassimilates in major C sinks by tracing the 13 C label in stem and soil CO2 efflux, and tips of living fine roots. In the first week after watering, aboveground C transport rates (CTR) from crown to trunk base were still 50% lower in previously drought-stressed trees (0.16 ± 0.01 m h-1 ) compared to controls (0.30 ± 0.06 m h-1 ). Conversely, CTR below ground, that is, from the trunk base to soil CO2 efflux were already similar between treatments (c. 0.03 m h-1 ). Two weeks after watering, aboveground C transport of previously drought-stressed trees recovered to the level of the controls. Furthermore, regrowth of water-absorbing fine roots upon watering was supported by faster incorporation of 13 C label in previously drought-stressed (within 12 ± 10 h upon arrival at trunk base) compared to control trees (73 ± 10 h). Thus, the whole-tree C transport system from the crown to soil CO2 efflux fully recovered within 2 weeks after drought release, and hence showed high resilience to recurrent summer droughts in mature Norway spruce forests. This high resilience of the C transport system is an important prerequisite for the recovery of other tree functionalities and productivity.


Assuntos
Picea , Carbono/metabolismo , Secas , Noruega , Árvores/metabolismo
7.
Glob Chang Biol ; 27(16): 3923-3938, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33934461

RESUMO

Soil respiration (Rs), the efflux of CO2 from soils to the atmosphere, is a major component of the terrestrial carbon cycle, but is poorly constrained from regional to global scales. The global soil respiration database (SRDB) is a compilation of in situ Rs observations from around the globe that has been consistently updated with new measurements over the past decade. It is unclear whether the addition of data to new versions has produced better-constrained global Rs estimates. We compared two versions of the SRDB (v3.0 n = 5173 and v5.0 n = 10,366) to determine how additional data influenced global Rs annual sum, spatial patterns and associated uncertainty (1 km spatial resolution) using a machine learning approach. A quantile regression forest model parameterized using SRDBv3 yielded a global Rs sum of 88.6 Pg C year-1 , and associated uncertainty of 29.9 (mean absolute error) and 57.9 (standard deviation) Pg C year-1 , whereas parameterization using SRDBv5 yielded 96.5 Pg C year-1 and associated uncertainty of 30.2 (mean average error) and 73.4 (standard deviation) Pg C year-1 . Empirically estimated global heterotrophic respiration (Rh) from v3 and v5 were 49.9-50.2 (mean 50.1) and 53.3-53.5 (mean 53.4) Pg C year-1 , respectively. SRDBv5's inclusion of new data from underrepresented regions (e.g., Asia, Africa, South America) resulted in overall higher model uncertainty. The largest differences between models parameterized with different SRDVB versions were in arid/semi-arid regions. The SRDBv5 is still biased toward northern latitudes and temperate zones, so we tested an optimized global distribution of Rs measurements, which resulted in a global sum of 96.4 ± 21.4 Pg C year-1 with an overall lower model uncertainty. These results support current global estimates of Rs but highlight spatial biases that influence model parameterization and interpretation and provide insights for design of environmental networks to improve global-scale Rs estimates.


Assuntos
Respiração , Solo , África , Ásia , Viés , Carbono/análise , América do Sul
8.
Glob Chang Biol ; 27(12): 2991-3000, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33792118

RESUMO

Previous research has indicated that a potentially large portion of root-respired CO2 can move internally through tree xylem, but these reports are relatively scarce and have generally been limited to short observations. Our main objective was to provide a continuous estimate of the quantity and variability of root-respired CO2 that moves either internally through the xylem (FT ) or externally through the soil to the atmosphere (FS ) over most of a growing season. Nine trees were measured in a Populus deltoides stand for 129 days from early June to mid-October. We calculated FT as the product of sap flow and dissolved [CO2 ] in the xylem (i.e., [CO2 *]) and calculated FS using the [CO2 ] gradient method. During the study, stem and soil CO2 concentrations, temperature, and sap flow were measured continuously. We determined that FT accounted for 33% of daily total belowground CO2 flux (i.e., FS  + FT ; FB ) during our observation period that spanned most of a growing season. Cumulative daily FT was lower than FS 74% of the time, equivalent to FS 26% of the time, and never exceeded FS . One-third of the total CO2 released by belowground respiration over most of the growing season in this forest stand followed the FT pathway rather than diffusing into the soil. The magnitude of FT indicates that measurements of FS alone substantially underestimate total belowground respiration in some forest ecosystems by systematically underestimating belowground autotrophic respiration. The variability in FT observed during the growing season demonstrated the importance of making long-term, high-frequency measurements of different flux pathways to better understand physiological and ecological processes and their implications to global change.


Assuntos
Dióxido de Carbono , Ecossistema , Respiração , Estações do Ano , Solo , Árvores , Xilema
9.
J Environ Manage ; 276: 111333, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32919168

RESUMO

This study examined a mountainous area with two hydrochemically distinct CO2-rich springs to understand the origin, flow, and leakage of CO2, which may provide implications for precise monitoring of CO2 leakage in geological carbon storage (GCS) sites. The carbon isotopic compositions of dissolved inorganic carbon (DIC) in CO2-rich water (δ13CDIC) and those of soil CO2 (δ13CCO2) indicated a deep-seated CO2 supply to the near-surface environment in the study area. The hydrochemical difference (e.g. pH, total dissolved solids) for the two CO2-rich springs separated by 7 m, despite similar δ13CDIC and partial pressure of CO2, was considered as the result of different evolution of shallow groundwater affected by deep-seated CO2 preferentially rising along fracture zones. Electrical resistivity tomography also suggested flow through fracture zones beneath the CO2-rich springs, showing low resistivity compared to other surveyed zones. However, soil CO2 efflux was low compared to that in other natural CO2 emission sites, and in particular it was noticeably low near the CO2-rich springs, whereas δ13CCO2 was high close the CO2-rich springs. The dissolution of CO2 in the near-surface water body seemed to decrease the deep-seated CO2 leakage through the soil layer, while δ13CCO2 imprinted the source. End-member mixing analysis was performed to assess the contribution of deep-seated CO2 to the low soil CO2 efflux by assuming that atmospheric CO2 and soil CO2 (by respiration) as well as deep-seated CO2 contribute to the soil CO2 efflux. For each end-member, characteristic δ13CCO2 and CO2 concentrations were defined, and then their apportionment to soil CO2 efflux was estimated. The resultant proportion of deep-seated CO2 was up to 8.8%. Unlike the spatial distribution of high soil CO2 efflux, high proportions exceeding 3% were found around the CO2-rich springs along the east-west valley. The study results indicate that soil CO2 efflux measurement should be combined with carbon isotopic analysis in GCS sites for CO2 leakage detection because CO2 dissolution in the underground water body may blur leakage detection on the surface. The implication of this study is the need to quantitatively assess the contribution of deep-seated CO2 using the soil CO2 concentration, soil CO2 efflux, and δ13CCO2 at each measurement site.


Assuntos
Água Subterrânea , Solo , Carbono , Dióxido de Carbono/análise , Isótopos de Carbono/análise
10.
Sci Total Environ ; 733: 139287, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32446068

RESUMO

Soil respiration is the largest carbon (C) flux from terrestrial ecosystems into the atmosphere. Accurate estimates of the magnitude and distribution of soil respiration are critically important to models of global C cycling and predictions of future climate change. One of the greatest challenges to accurate large-scale estimation of soil respiration is its great spatial heterogeneity at the site level. Our study explored how soil respiration varies in space and the drivers that lead to this variance in a natural subtropical evergreen broadleaf forest in Southern China. We conducted a two-year soil respiration measurement for 168 randomly selected sampling points in a 4 ha plot. We measured the spatial variance of soil respiration and tested its correlation to a variety of abiotic and biotic factors including topography, aboveground plant community structure, soil environmental factors, soil organic matter, and microbial community structure. We found that soil respiration was highly varied across the study plot, with a spatial variation coefficient (CV) of 32.75%. The structural equation modeling (SEM) analysis showed that elevation influenced tree species diversity, productivity, and soil water content, which in turn affected soil respiration via soil C content, clay content, fungal:bacterial ratio, annual litterfall, and fine root biomass. 31% of the total spatial variation of soil respiration was accounted for in the SEM, mostly by elevation, soil C content, annual litterfall biomass, tree species diversity as estimated by the Simpson's index, and soil water content, with standardized total effects of 0.31, -0.31, 0.29, 0.19, and -0.18, respectively. Our data demonstrated that soil respiration was highly spatially varied at the fine scale, and was primarily regulated by factors of topography and plant community structure. More studies investigating the spatial variation of soil respiration are therefore needed to better understand and assess terrestrial ecosystem C cycling.


Assuntos
Ecossistema , Solo , Biomassa , China , Florestas , Árvores
11.
New Phytol ; 227(6): 1818-1830, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32248524

RESUMO

In arctic ecosystems, climate change has increased plant productivity. As arctic carbon (C) stocks predominantly are located belowground, the effects of greater plant productivity on soil C storage will significantly determine the net sink/source potential of these ecosystems, but vegetation controls on soil CO2 efflux remain poorly resolved. In order to identify the role of canopy-forming species in belowground C dynamics, we conducted a girdling experiment with plots distributed across 1 km2 of treeline birch (Betula pubescens) forest and willow (Salix lapponum) patches in northern Sweden and quantified the contribution of canopy vegetation to soil CO2 fluxes and belowground productivity. Girdling birches reduced total soil CO2 efflux in the peak growing season by 53%, which is double the expected amount, given that trees contribute only half of the total leaf area in the forest. Root and mycorrhizal mycelial production also decreased substantially. At peak season, willow shrubs contributed 38% to soil CO2 efflux in their patches. Our findings indicate that C, recently fixed by trees and tall shrubs, makes a substantial contribution to soil respiration. It is critically important that these processes are taken into consideration in the context of a greening arctic because productivity and ecosystem C sequestration are not synonymous.


Assuntos
Ecossistema , Solo , Regiões Árticas , Dióxido de Carbono , Rizosfera , Suécia
12.
Environ Monit Assess ; 191(Suppl 3): 796, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31989356

RESUMO

Environmental factors along with soil physico-chemical properties play a significant role on the diurnal trend of soil CO2 efflux. Soil CO2 efflux in Indian tropical forests is poorly studied. We studied the soil CO2 efflux in a representative tropical deciduous forest at Katerniaghat Wildlife Sanctuary (KWLS), Uttar Pradesh. The three forest communities namely dry mixed (DMF), Sal mixed (SMF), and Teak plantation (TPF) were selected for measuring soil CO2 efflux in the summer season during April to May 2017 using automated LI-COR 8100 soil CO2 flux system. Soil physico-chemical parameters were also studied in the three abovementioned forest communities. We also measured the different microclimatic variables at forest understorey in all three communities during the summer season. Total day time soil CO2 efflux of 826.70, 1089.24, and 828.94 (µmolCO2 m-2d-1) was observed in TPF, SMF, and DMF respectively. Soil CO2 efflux observed significant differences (P < 0.01) among the three forest communities studied for the summer season in tropical deciduous forest of Terai Himalaya. Average soil CO2 efflux rate (µmol CO2 m-2 s-1) of 4.06 ± 0.36, 5.03 ± 0.45, and 4.37 ± 0.79 was observed in TPF, SMF, and DMF, respectively, which is positively correlated with total organic carbon (TOC) and water holding capacity (WHC) among soil physico-chemical variables. Among microclimatic variables, soil temperature (ST, °C) and air temperature (AT, °C) observed strong positive correlation with day time soil CO2 efflux in all three communities. Significant increase in soil CO2 flux was observed with increasing air and soil temperature (AT and ST) in DMF and SMF. Maximum TOC of 19.23 g Kg-1 was observed in SMF among all communities in the summer season. The result showed that soil CO2 efflux is closely associated with TOC, WHC, AT, and ST for Indian deciduous forest ecosystems.


Assuntos
Dióxido de Carbono , Florestas , Solo , Ecossistema , Monitoramento Ambiental , Índia , Árvores
13.
Sci Total Environ ; 688: 479-485, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31254813

RESUMO

Soil respiration (Rs) is the largest carbon (C) flux from terrestrial ecosystems to the atmosphere. Predictions of Rs and associated feedback to climate change remain largely uncertain, in part due to the high temporal heterogeneity of temperature sensitivity (apparent Q10) of Rs under a changing climate. Therefore, it is of critical importance to provide better insight into how Q10 varies across multiple temporal scales. We investigated the diurnal, seasonal, and annual variabilities in the Q10 of Rs using continuous Rs measurements (at hourly intervals) over six growing seasons in a mature temperate larch plantation in North China. We found that night-time values of Q10 were slightly lower than daytime values. Large seasonal and annual fluctuations of Q10 were observed, as illustrated by high coefficients of variation of 15.0% and 21.8%, respectively. The higher Q10 in spring and autumn were primarily regulated by fine root growth and higher soil moisture after snow melt in spring, and leaf senescence in autumn. Lower Q10 in summer may have been caused by limitations in substrate availability and microbial activity resulting from drought, which also caused a decoupling of Rs from soil temperature in summer. Furthermore, a bivariate nonlinear model incorporating both soil temperature and soil moisture best explained Q10 variability. Generally, lower soil temperature and higher soil moisture lead to higher values of Q10, indicating that climate warming could exert a negative effect on Q10, partially offsetting the warming-induced increase in soil C loss. We provide long-term field experimental evidence that it would be inappropriate to estimate Rs on a multiyear scale using a fixed Q10 value or a value obtained from one season and/or one year. Thus, we emphasize the importance of incorporating the seasonal and annual heterogeneities of Q10 into C cycle model simulations under future climate change scenarios.


Assuntos
Agricultura , Florestas , Microbiologia do Solo , Solo/química , Temperatura , Monitoramento Ambiental
14.
Sci Total Environ ; 683: 98-108, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31129335

RESUMO

Soil erosion and reforestation greatly affects the functionality of many terrestrial ecosystems. However, the effects of soil erosion and reforestation on soil respiration (SR), and soil organic carbon (SOC) and total nitrogen (TN) stocks remain unclear. Therefore, we investigated the changes in SR, and SOC and TN stocks at four different soil erosion levels (severely, moderately, lightly, and non-eroded) and two different aged Pinus massoniana plantations (8- and 36-year-old) in the hilly red soil regions of Southern China. Our results showed that soil erosion level and reforestation significantly influenced SR, and SOC and TN stocks. Meanwhile, the mean SR, and SOC and TN stocks all significantly decreased with erosion level but increased significantly with times since reforestation. Soil temperature (ST) could explain 70-92% of SR seasonal variation based on exponential models, whereas no significant relationship between SR and soil water content were found. Furthermore, the structural equation modeling indicated that SOC stocks at 0-20 cm had a much stronger effect on SR than ST. Meanwhile, the SOC stocks for 0-20 cm increased by 177% and 558% in the 8- and 36-year-old Pinus massoniana plantations in comparison with the severely eroded forestland, respectively. This study highlights that reforestation could be an effective strategy for restoring the carbon and nitrogen storage in eroded regions of Southern China and emphasizes the need to consider the effects of soil erosion and reforestation when assessing regional carbon budgets under different climate scenarios.

15.
Sci Total Environ ; 650(Pt 2): 3007-3016, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30373077

RESUMO

The tight linkage between photosynthesis (An) and soil respiration (Rs) has been verified in many terrestrial ecosystems. However, it remains unclear whether this linkage occurs in desert ecosystems, where water is considered an important trigger of carbon cycling. A field experiment was performed under seven simulated rainfall amounts (0, 3, 5, 10, 15, 25, and 40 mm) with two co-existing desert plants (Reaumuria soongorica and Nitraria sphaerocarpa) in June (early growing season, EGS) and August (middle growing season, MGS) in 2016. An, Rs, predawn water potential (Ψpd), soil temperature (Ts) and soil moisture (Swc) were measured for each treatment or control plot for 3 weeks. Our objective was to examine the effects of rainfall pattern on Rs and physiological responses of the two plants and the relationships between Rs and biotic and abiotic factors. No obvious variations in Ψpd or An were found under small rainfall events. However, when the rainfall amount exceeded 10 mm, both plants responded strongly, and the response patterns of Rs showed trends similar to those of An, which varied between species and seasons. Moreover, rain additions of 3-40 mm significantly increased Rs, and the relative changes in Rs (ΔRs) of both species were much larger in the EGS than in the MGS. Importantly, abiotic factors may have controlled the variations in Rs under small rain events while An played a more important role in regulating the variations in Rs when the rainfall amount exceeded 10 mm for both species, suggest that the rainfall pattern-driven changes in Rs composition interact with physiological activity and abiotic factors to regulate the response of Rs to rainfall variability in desert ecosystems. Thus, climate change in the coming decades may lead to carbon sequestration by desert plants, which may cause desert ecosystems to act as carbon sinks.


Assuntos
Clima Desértico , Magnoliopsida/fisiologia , Fotossíntese , Chuva , Solo , China , Ecossistema , Tamaricaceae/fisiologia
16.
Huan Jing Ke Xue ; 39(4): 1962-1970, 2018 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965024

RESUMO

Seasonal asymmetric warming is one of the distinguishing features of global warming. However, if this feature is not considered in studying the effects of global changes on terrestrial ecosystems, it might probably cause misunderstanding of these studies. The releasing features of soil CO2 in Karst regions under various warming scenarios were simulated following a four-year continuous warming period using infrared radiators. A total of six treatments was arranged:no warming (ambient temp, CK); symmetric warming (ambient plus 2.0℃ full year, SW); and, lowly, moderately, highly, and extremely asymmetric warming (ambient plus 2.5℃/1.5℃, 3.0℃/1.0℃, 3.5℃/0.5℃, and 4.0℃/0℃ in the winter-spring/summer-autumn seasons, respectively, LAW, MAW, HAW, and EAW). The results showed that compared to CK, soil CO2 efflux in all the warming plots significantly increased by 0.26 µmol·(m2·s)-1, or 17.41%. In the winter-spring seasons, soil CO2 efflux in the warming treatments increased by 0.23 µmol·(m2·s)-1. The Q10 values ranged from 1.53 to 3.24 with an average of 2.23 under the scenario of warming up by 2.0℃. The warming-induced contribution of CO2 efflux in the summer-autumn seasons (80%) was obviously higher than that in the winter-spring seasons (20%) in the SW treatment, whereas the mean contribution in the summer-autumn seasons (46%) was closer to that in the winter-spring seasons (54%) in the asymmetric warming treatments. Both soil CO2 efflux and Q10 showed a tendency towards decrease with the increase in the asymmetry of warming under the five warming scenarios. The soil CO2 efflux in the SW treatment was significantly (P<0.05) higher than those in the MAW, HAW, and EAW treatments. The Q10 values in the summer-autumn seasons was larger than those in the winter-spring seasons under each warming treatment or across all warming treatments, which was probably related to soil water content, soil microbe, dissolved inorganic carbon, and vegetation growth. The results revealed that it may potentially overestimate the effects of global warming on soil CO2 releasing subject to symmetric warming.

17.
Sci Total Environ ; 627: 1209-1217, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30857085

RESUMO

Using the trenching method, a study was conducted in a grassland on the Loess Plateau of northern China in 2008 and 2009 to partition total soil respiration (Rt) into microbial respiration (Rm) and root respiration (Rr). Using the measurements of soil CO2 diffusivity and soil CO2 production, an analytical model was applied to correct the data, aiming to quantify the method-induced error. The results showed that Rm and Rr responded differently to biotic and abiotic factors and exhibited different diurnal and seasonal variations. The diurnal variation of Rm was strongly controlled by soil temperature, while Rr might be mainly controlled by photosynthesis. The combination of soil temperature and moisture could better explain the seasonal variation in Rm (r2=0.76, P<0.001). The seasonal variation of Rr was influenced mainly by the plant activity. The contribution of root respiration to total soil respiration (Rr/Rt ratio) also exhibited substantial diurnal and seasonal variations, being higher at nighttime and lower at daytime. In the different growing stages, the Rr/Rt ratios ranged from 15.0% to 62.0% in 2008 and 14.5% to 63.6% in 2009. The mean values of the Rr/Rt ratio in the growing season and the annual mean Rr/Rt ratio were 41.7% and 41.9%, respectively, during the experiment period. Different precipitation distributions in the two years did not change the yearly Rr/Rt ratio. Corrected with the analytical model, the trenching method in small root-free plots led to an underestimation of Rr and Rr/Rt ratio by 4.2% and 1.8%.


Assuntos
Monitoramento Ambiental , Pradaria , Poaceae/fisiologia , China , Fotossíntese , Estações do Ano , Solo
18.
Glob Chang Biol ; 24(1): 1-12, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28752603

RESUMO

Despite its fundamental role for carbon (C) and nutrient cycling, rhizodeposition remains 'the hidden half of the hidden half': it is highly dynamic and rhizodeposits are rapidly incorporated into microorganisms, soil organic matter, and decomposed to CO2 . Therefore, rhizodeposition is rarely quantified and remains the most uncertain part of the soil C cycle and of C fluxes in terrestrial ecosystems. This review synthesizes and generalizes the literature on C inputs by rhizodeposition under crops and grasslands (281 data sets). The allocation dynamics of assimilated C (after 13 C-CO2 or 14 C-CO2 labeling of plants) were quantified within shoots, shoot respiration, roots, net rhizodeposition (i.e., C remaining in soil for longer periods), root-derived CO2 , and microorganisms. Partitioning of C pools and fluxes were used to extrapolate belowground C inputs via rhizodeposition to ecosystem level. Allocation from shoots to roots reaches a maximum within the first day after C assimilation. Annual crops retained more C (45% of assimilated 13 C or 14 C) in shoots than grasses (34%), mainly perennials, and allocated 1.5 times less C belowground. For crops, belowground C allocation was maximal during the first 1-2 months of growth and decreased very fast thereafter. For grasses, it peaked after 2-4 months and remained very high within the second year causing much longer allocation periods. Despite higher belowground C allocation by grasses (33%) than crops (21%), its distribution between various belowground pools remains very similar. Hence, the total C allocated belowground depends on the plant species, but its further fate is species independent. This review demonstrates that C partitioning can be used in various approaches, e.g., root sampling, CO2 flux measurements, to assess rhizodeposits' pools and fluxes at pot, plot, field and ecosystem scale and so, to close the most uncertain gap of the terrestrial C cycle.


Assuntos
Dióxido de Carbono , Carbono/química , Carbono/metabolismo , Ecossistema , Raízes de Plantas/metabolismo , Solo/química , Raízes de Plantas/química
19.
Plant Soil ; 420(1): 239-252, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29225378

RESUMO

AIMS: Slow or failed tree regeneration after forest disturbance is increasingly observed in the central European Alps, potentially amplifying the carbon (C) loss from disturbance. We aimed at quantifying C dynamics of a poorly regenerating disturbance site with a special focus on the role of non-woody ground vegetation. METHODS: Soil CO2 efflux, fine root biomass, ground vegetation biomass, tree increment and litter input were assessed in (i) an undisturbed section of a ~ 110 years old Norway spruce stand, (ii) in a disturbed section which was clear-cut six years ago (no tree regeneration), and (iii) in a disturbed section which was clear-cut three years ago (no tree regeneration). RESULTS: Total soil CO2 efflux was similar across all stand sections (8.5 ± 0.2 to 8.9 ± 0.3 t C ha-1 yr.-1). The undisturbed forest served as atmospheric C sink (2.1 t C ha-1 yr.-1), whereas both clearings were C sources to the atmosphere. The source strength three years after disturbance (-5.5 t C ha-1 yr.-1) was almost twice as high as six years after disturbance (-2.9 t C ha-1 yr.-1), with declining heterotrophic soil respiration and the high productivity of dense graminoid ground vegetation mitigating C loss. CONCLUSIONS: C loss after disturbance decreases with time and ground vegetation growth. Dense non-woody ground vegetation cover can hamper tree regeneration but simultaneously decrease the ecosystem C loss. The role of ground vegetation should be more explicitly taken into account in forest C budgets assessing disturbance effects.

20.
Sci Total Environ ; 607-608: 160-167, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28689120

RESUMO

The temperature sensitivity of soil respiration (Q10) is a key parameter for estimating the feedback of soil respiration to global warming. The Q10 of total soil respiration (Rt) has been reported to have high variability at both local and global scales, and vegetation type is one of the most important drivers. However, little is known about how vegetation types affect the Q10 of soil heterotrophic (Rh) and autotrophic (Ra) respirations, despite their contrasting roles in soil carbon sequestration and ecosystem carbon cycles. In the present study, five typical plantation forests and a naturally developed shrub and herb land in subtropical China were selected for investigation of soil respiration. Trenching was conducted to separate Rh and Ra in each vegetation type. The results showed that both Rt and Rh were significantly correlated with soil temperature in all vegetation types, whereas Ra was significantly correlated with soil temperature in only four vegetation types. Moreover, on average, soil temperature explained only 15.0% of the variation in Ra in the six vegetation types. These results indicate that soil temperature may be not a primary factor affecting Ra. Therefore, modeling of Ra based on its temperature sensitivity may not always be valid. The Q10 of Rh was significantly affected by vegetation types, which indicates that the response of the soil carbon pool to climate warming may vary with vegetation type. In contrast, differences in neither the Q10 of Rt nor that of Ra among these vegetation types were significant. Additionally, variation in the Q10 of Rt among vegetation types was negatively related to fine root biomass, whereas the Q10 of Rh was mostly related to total soil nitrogen. However, the Q10 of Ra was not correlated with any of the environmental variables monitored in this study. These results emphasize the importance of independently studying the temperature sensitivity of Rt and its heterotrophic and autotrophic components.


Assuntos
Processos Autotróficos , Ecossistema , Processos Heterotróficos , Solo/química , Temperatura , Ciclo do Carbono , China , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA