Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 646
Filtrar
1.
Eur J Pharm Biopharm ; : 114515, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39326801

RESUMO

The removal of organic solvents during the preparation of biodegradable poly(D,L-lactide-co-glycolide) (PLGA) microparticles by an O/W- solvent extraction/evaporation process was investigated and controlled by diafiltration. Emulsification and steady replacement of the aqueous phase were performed in parallel in a single-vessel setup. During the process, the solidification of the dispersed phase (drug:PLGA:solvent droplets) into microparticles was monitored with video-microscopy and focused beam reflectance measurement (FBRM) and the residual solvent content was analyzed with headspace gas chromatography (organic solvent) and coulometric Karl-Fischer titration (water). Microparticles containing dexamethasone or risperidone were characterized with regard to particle size, morphology, encapsulation efficiency and in-vitro release. Diafiltration-accelerated solvent extraction shortened the process time by accelerating solidification of dispersed phase but reduced the residual dichloromethane content only in combination with increased temperature. Increasing the diafiltration rate increased particle size, porosity, and the encapsulation efficiency of risperidone. The latter effect was particularly evident with increasing lipophilicity of PLGA. A slower and more uniform solidification of end-capped and increased lactide content PLGA grade was identified as the reason for an increased drug leaching. Accelerated solvent extraction by diafiltration did not affect the in-vitro release of risperidone from different PLGA grades. The initial burst release of dexamethasone was increased by diafiltration when encapsulated in concentrations above the percolation threshold. Both porosity and burst release could be reduced by increasing the process temperature during diafiltration. Residual water content was established as an indicator for porosity and correlated with the burst release of dexamethasone.

2.
Molecules ; 29(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39275080

RESUMO

Binary terpenoid-based eutectic systems consisting of the natural substances camphene (CA), fenchol (FE), thymol (TH), menthol (ME), dodecanoic acid (DA), and 1-dodecanol (DO) are synthesized and screened for their Solid-Liquid Equilibrium (SLE) and eutectic compositions. Out of nine eutectic systems, 13 solvent compositions at eutectic points and next to them, in addition to the reference solvent, TH:ME, are synthesized and applied for the solvent extraction of the aromatic aldehydes vanillin (VAN), syringaldehyde (SYR), and p-hydroxybenzaldehyde (HYD) from an acidic aqueous model solution. The extraction efficiency is determined from aldehyde concentrations measured by High-Performance Liquid Chromatography (HPLC), taking into consideration mutual solubility measured by Karl Fischer titration (KF) and a Total Organic Carbon-analysis (TOC). Physicochemical properties, such as the density, viscosity, and stability of the solvents, are evaluated and discussed. Additionally, 1H-NMR measurements are performed to verify hydrogen bonding present in some of the solvents. The results show that all synthesized eutectic systems have a strong hydrophobic character with a maximum water saturation of ≤2.21 vol.% and solvent losses of ≤0.12 vol.% per extraction step. The hydrophobic eutectic solvents based on CA exhibit lower viscosities, lower mutual solubility, and lower extraction efficiency for the aromatic aldehydes when compared with FE-based solvents. The highest extraction efficiencies for VAN (>95%) and for SYR (>93%) at an extraction efficiency of 92.61% for HYD are achieved by the reference solvent TH:ME (50:50 mol.%). With an extraction efficiency of 93.08%, HYD is most preferably extracted by the FE-DO-solvent (80:20 mol.%), where the extraction efficiencies for VAN and SYR reach their maximum at 93.37% and 90.75%, respectively. The drawbacks of the high viscosities of 34.741 mPas of the TH:ME solvent and 31.801 mPas of the FE-DO solvent can be overcome by the CA-TH solvent, which has a viscosity of 3.436 mPas, while exhibiting extraction efficiencies of 71.92% for HYD, >95% for VAN, and >93% for SYR, respectively.

3.
ChemSusChem ; : e202401600, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278834

RESUMO

Recovery of lithium from brines by liquid-liquid solvent extraction (LLE) with diketones and synergistic co-ligands has been investigated for decades, but industrial application has been limited. In pursuit of a ligand with improved properties, a series of ketonamides with beta-carbonyl groups were designed, synthesized, and tested in extraction of lithium from sulfate and carbonate simulants of clay mineral tailing leachates. The best performing ligand, a novel tricarbonyl amide, was characterized for lithium extraction with and without four synergistic co-ligands. The tricarbonyl amide combined with the synergistic co-ligand Cyanex-923 was absorbed on a resin support. The ligand-modified resin was tested for performance in extraction of dilute brine simulants and up to 60% recovery of lithium was achieved.

4.
Sci Total Environ ; 953: 176009, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39233074

RESUMO

Quantifying trace levels of microplastics in complex environmental media remains a challenge. In this study, an approach combining field collection of samples from different depths, sample size fractionation, and plastic quantification via pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) was employed to identify and quantify microplastics at two public beaches along the northeast coast of the U.S. (Salisbury beach, MA and Hampton beach, NH). A simple sampling tool was used to collect beach sand from depth intervals of 0-5 cm and 5-10 cm, respectively. The samples were sieved to give three size fractions: coarse (>1.2 mm), intermediate (100 µm-1.2 mm), and fine (1.2 µm-100 µm) particles. Following density separation and wet peroxide oxidation, a low-temperature solvent extraction protocol involving 2-chlorophenol was used to extract polyester (PET), polystyrene (PS), polyamide (PA), and polyvinyl chloride (PVC). The extract was analyzed using Py-GC-MS for the respective polymers, while the solid residue was pyrolyzed separately for polyethylene (PE) and polypropylene (PP). The one-step solvent extraction method significantly simplified the sample matrix and improved the sensitivity of analysis. Among the samples, PET was detected in greater quantities in the fine fraction than in the intermediate size fraction, and PET fine particles were located predominantly in the surface sand. Similar to PET, PS was detected at higher mass concentrations in the fine particles in most samples. These results underscore the importance of beach environment for plastic fragmentation, where a combination of factors including UV irradiation, mechanical abrasion, and water exposure promote plastic breakdown. Surface accumulation of fine plastic particles may also be attributed to transport of microplastics through wind and tides. The proposed sample treatment and analysis methods may allow sensitive and quantitative measurements of size or depth-related distribution patterns of microplastics in complex environmental media.

5.
BMC Chem ; 18(1): 186, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342227

RESUMO

Solvent extraction of selenium(IV) ions from highly concentrated hydrochloric acid using 0.4 mol/L Aliquat 336 dissolved in kerosene was investigated. As a modifying agent, 1-octanol (10% v/v) was added to the organic phase to avoid the third phase formation. The effect of different parameters affecting the liquid-liquid extraction of selenium(IV) such as the acid concentration, shaking time, metal ion concentration in the aqueous phase, loading capacity, diluents, and temperature, was studied. The results indicate that selenium(IV) is extracted efficiently by 0.4 mol/L Aliquat 336 dissolved in kerosene. It was noticed that the extraction increased with the increase in the acid and Aliquat 336 concentrations, reaching an extraction percentage of about 92% at 8 mol/L HCl and 97.1% at 1 mol/L extractant. The extracted organic species is postulated to be [H2SeO2Cl2.2R4NCl]org by using the slope analysis method, and the value of Kex for selenium(IV) extraction was found to be 26.17 ± 2 M- 2. The structure of the extracted organic species was confirmed by FT-IR. The effect of diluents using various aliphatic and aromatic diluents indicated that kerosene is the most preferred diluent. This is owing to safety ground purpose, economic consideration, the lower cost, availability, and lower toxicity. Thermodynamic parameters indicate the endothermic nature for the solvent extraction of selenium(IV) for the investigated system according to the positive value obtained of the enthalpy change (ΔH). Depending on the obtained results, the method was used to recover selenium(IV) from a simulated solution synthesized in hydrochloric acid medium, which is expected in anode slime leach liquor solution.

6.
J Mol Graph Model ; 133: 108871, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39321609

RESUMO

In this study, molecular dynamics simulation was used to predict the molecular diffusion coefficient of acetic acid and acetone in water, toluene, and benzene. The results showed that COMPASS was the best force field to optimize the atoms and structure of molecules, and the results were compared with experimental equations. The Arrhenius behavior of the molecular diffusion coefficient was investigated at three temperatures. The extraction of acetic acid and acetone from water was investigated using two solvents, toluene, and benzene, with and without SiO2 nanoparticles. The relative concentration change diagram was drawn for three cases without and with SiO2 nanoparticles. To quantitatively examine the results, extraction efficiency, selectivity, and distribution coefficient were calculated. The extraction efficiency of acetone from water by benzene in the absence of silica nanoparticles was 65.748 %, this value in the presence of SiO2 nanoparticles with a concentration of 0.2231 wt% was 72.45 % due to the Brownian motion of the nanoparticles, which increased the mass transfer and as a result, the extraction efficiency. With the further increase of nanoparticles up to 1.7573 wt%, the extraction efficiency decreased to 61.276 %, which can be attributed to the accumulation of silica nanoparticles and the decrease in the free movement of nanoparticles.

7.
Environ Sci Technol ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254632

RESUMO

We propose coupling electrochemical leaching with solvent extraction to separate and recover Li and Co from spent lithium-ion batteries (LIBs). Electrochemical leaching occurs in the aqueous electrolyte for converting solid LiCoO2 into soluble Li+ and Co2+, in which electrons act as reductants to reduce Co(III) to Co(II). Simultaneously, solvent extraction occurs at the interface of aqueous and organic phases to separate Co2+ and Li+. By capturing and utilizing the protons from P507, leaching yields for both Co and Li exceed ∼7 times than acid leaching without solvent extraction. The extraction efficiency of Co2+ reaches 86% at 60 °C, 3.5 V, while simultaneously retaining the majority of Li+ in the H2SO4 solution. The total leaching amount was improved because the organic phase provides protons to help the leaching of Co2+, and the continuous extraction process of Co(II) maintains the low Co2+ concentration in the aqueous solution. The synergistic interaction between electrochemical leaching and solvent extraction processes significantly reduces the consumption of chemicals, enhances the utilization efficiency of protons, and simplifies the recovery process. The leaching kinetics of Li and Co both conforms well to the residue layer diffusion control model and the activation energy (Ea) values of the leaching for Li and Co are 4.03 and 7.80 kJ/mol, respectively. Lastly, the economic and environmental assessment of this process also demonstrates the advantages of this method in reducing inputs, lowering environmental pollution, and enhancing economic benefits.

8.
Food Sci Biotechnol ; 33(13): 2989-2998, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39220315

RESUMO

Abstract: Aqueous enzyme-assisted solvent extraction (AE-SE) of oil from apricot (Prunus armeniaca L.) kernel was investigated in this study and the operational parameters were optimized. After preliminary screening, a cocktail of enzymes (Celluclast 1.5 L and Alcalase Pure 2.4 L [60:40, v/v)] of 1% (v/w) was chosen. The extraction process parameters: temperature (40-60 °C), time (1-5 h), and pH (4-9) were optimized using Box-Behnken design to achieve the highest oil yield (%) and antioxidant activity (DPPH, %). Under optimized conditions, i.e., temperature 40 °C, time 2.5 h, and pH 8.28, the highest oil yield and DPPH were 47.93% and 67.31%, respectively. The gas chromatography analysis disclosed that apricot kernel oil extracted by solvent extraction and AE-SE have similar fatty acid compositions, and the oil is rich in unsaturated fatty acids. The physicochemical analysis showed AE-SE method produces high-quality oil and can be substituted as green technology for industrial oil extraction purposes.

9.
J Agric Food Chem ; 72(37): 20670-20678, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39230505

RESUMO

Aflatoxins pose a major health concern and require strict monitoring in food products. Existing methods rely on hazardous organic solvents for extraction, prompting the development of a greener alternative. This study explores deep eutectic solvents (DESs) for aflatoxin extraction from pistachios, a valuable food product prone to aflatoxin contamination. The proposed method utilizes DES extraction followed by solid-phase extraction cleanup and ultrahigh-performance liquid chromatography coupled with fluorescence detector analysis. Recovery rates ranged from 85.5 to 99.1% for pistachios spiked with 1-8 ng/g aflatoxins, in compliance with EU regulations, with coefficients of variation less than 2.94%. The method demonstrates good sensitivity with limits of detection and quantification in the range of 0.02-0.22 ng/g and 0.05-0.72 ng/g, respectively. Greenness assessment using AGREEPrep and White Analytical Chemistry metrics confirms its environmental sustainability. This approach offers a promising, safer, and more eco-friendly alternative for aflatoxin extraction from complex food matrices like pistachios.


Assuntos
Aflatoxinas , Solventes Eutéticos Profundos , Contaminação de Alimentos , Extração em Fase Sólida , Aflatoxinas/análise , Aflatoxinas/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Contaminação de Alimentos/análise , Extração em Fase Sólida/métodos , Extração em Fase Sólida/instrumentação , Solventes Eutéticos Profundos/química , Nozes/química
10.
Environ Res ; 263(Pt 1): 120008, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39284492

RESUMO

Macroalgae have gained significant attention in recent research owing to their potential as novel food source and their noteworthy nutritional properties. However, a substantial amount of these macroalgae accumulates along the coast without being utilized, highlighting the need for proper treatment and disposal methods to mitigate secondary pollution effects. Previous studies on macroalgae have primarily focused on extracting bioactive compounds or anaerobic digestion processes to produce methane or volatile fatty acids (VFA), with observed improvements following different pre-treatments. In this study, three biorefinery options for macroalgae have been compared. Additionally, the extraction of bioactive compounds followed by VFA production is proposed as a promising new valorization strategy. Milled macroalgae exhibited a low methane production yield (138 ± 17 NmL CH4·g volatile solid-1), corresponding to 31 ± 4 % biodegradability, while the acidification percentage was higher (45 ± 1%). Among the three solvents applied (water, ethanol and acetone), ethanol (80%) at 25 °C was the most effective in recovering bioactive compounds, such as chlorophylls, sugars, and phenolic compounds with antioxidant activity. The extraction of chlorophylls and phenolic compounds was not influenced by particle size reduction. However, a more efficient extraction of sugars was observed with lower particle size. Moreover, ethanol treatment demonstrated the good efficiency in VFA production, reaching up to 3.6 ± 0.2 g VFA-(chemical oxygen demand, COD)·L-1, with a VFA spectrum (in COD basis) consisting of 51% acetic acid, 29% propionic acid, 5% i-butyric acid, 7% butyric acid, and 7% i-valeric acid. These findings highlight the potential of ethanol for efficient compound recovery and VFA production from macroalgae.

11.
Environ Sci Pollut Res Int ; 31(39): 52523-52539, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39153064

RESUMO

Solvent extraction of lithium from brine with a high Mg/Li ratio was investigated. Tributyl phosphate (TBP), ferric chloride (FeCl3), and kerosene were used as the extractant, co-extractant, and diluent, respectively. The mechanism of the extraction process was studied by LC-MS, UV-VIS, and FT-IR analyses. Effects of organic to aqueous phase volume ratio (O/A) on the extraction efficiency and separation factor were optimized. The effects of major parameters including Fe/Li molar ratio, hydrochloric acid concentration, and TBP volume percent as well as their interactions on the lithium extraction efficiency were evaluated using central composite design. These major parameters represent interactions within their selected ranges. While the lithium extraction efficiency as the response value in the experimental design showed the most sensitivity to the acid concentration, the separation factors were more affected by alteration in the TBP volume percent with the fixed optimum values of the other major parameters. The highest one-stage extraction efficiency of 76.3% and Li/Mg separation factor of 304 were obtained at the optimum conditions of Fe/Li = 2.99, HCl = 0.01 M, and TBP = 55%. The Mg/Li mass ratio could be significantly reduced from 192 in the feed to 1.5 in the stripping solution. Based on the findings, a schematic diagram of the process including extraction, stripping, and saponification steps was proposed.


Assuntos
Lítio , Magnésio , Solventes , Lítio/química , Solventes/química , Magnésio/química , Sais/química
12.
Pharm Res ; 41(9): 1869-1879, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147990

RESUMO

PURPOSE: The removal of the residual solvent dichloromethane from biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) microparticles was investigated by aqueous or alcoholic wet extraction or vacuum-drying. METHODS: Microparticles were prepared by the O/W solvent extraction/evaporation method. The solidified microparticles were separated by filtration and the effect of subsequent drying and wet extraction methods were investigated. The residual solvent content was analysed with gas chromatography (organic solvents) and Karl Fischer titration (water). The effect of extraction conditions on microparticle aggregation, surface morphology and encapsulation of the drugs dexamethasone and risperidone was investigated. RESULTS: Residual dichloromethane was reduced to 2.43% (w/w) (20 °C) or 0.03% (w/w) (35 °C) by aqueous wet extraction. With vacuum-drying, residual dichloromethane only decreased from about 5% (w/w) to 4.34% (w/w) (20 °C) or 3.20% (w/w) (35 °C) due to the lack of the plasticizing effect of water. Redispersion of filtered, wet microparticles in alcoholic media significantly improved the extraction due to an increased PLGA plasticization. The potential of different extractants was explained with the Gordon-Taylor equation and Hansen solubility parameters. Extraction in methanol: or ethanol:water mixtures reduced residual dichloromethane from 4 - 7% (w/w) to 0.5 - 2.3% (w/w) within 1 h and 0.08 - 0.18% (w/w) within 6 h. Higher alcohol contents and higher temperature resulted in aggregation of microparticles and lower drug loadings. CONCLUSION: The final removal of residual dichloromethane was more efficient with alcoholic wet extraction followed by aqueous wet extraction at elevated temperature and vacuum drying of the microparticles.


Assuntos
Dexametasona , Cloreto de Metileno , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Solventes , Solventes/química , Cloreto de Metileno/química , Dexametasona/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Tamanho da Partícula , Risperidona/química , Ácido Láctico/química , Ácido Poliglicólico/química , Composição de Medicamentos/métodos , Microesferas
13.
Sci Rep ; 14(1): 17806, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090228

RESUMO

The paper investigated the possibility of extractive separation of palladium from platinum and rhodium with ionic liquid Cyphos IL 101. A technological solution obtained by dissolving waste materials was used as the test material. Based on the experiments performed, it was found that a 10% (v/v) solution of the Cyphos IL 101 ionic liquid in toluene allows the extraction of both Pd and Pt with an efficiency of 99% from the initial solution when extraction is carried out at the pH 0.5, vorg:vaq phase ratio 1:1 and contact time of 15 min. Moreover, the research proved that it is possible to separate Pd from Pt at the stripping stage using a 0.1 mol/dm3 thiourea solution while maintaining a high selectivity coefficient.

14.
Food Sci Biotechnol ; 33(11): 2521-2531, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39144187

RESUMO

This study aimed to optimize the accelerated solvent extraction (ASE) condition of zeaxanthin from orange paprika using a response surface methodology (RSM) or an artificial neural network (ANN) with a genetic algorithm (GA). Input variables were ethanol concentration, extraction time, and extraction temperature, while output variable was zeaxanthin. The mean squared error and regression correlation coefficient of the developed ANN model were 0.3038 and 0.9983, respectively. Predicted optimal extraction conditions from ANN-GA for maximum zeaxanthin were 100% ethanol, 3.4 min, and 99.2 °C. The relative errors under the optimal extraction conditions were RSM for 10.46% and ANN-GA for 2.18%. We showed that the recovery of hydrophobic zeaxanthin could be performed using ethanol, an eco-friendly solvent, via ASE, and the extraction efficiency could be improved by ANN-GA modeling than RSM. Therefore, combining ASE and ANN-GA might be desirable for the efficient and eco-friendly extraction of hydrophobic functional materials from food resources. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01514-8.

15.
Environ Sci Technol ; 58(35): 15766-15778, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39163648

RESUMO

We explored the speciation and kinetics of the Pu(VI)-citrate and Pu(III)-citrate systems (pHm = 2.5-11.0, I = 0.1 M NaCl, T = 23 °C, O2(g) < 2 ppm) using ultraviolet-visible-near-infrared (UV-vis-NIR) spectrophotometry, solvent extraction, and PHREEQC modeling. Formation constants were determined for PuO2(HcitH)(aq) (log K°1,1 = 1.09 ± 0.05) and PuO2(HcitH)(citH)3- (log K°1,2 = -0.20 ± 0.07), and evidence for (PuO2)m(citH-k)n(OH)x2m(3+k)n-x was identified under alkaline conditions. Pu(VI) species were found to be less stable in the presence of citrate than in the absence of citrate (t ≤ 168 days); the rate of reduction increased with increasing pH. The direct reduction of Pu(VI) to Pu(IV) was required to fit experimental data in the presence of citrate but did not improve the fit for Pu in the absence of citrate. We also observed increased Pu(III) stability in the presence of citrate (t ≤ 293 days), with higher concentrations of Pu(III) favored at lower pH. Finally, we provide evidence of a radiolysis-driven mechanism for the citrate-mediated reduction of plutonium that involves electron transfer from the oxidative breakdown of citrate. Our work highlights the need to investigate the redox effect of organic ligands on plutonium oxidation states under repository-relevant conditions.


Assuntos
Ácido Cítrico , Oxirredução , Plutônio , Plutônio/química , Ácido Cítrico/química , Cinética , Concentração de Íons de Hidrogênio
16.
Heliyon ; 10(14): e34811, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39149082

RESUMO

Recycling the valuable metals found in spent permanent magnets (REPMs) poses a significant global challenge for the future. This study examines the efficiency of back extraction of rare earth elements (REEs) by oxalic acid solution from di-(2-ethylhexyl) phosphoric acid (D2EHPA) in recycling REPMs. To evaluate the efficiency of this process, several experiments were carried out using designed BOX-Behnken methodology to investigate the effects of various operational and chemical parameters, including stripping solution to loaded organic phase volume ratio (in the range of 1.0-2.0), oxalic acid concentration (ranging from 0.25 to 0.75 M), the stirring rate (ranged between 150 and 350 rpm), and stripping time (ranging from 15 to 45 min) on the REEs recovery and the purity of final production. Analysis of variance was applied to rigorously examine the results statistically. The results showed that more than 85 % of light and 80 % of heavy REEs can be recovered under optimal conditions. Moreover, the final product contained 43.5 % REEs and approximately 0.1 % iron. The stripping experiment using phosphoric acid as the reagent demonstrated ∼57 % light and ∼4 % heavy REEs recovery. Additionally, the recyclability of the organic phase showed its effective reuse for up to four cycles. This study underscores significant progress in the selective recovery of rare earth elements through a relatively straightforward process consuming mild reagents.

17.
Bioresour Technol ; 411: 131322, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39173958

RESUMO

It is necessary for the further development of sludge degradative solvent extraction (DSE) to significantly increase the bio-oil yield and adjust its composition. In this study, the effects of MCM-41, HZSM-5, and SSZ-13 on the physical properties, yield, and composition of bio-oil were compared. Results show that all three catalysts effectively promote the conversion of volatiles in the residue to the heavy component (heavy-s). The addition of MCM-41 improved the yieldof both the light component (light-s) and heavy-s. Their yields increased from 8.11% and 20.47% to 14.39% and 29.18%, respectively. Its all-silicon structure and weak acidity have no significant effect on the composition of the bio-oil. HZSM-5 addition increases the light-s yield to 25.58%. Its MFI structure and proper acidity are beneficial to the formation of aromatic hydrocarbons and olefins, while effectively reducing oxygenates. SSZ-13 increases the heavy-s yield to 27.89%, and promoted the formation of nitrogen-containing compounds significantly.


Assuntos
Esgotos , Solventes , Catálise , Esgotos/química , Solventes/química , Dióxido de Silício/química , Zeolitas/química , Biocombustíveis
18.
Water Res ; 265: 122261, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39167970

RESUMO

Phosphorus (P) recovered from sludge-incinerated ash (SIA) could be applied to synthesize highly added-value products (FePO4 and LiFePO4) with in situ Fe in SIA. Indeed, LiFePO4 is a future of rechargeable batteries, which makes lithium (Li) highly needed. Alternatively, Li could also be extracted from concentrated brines to face a potential crisis of Li depletion on lands. Based on H3PO4 and Fe3+ co-extracted from the acidic leachate of SIA by tributyl phosphate (TBP), FePO4 (31.2 wt% Fe, 17.6 wt% P and the molar ratio of Fe/P = 0.98) was easily formed only adjusting pH of the stripping solution to 1.6. Interestingly, the organic phase from the first-stage co-extraction process of Fe3+ and H3PO4 could be utilized for Li-extraction from salt-lake brine, based on the TBP-FeCl3-kerosene system, and a good performance (78.7%) of Li-extraction and separation factors (ß) (186.0-217.4) were obtained. Furthermore, the compounds with Li-extraction are complex, possibly LiFeCl4∙2TBP, in which Li+ could be stripped to form Li2CO3 by 4.0 M HCl (with a stripping rate up to 83%). Besides, Li2CO3 could also be obtained from desalinated brine by adsorption with manganese oxide ion sieve (HMO) and desorption with HCl. In the two cases, almost pure Li2CO3 products were obtained, up to 99.7 and 99.5 wt% Li2CO3 respectively, after further purification and concentration. Finally, recovered FePO4 and extracted Li2CO3 were synthesized for producing LiFePO4 that had a similar electrochemical property (69.5 and 77.8 mAh/g of the initial discharge capacity) to those synthesized from commercial raw materials.


Assuntos
Ferro , Lítio , Fosfatos , Esgotos , Lítio/química , Fosfatos/química , Ferro/química , Esgotos/química , Sais/química , Compostos Férricos
19.
Food Sci Nutr ; 12(7): 5121-5130, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39055189

RESUMO

This study aimed to develop an efficient method for the extraction of bioactive compounds from green tea waste (GTW) toward its potential application in the food industry. GTW, which is generated during the harvesting and processing of green tea products, accounts for a global annual loss of nearly 1 million tonnes. Notably, this waste is rich in polyphenolic compounds, particularly catechins, which are renowned for their significant health benefits. We assessed the optimization of catechin extraction from GTW employing hot water extraction (HWE), ultrasound-assisted extraction (UAE), and ethanol extraction (EthE) techniques at different sample-to-solvent ratios (1:100, 1:50, and 1:20 w/v). The extraction temperature was set at 80°C for both HWE and UAE; however, for EthE, the temperature was slightly lower at 70°C, adhering to the boiling point of ethanol. High-performance liquid chromatography was used to determine the extraction efficiency by quantifying various catechins (i.e., catechin, epicatechin [EC], epicatechin gallate [ECG], epigallocatechin [EGC], and epigallocatechin gallate [EGCG]). In terms of the concentration for individual catechins, EC was found to be the highest concentration detected, ranging from 30.58 ± 1.17 to 37.95 ± 0.84 mg/L in all extraction techniques and ratios of solvents, followed by EGCG (9.71 ± 1.40-20.99 ± 1.11 mg/L), EGC + C (7.95 ± 0.66-12.58 ± 0.56 mg/L), and ECG (1.85 ± 0.71-6.05 ± 0.06 mg/L). The findings of DPPH (2,2-diphenyl-1-picryl-hydrazyl) free radical assay illustrated that HWE demonstrated the highest extraction efficiency at all ratios, ranging from 61.41 ± 1.00 to 70.36 ± 1.47 mg/L. The 1:50 ratio exhibited the highest extraction yield (25.98% ± 0.75%) compared to UAE (24.16% ± 0.95%) and EthE (22.59% ± 0.26%). Moreover, this method of extraction (i.e., HWE) produced the highest total catechins and %DPPH reduction. Consequently, HWE was the most efficient method for extracting catechins from GTW, underscoring its potential for valorizing waste within the food manufacturing industry.

20.
Sci Rep ; 14(1): 15131, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956278

RESUMO

Due to the limited reserves of uranium, the abundance of thorium compared to it and other advantages, the development of the thorium fuel cycle is of interest in different countries. The optimization of thorium extraction from a feed solution produced by Saghand ore with bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272) on a laboratory scale was evaluated by response surface method. The operating variables include Cyanex 272 concentration of 0.001 to 0.2 mol/L, pH of 0 to 2, equilibrium time of 5 to 60 min and aqueous to organic phase ratio of 0.5 to 2.5 were conducted. The value of R2 = 0.9695 and an error of less than 4% indicate the validity of the model. Therefore, the model is in good agreement with the experimental results. It can be said that there are significant interactions between operational parameters, which vindicate different feedbacks of the system in different operational conditions. The results showed that the 4 mol/L sulfuric acid was a suitable agent for recovering thorium ions from the loaded organic phase. In optimum conditions, the thorium purity percentage and thorium stripping efficiency were obtained 98.99 and 94.12%, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA