Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Bioengineering (Basel) ; 11(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38790301

RESUMO

The administration of mesenchymal stem cells (MSCs) has a positive effect on wound healing; however, the lack of adequate MSC engraftment at the wound site is a major limiting factor in current MSC-based therapies. In this study, a biosheet prepared using in-body tissue architecture (iBTA) was used as a material to address these problems. This study aimed to assess and evaluate whether biosheets containing somatic stem cells would affect the wound healing process in dogs. Biosheets were prepared by subcutaneously embedding molds in beagles. These were then evaluated grossly and histologically, and the mRNA expression of inflammatory cytokines, interleukins, and Nanog was examined in some biosheets. Skin defects were created on the skin of the beagles to which the biosheets were applied. The wound healing processes of the biosheet and control (no biosheet application) groups were compared for 8 weeks. Nanog mRNA was expressed in the biosheets, and SSEA4/CD105 positive cells were observed histologically. Although the wound contraction rates differed significantly in the first week, the biosheet group tended to heal faster than the control group. This study revealed that biosheets containing somatic stem cells may have a positive effect on wound healing.

2.
Stem Cells Transl Med ; 12(12): 811-824, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37774396

RESUMO

Intraventricular hemorrhage (IVH) is a severe complication of preterm birth associated with white matter injury (WMI) and reduced neurogenesis. IVH commonly arises from the germinal matrix, a highly cellular, transient structure, where all precursor cells are born, proliferate, and migrate during brain development. IVH leads to reduced progenitor cell proliferation and maturation and contributes to WMI. Interruption of oligodendrocyte lineage (OL) proliferation and maturation after IVH will prevent myelination. We evaluated whether unrestricted somatic stem cells (USSCs) could recover OL lineage, as USSC release multiple relevant growth factors and cytokines. The effects of USSC infusion at 24 hours after IVH were assessed in the periventricular zone by analysis of OL lineage-specific progression (PDGFR+, OLIG2+, NKX2.2+ with Ki67), and this was correlated with growth factors TGFß1, FGF2 expression. The early OL cell lineage by immunofluorescence and cell density quantitation showed significant reduction after IVH (P < .05 both PDGFR+, OLIG2+ at day 3); with significant recovery after injection of USSCs (P < .05 both PDGFR+, OLIG2+ at day 3). CSF protein and tissue mRNA levels of TGFß1 were reduced by IVH and recovered after USSC (P < .05 for all changes). FGF2 showed an increased mRNA after USSC on day3 (P < .05). Cell cyclin genes were unaffected except for the cycle inhibitor P27Kip1 which increased after IVH but returned to normal after USSC on day 3. Our findings demonstrated a plausible mechanism through which USSCs can aid in developmental myelination by recovery of OL proliferation and maturation along with correlative changes in growth factors during brain development.


Assuntos
Células-Tronco Adultas , Nascimento Prematuro , Recém-Nascido , Humanos , Animais , Feminino , Coelhos , Fator 2 de Crescimento de Fibroblastos , Hemorragia Cerebral , Células-Tronco Adultas/metabolismo , Fator de Crescimento Transformador beta1 , RNA Mensageiro
3.
Bull Exp Biol Med ; 175(2): 254-259, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37466854

RESUMO

We studied the effects of the extract of the terrestrial part of Aconitum baicalense in BALB/c female mice at the early stages after the injection of N-methyl-N-nitrosourea (MNU). The extract reduced inflammatory activity and tumor growth in the mammary gland. The antitumor and anti-inflammatory effects of the extract are based on the inhibition of cancer stem cells, hematopoietic stem cells, and hematopoietic progenitor cells that promote inflammation. The extract of A. baicalense disrupted the recruitment of epithelial progenitor cells and angiogenesis precursors to the mammary gland preventing neovascularization and transformation of epithelial cells into tumor cells.


Assuntos
Aconitum , Células-Tronco Adultas , Neoplasias Mamárias Experimentais , Feminino , Camundongos , Animais , Metilnitrosoureia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Células-Tronco Adultas/patologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia
4.
Stem Cell Res Ther ; 14(1): 86, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055850

RESUMO

BACKGROUND: We performed the first autologous oral mucosa-derived epithelial cell sheet transplantation therapy in a patient with refractory postoperative anastomotic stricture in congenital esophageal atresia (CEA) and confirmed its safety. In this study, patients with CEA and congenital esophageal stenosis were newly added as subjects to further evaluate the safety and efficacy of cell sheet transplantation therapy. METHODS: Epithelial cell sheets were prepared from the oral mucosa of the subjects and transplanted into esophageal tears created by endoscopic balloon dilatation (EBD). The safety of the cell sheets was confirmed by quality control testing, and the safety of the transplantation treatment was confirmed by 48-week follow-up examinations. RESULTS: Subject 1 had a stenosis resected because the frequency of EBD did not decrease after the second transplantation. Histopathological examination of the resected stenosis revealed marked thickening of the submucosal layer. Subjects 2 and 3 did not require EBD for 48 weeks after transplantation, during which time they were able to maintain a normal diet by mouth. CONCLUSIONS: Subjects 2 and 3 were free of EBD for a long period of time after transplantation, confirming that cell sheet transplantation therapy is clearly effective in some cases. In the future, it is necessary to study more cases; develop new technologies such as an objective index to evaluate the efficacy of cell sheet transplantation therapy and a device to achieve more accurate transplantation; identify cases in which the current therapy is effective; and find the optimal timing of transplantation; and clarify the mechanism by which the current therapy improves stenosis. TRIAL REGISTRATION: UMIN, UMIN000034566, registered 19 October 2018, https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000039393 .


Assuntos
Atresia Esofágica , Neoplasias Esofágicas , Estenose Esofágica , Humanos , Estenose Esofágica/etiologia , Estenose Esofágica/cirurgia , Atresia Esofágica/cirurgia , Atresia Esofágica/complicações , Constrição Patológica/complicações , Mucosa Bucal/transplante , Neoplasias Esofágicas/complicações , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/cirurgia , Resultado do Tratamento , Células Epiteliais/transplante , Estudos Retrospectivos
5.
Biol Res ; 56(1): 17, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37016436

RESUMO

BACKGROUND: Spontaneous spheroid culture is a novel three-dimensional (3D) culture strategy for the rapid and efficient selection of progenitor cells. The objectives of this study are to investigate the pluripotency and differentiation capability of spontaneous spheroids from alveolar bone-derived mesenchymal stromal cells (AB-MSCs); compare the advantages of spontaneous spheroids to those of mechanical spheroids; and explore the mechanisms of stemness enhancement during spheroid formation from two-dimensional (2D) cultured cells. METHODS: AB-MSCs were isolated from the alveolar bones of C57BL/6 J mice. Spontaneous spheroids formed in low-adherence specific culture plates. The stemness, proliferation, and multi-differentiation capacities of spheroids and monolayer cultures were investigated by reverse transcription quantitative polymerase chain reaction (RT-qPCR), immunofluorescence, alkaline phosphatase (ALP) activity, and oil-red O staining. The pluripotency difference between the spontaneous and mechanical spheroids was analyzed using RT-qPCR. Hypoxia-inducible factor (HIFs) inhibition experiments were performed to explore the mechanisms of stemness maintenance in AB-MSC spheroids. RESULTS: AB-MSCs successfully formed spontaneous spheroids after 24 h. AB-MSC spheroids were positive for MSC markers and pluripotency markers (Oct4, KLF4, Sox2, and cMyc). Spheroids showed higher Ki67 expression and lower Caspase3 expression at 24 h. Under the corresponding conditions, the spheroids were successfully differentiated into osteogenic and adipogenic lineages. AB-MSC spheroids can induce neural-like cells after neurogenic differentiation. Higher expression of osteogenic markers, adipogenic markers, and neurogenic markers (NF-M, NeuN, and GFAP) was found in spheroids than in the monolayer. Spontaneous spheroids exhibited higher stemness than mechanical spheroids did. HIF-1α and HIF-2α were remarkably upregulated in spheroids. After HIF-1/2α-specific inhibition, spheroid formation was significantly reduced. Moreover, the expression of the pluripotency genes was suppressed. CONCLUSIONS: Spontaneous spheroids from AB-MSCs enhance stemness and pluripotency. HIF-1/2α plays an important role in the stemness regulation of spheroids. AB-MSC spheroids exhibit excellent multi-differentiation capability, which may be a potent therapy for craniomaxillofacial tissue regeneration.


Assuntos
Células-Tronco Mesenquimais , Esferoides Celulares , Animais , Camundongos , Técnicas de Cultura de Células/métodos , Camundongos Endogâmicos C57BL , Células Cultivadas , Células-Tronco , Diferenciação Celular , Osteogênese/genética , Hipóxia/metabolismo
6.
Ocul Surf ; 27: 16-29, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586668

RESUMO

Rho kinase inhibitors (ROCKi) have attracted growing multidisciplinary interest, particularly in Ophthalmology where the question as to how they promote corneal endothelial healing remains unresolved. Concurrently, stem cell biology has rapidly progressed in unravelling drivers of stem cell (SC) proliferation and differentiation, where mechanical niche factors and the actin cytoskeleton are increasingly recognized as key players. There is mounting evidence from the study of the peripheral corneal endothelium that supports the likelihood of an internal limbal stem cell niche. The possibility that ROCKi stimulate the endothelial SC niche has not been addressed. Furthermore, there is currently a paucity of data that directly evaluates whether ROCKi promotes corneal endothelial healing by acting on this limbal SC niche located near the transition zone. Therefore, we performed a systematic review examining the effects ROCKi on the proliferation and differentiation of human somatic SC, to provide insight into its effects on various human SC populations. An appraisal of electronic searches of four databases identified 1 in vivo and 58 in vitro studies (36 evaluated proliferation while 53 examined differentiation). Types of SC studied included mesenchymal (n = 32), epithelial (n = 11), epidermal (n = 8), hematopoietic and other (n = 8). The ROCK 1/2 selective inhibitor Y-27632 was used in almost all studies (n = 58), while several studies evaluated ≥2 ROCKi (n = 4) including fasudil, H-1152, and KD025. ROCKi significantly influenced human somatic SC proliferation in 81% of studies (29/36) and SC differentiation in 94% of studies (50/53). The present systemic review highlights that ROCKi are influential in regulating human SC proliferation and differentiation, and provides evidence to support the hypothesis that ROCKi promotes corneal endothelial division and maintenance via acting on the inner limbal SC niche.


Assuntos
Células-Tronco Adultas , Epitélio Corneano , Limbo da Córnea , Humanos , Endotélio Corneano/metabolismo , Células-Tronco do Limbo , Diferenciação Celular , Proliferação de Células , Epitélio Corneano/metabolismo , Nicho de Células-Tronco
7.
Biol. Res ; 56: 17-17, 2023. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1439484

RESUMO

BACKGROUND: Spontaneous spheroid culture is a novel three-dimensional (3D) culture strategy for the rapid and efficient selection of progenitor cells. The objectives of this study are to investigate the pluripotency and differentiation capability of spontaneous spheroids from alveolar bone-derived mesenchymal stromal cells (AB-MSCs); compare the advantages of spontaneous spheroids to those of mechanical spheroids; and explore the mechanisms of stemness enhancement during spheroid formation from two-dimensional (2D) cultured cells. METHODS: AB-MSCs were isolated from the alveolar bones of C57BL/6 J mice. Spontaneous spheroids formed in low-adherence specific culture plates. The stemness, proliferation, and multi-differentiation capacities of spheroids and monolayer cultures were investigated by reverse transcription quantitative polymerase chain reaction (RT-qPCR), immunofluorescence, alkaline phosphatase (ALP) activity, and oil-red O staining. The pluripotency difference between the spontaneous and mechanical spheroids was analyzed using RT-qPCR. Hypoxia-inducible factor (HIFs) inhibition experiments were performed to explore the mechanisms of stemness maintenance in AB-MSC spheroids. RESULTS: AB-MSCs successfully formed spontaneous spheroids after 24 h. AB-MSC spheroids were positive for MSC markers and pluripotency markers (Oct4, KLF4, Sox2, and cMyc). Spheroids showed higher Ki67 expression and lower Caspase3 expression at 24 h. Under the corresponding conditions, the spheroids were successfully differentiated into osteogenic and adipogenic lineages. AB-MSC spheroids can induce neural-like cells after neurogenic differentiation. Higher expression of osteogenic markers, adipogenic markers, and neurogenic markers (NF-M, NeuN, and GFAP) was found in spheroids than in the monolayer. Spontaneous spheroids exhibited higher stemness than mechanical spheroids did. HIF-1α and HIF-2α were remarkably upregulated in spheroids. After HIF-1/2α-specific inhibition, spheroid formation was significantly reduced. Moreover, the expression of the pluripotency genes was suppressed. CONCLUSIONS: Spontaneous spheroids from AB-MSCs enhance stemness and pluripotency. HIF-1/2α plays an important role in the stemness regulation of spheroids. AB-MSC spheroids exhibit excellent multi-differentiation capability, which may be a potent therapy for craniomaxillofacial tissue regeneration.


Assuntos
Animais , Camundongos , Esferoides Celulares , Células-Tronco Mesenquimais , Osteogênese/genética , Células-Tronco , Diferenciação Celular , Células Cultivadas , Técnicas de Cultura de Células/métodos , Hipóxia/metabolismo , Camundongos Endogâmicos C57BL
8.
Front Cell Dev Biol ; 10: 954196, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407104

RESUMO

In recent decades, reproductive science has revolutionized the options for biological parenthood for the 20-50% of infertility cases affected by male factors. However, current solutions exclude those who are infertile due to absent testicular tissue. This includes anorchic 46, XY individuals due to trauma or congenital factors and transgender men with a 46, XX genotype. There is a clinical need for methods to restore testicular function independent of pre-existing testicular tissue. This mini-review analyzes studies that have applied non-testicular cell lines to generate germline and non-germline testicular parenchymal components. While only 46, XY cell lines have been evaluated in this context to date, the potential for future application of cell lines from 46, XX individuals is also included. Additionally, the role of varied culture methods, media supplementation, and biologic and synthetic scaffolds to further support testicular parenchyma generation are critiqued. De novo testicular tissue generation in this manner will require a focus on both cellular and environmental aspects of tissue engineering. Put together, these studies highlight the future potential for expanded clinical, reproductive, and endocrine management options for individuals who are currently excluded from aspects of biologic reproduction most consistent with their gender identity and reproductive preferences.

9.
Cell Mol Life Sci ; 79(11): 542, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36203068

RESUMO

Stem cells undergo cytokine-driven differentiation, but this process often takes longer than several weeks to complete. A novel mechanism for somatic stem cell differentiation via phagocytosing 'model cells' (apoptotic differentiated cells) was found to require only a short time frame. Pluripotent-like Muse cells, multipotent mesenchymal stem cells (MSCs), and neural stem cells (NSCs) phagocytosed apoptotic differentiated cells via different phagocytic receptor subsets than macrophages. The phagocytosed-differentiated cell-derived contents (e.g., transcription factors) were quickly released into the cytoplasm, translocated into the nucleus, and bound to promoter regions of the stem cell genomes. Within 24 ~ 36 h, the cells expressed lineage-specific markers corresponding to the phagocytosed-differentiated cells, both in vitro and in vivo. At 1 week, the gene expression profiles were similar to those of the authentic differentiated cells and expressed functional markers. Differentiation was limited to the inherent potential of each cell line: triploblastic-, adipogenic-/chondrogenic-, and neural-lineages in Muse cells, MSCs, and NSCs, respectively. Disruption of phagocytosis, either by phagocytic receptor inhibition via small interfering RNA or annexin V treatment, impeded differentiation in vitro and in vivo. Together, our findings uncovered a simple mechanism by which differentiation-directing factors are directly transferred to somatic stem cells by phagocytosing apoptotic differentiated cells to trigger their rapid differentiation into the target cell lineage.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Alprostadil , Anexina A5 , Diferenciação Celular , Citocinas , Fagocitose , RNA Interferente Pequeno , Fatores de Transcrição
10.
Materials (Basel) ; 15(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35888245

RESUMO

Alloplastic and xenogeneic bone grafting materials are frequently used for bone augmentation. The effect of these materials on precursor cells for bone augmentation is yet to be determined. The aim of this study was to ascertain, in vitro, how augmentation materials influence the growth rates and viability of human unrestricted somatic stem cells. The biocompatibility of two xenogeneic and one alloplastic bone graft was tested using human unrestricted somatic stem cells (USSCs). Proliferation, growth, survival and attachment of unrestricted somatic stem cells were monitored after 24 h, 48 h and 7 days. Furthermore, cell shape and morphology were evaluated by SEM. Scaffolds were assessed for their physical properties by Micro-CT imaging. USSCs showed distinct proliferation on the different carriers. Greatest proliferation was observed on the xenogeneic carriers along with improved viability of the cells. Pore sizes of the scaffolds varied significantly, with the xenogeneic materials providing greater pore sizes than the synthetic inorganic material. Unrestricted somatic stem cells in combination with a bovine collagenous bone block seem to be very compatible. A scaffold's surface morphology, pore size and bioactive characteristics influence the proliferation, attachment and viability of USSCs.

11.
BMC Cancer ; 22(1): 451, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468745

RESUMO

BACKGROUND: Nonclustered mouse protocadherin genes (Pcdh) encode proteins with a typical single ectodomain and a cytoplasmic domain with conserved motifs completely different from those of classic cadherins. Alternative splice isoforms differ in the size of these cytoplasmic domains. In view of the compelling evidence for gene silencing of protocadherins in human tumors, we started investigations on Pcdh functions in mouse cancer models. METHODS: For Pcdh10, we generated two mouse lines: one with floxed exon 1, leading to complete Pcdh10 ablation upon Cre action, and one with floxed exons 2 and 3, leading to ablation of only the long isoforms of Pcdh10. In a mouse medulloblastoma model, we used GFAP-Cre action to locally ablate Pcdh10 in combination with Trp53 and Rb1 ablation. From auricular tumors, that also arose, we obtained tumor-derived cell lines, which were analyzed for malignancy in vitro and in vivo. By lentiviral transduction, we re-expressed Pcdh10 cDNAs. RNA-Seq analyses were performed on these cell families. RESULTS: Surprisingly, not only medulloblastomas were generated in our model but also tumors of tagged auricles (pinnae). For both tumor types, ablation of either all or only long isoforms of Pcdh10 aggravated the disease. We argued that the perichondrial stem cell compartment is at the origin of the pinnal tumors. Immunohistochemical analysis of these tumors revealed different subtypes. We obtained several pinnal-tumor derived (PTD) cell lines and analyzed these for anchorage-independent growth, invasion into collagen matrices, tumorigenicity in athymic mice. Re-expression of either the short or a long isoform of Pcdh10 in two PTD lines counteracted malignancy in all assays. RNA-Seq analyses of these two PTD lines and their respective Pcdh10-rescued cell lines allowed to identify many interesting differentially expressed genes, which were largely different in the two cell families. CONCLUSIONS: A new mouse model was generated allowing for the first time to examine the remarkable tumor suppression activity of protocadherin-10 in vivo. Despite lacking several conserved motifs, the short isoform of Pcdh10 was fully active as tumor suppressor. Our model contributes to scrutinizing the complex molecular mechanisms of tumor initiation and progression upon PCDH10 silencing in many human cancers.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Animais , Apoptose/genética , Movimento Celular/genética , Proliferação de Células/genética , Humanos , Meduloblastoma/genética , Camundongos , Isoformas de Proteínas/genética , Protocaderinas
12.
Genes (Basel) ; 13(2)2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35205316

RESUMO

Nanos is a translational regulator that is involved in germline development in a number of diverse animals and is also involved in somatic patterning in several model organisms, including insects. Neither germline development nor somatic stem cell lines/undifferentiated multipotent cells have been characterized in the development of the annelid Alitta virens, nor is the mechanism of germ/stem-line specification generally well-understood in annelids. Here, I have cloned an Avi-nanos ortholog from A. virens and determined the spatial and temporal expression of Nanos. The results revealed that transcripts of nanos are expressed during differentiation of multiple tissues, including those that are derived from the 2d and 4d cells. In late embryonic stages and during larval development, these transcripts are expressed in the presumptive brain, ventral nerve cord, mesodermal bands, putative primordial germ cells (PGCs), and developing foregut and hindgut. During metamorphosis of the nectochaete larva into a juvenile worm, a posterior growth zone consisting of nanos-positive cells is established, and the PGCs begin to migrate. Later, the PGCs stop migrating and form a cluster of four nanos-expressing cells located immediately behind the jaws (segments 4-5). During posterior regeneration following caudal amputation, a robust Avi-nanos expression appears de novo at the site of injury and further accompanies all steps of regeneration. The obtained data suggest that blastemal cells are mostly derived from cells of the segment adjacent to the amputation site; this is consistent with the idea that the cluster of PGCs do not participate in regeneration.


Assuntos
Besouros , Poliquetos , Animais , Endoderma , Células Germinativas , Larva/genética , Mesoderma
13.
Stem Cell Res Ther ; 13(1): 35, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090534

RESUMO

BACKGROUND: Congenital esophageal atresia postoperative anastomotic stricture occurs in 30-50% of cases. Patients with severe dysphagia are treated with endoscopic balloon dilatation (EBD) and/or local injection of steroids, but many patients continue to experience frequent stricture. In this study, we investigated the transplantation of autologous oral mucosa-derived cell sheets (epithelial cell sheets) as a prophylactic treatment for congenital esophageal atresia postoperative anastomotic stricture. METHODS: Epithelial cell sheets were fabricated from a patient's oral epithelial tissue, and their safety was confirmed by quality control tests. The epithelial cell sheets were transported under controlled conditions from the fabrication facility to the transplantation facility and successfully transplanted onto the lacerations caused by EBD using a newly developed transplantation device for pediatric patients. The safety of the transplantation was confirmed by follow-up examinations over 48 weeks. RESULTS: The dates that EBD was performed were recorded for one year before and after epithelial cell sheet transplantation, and the intervals (in days) were evaluated. For about 6 months after transplantation, the intervals between EBDs were longer than in the year before transplantation. The patients were also aware of a reduction in dysphagia after transplantation. CONCLUSIONS: These results suggest that cell sheet transplantation may be effective in preventing anastomotic stricture after surgery for congenital esophageal atresia, but the effect was temporary and limited in this case. Although we chose a very severe case for the first human clinical study, it may be possible to obtain a more definitive effect if the transplantation is performed before the disease becomes so severe. Future studies are needed to identify cases in which cell sheet transplantation is most effective and to determine the appropriate timeframes for transplantation. TRIAL REGISTRATION: UMIN, UMIN000034566, registered 19 October 2018, https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000039393 .


Assuntos
Atresia Esofágica , Estenose Esofágica , Criança , Constrição Patológica/complicações , Constrição Patológica/terapia , Atresia Esofágica/complicações , Atresia Esofágica/cirurgia , Estenose Esofágica/prevenção & controle , Estenose Esofágica/cirurgia , Humanos , Mucosa Bucal/transplante , Estudos Retrospectivos , Resultado do Tratamento
14.
Cells ; 10(12)2021 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-34943845

RESUMO

Alkaline phosphatase (ALP) is a ubiquitous membrane-bound glycoprotein capable of providing inorganic phosphate by catalyzing the hydrolysis of organic phosphate esters, or removing inorganic pyrophosphate that inhibits calcification. In humans, four forms of ALP cDNA have been cloned, among which tissue-nonspecific ALP (TNSALP) (TNSALP) is widely distributed in the liver, bone, and kidney, making it an important marker in clinical and basic research. Interestingly, TNSALP is highly expressed in juvenile cells, such as pluripotent stem cells (i.e., embryonic stem cells and induced pluripotent stem cells (iPSCs)) and somatic stem cells (i.e., neuronal stem cells and bone marrow mesenchymal stem cells). Hypophosphatasia is a genetic disorder causing defects in bone and tooth development as well as neurogenesis. Mutations in the gene coding for TNSALP are thought to be responsible for the abnormalities, suggesting the essential role of TNSALP in these events. Moreover, a reverse-genetics-based study using mice revealed that TNSALP is important in bone and tooth development as well as neurogenesis. However, little is known about the role of TNSALP in the maintenance and differentiation of juvenile cells. Recently, it was reported that cells enriched with TNSALP are more easily reprogrammed into iPSCs than those with less TNSALP. Furthermore, in bone marrow stem cells, ALP could function as a "signal regulator" deciding the fate of these cells. In this review, we summarize the properties of ALP and the background of ALP gene analysis and its manipulation, with a special focus on the potential role of TNSALP in the generation (and possibly maintenance) of juvenile cells.


Assuntos
Fosfatase Alcalina/metabolismo , Diferenciação Celular , Animais , Humanos , Isoenzimas/metabolismo , Modelos Biológicos , Pesquisa , Transdução de Sinais
15.
Biomedicines ; 9(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34572409

RESUMO

New drug targets, markers of disease prognosis, and more efficient treatment options are an unmet clinical need in breast cancer (BC). We have conducted a pilot study including patients with luminal B stage breast cancer IIA-IIIB. The presence and frequency of various populations of cancer stem cells (CSC) and somatic stem cells were assessed in the blood, breast tumor tissue, and normal breast tissue. Our results suggest that patients with BC can be divided into two distinct groups based on the frequency of aldehyde dehydrogenase positive cells (ALDH1+ cells) in the blood (ALDH1hi and ALDH1low). In the ALDH1hi cells group, the tumor is dominated by epithelial tumor cells CD44+CD24low, CD326+CD44+CD24-, and CD326-CD49f+, while in the ALDH1low cells group, CSCs of mesenchymal origin and epithelial tumor cells (CD227+CD44+CD24- and CD44+CD24-CD49f+) are predominant. In vitro CSCs of the ALDH1low cells group expressing CD326 showed high resistance to cytostatics, CD227+ CSCs of the ALDH1hi cells group are sensitive to cytostatics. Epithelial precursors of a healthy mammary gland were revealed in normal breast tissue of patients with BC from both groups. The cells were associated with a positive effect of chemotherapy and remission in BC patients. Thus, dynamic control of their presence in blood and assessment of the sensitivity of CSCs to cytostatics in vitro can improve the effectiveness of chemotherapy in BC.

16.
Acta Pharm Sin B ; 11(7): 1697-1707, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34386316

RESUMO

Small intestine in vitro models play a crucial role in drug transport research. Although conventional 2D cell culture models, such as Caco-2 monolayer, possess many advantages, they should be interpreted with caution because they have relatively poor physiologically reproducible phenotypes and functions. With the development of 3D culture technology, pluripotent stem cells (PSCs) and adult somatic stem cells (ASCs) show remarkable self-organization characteristics, which leads to the development of intestinal organoids. Based on previous studies, this paper reviews the application of intestinal 3D organoids in drug transport mediated by P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance protein 2 (MRP2). The advantages and limitations of this model are also discussed. Although there are still many challenges, intestinal 3D organoid model has the potential to be an excellent tool for drug transport research.

17.
J Biosci Bioeng ; 132(5): 524-530, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34420897

RESUMO

Generally, the thickness of tubular tissues formed from silicone rods through encapsulation of the foreign-body reaction is less than approximately 0.2 mm. On the other hand, it is unclear how hollow cylindrical molds can provide thick tubular tissues, known as Biotubes, with a thickness exceeding 1 mm, during in-body tissue architecture (iBTA) using encapsulation. In this study, histological and structural analyses were performed to understand the reason for the formation of thick mold-based Biotubes. Molds were assembled with a gap between a silicone rod and a stainless-steel cylinder and were embedded into the dorsal subcutaneous pouches of beagles for 2 or 4 weeks. Thick Biotubes were obtained from the harvested mold. The histological analysis showed that the lumen side of the thick Biotubes consisted primarily of type I collagen fibers and α-smooth muscle actin-positive cells, similar to the original rod-based thin Biotubes formed only from silicone rods. Interestingly, the outer region of the thick Biotubes was an immature connective tissue consisting of type III collagen, including primitive somatic stem cells expressing CD90 and SSEA4. These stem cells may have contributed to the formation of the thick-walled Biotubes by differentiating into other cell types and through growth factor production. Because of the potential tissue-repair ability of these stem cells, iBTA could be useful for elucidating the regeneration process, remodeling the physiology/pathology of tissue defects/damage, and cell acquisition. This technology can provide autologous stem cells without in vitro cell culture. Moreover, thick-walled Biotubes may be useful as an alternative stem cell-containing material in regenerative medicine.


Assuntos
Células-Tronco Adultas , Prótese Vascular , Animais , Cães , Reação a Corpo Estranho , Silicones , Engenharia Tecidual
18.
Stem Cell Res Ther ; 12(1): 405, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34266496

RESUMO

BACKGROUND: Somatic stem cell transplantation has been performed for cartilage injury, but the reparative mechanisms are still conflicting. The chondrogenic potential of stem cells are thought as promising features for cartilage therapy; however, the correlation between their potential for chondrogenesis in vitro and in vivo remains undefined. The purpose of this study was to investigate the intrinsic chondrogenic condition depends on cell types and explore an indicator to select useful stem cells for cartilage regeneration. METHODS: The chondrogenic potential of two different stem cell types derived from adipose tissue (ASCs) and synovium (SSCs) of mice and humans was assessed using bone morphogenic protein-2 (BMP2) and transforming growth factor-ß1 (TGFß1). Their in vivo chondrogenic potential was validated through transplantation into a mouse osteochondral defect model. RESULTS: All cell types showed apparent chondrogenesis under the combination of BMP2 and TGFß1 in vitro, as assessed by the formation of proteoglycan- and type 2 collagen (COL2)-rich tissues. However, our results vastly differed with those observed following single stimulation among species and cell types; apparent chondrogenesis of mouse SSCs was observed with supplementation of BMP2 or TGFß1, whereas chondrogenesis of mouse ASCs and human SSCs was observed with supplementation of BMP2 not TGFß1. Human ASCs showed no obvious chondrogenesis following single stimulation. Mouse SSCs showed the formation of hyaline-like cartilage which had less fibrous components (COL1/3) with supplementation of TGFß1. However, human cells developed COL1/3+ tissues with all treatments. Transcriptomic analysis for TGFß receptors and ligands of cells prior to chondrogenic induction did not indicate their distinct reactivity to the TGFß1 or BMP2. In the transplanted site in vivo, mouse SSCs formed hyaline-like cartilage (proteoglycan+/COL2+/COL1-/COL3-) but other cell types mainly formed COL1/3-positive fibrous tissues in line with in vitro reactivity to TGFß1. CONCLUSION: Optimal chondrogenic factors driving chondrogenesis from somatic stem cells are intrinsically distinct among cell types and species. Among them, the response to TGFß1 may possibly represent the fate of stem cells when locally transplanted into cartilage defects.


Assuntos
Condrogênese , Células-Tronco , Tecido Adiposo , Animais , Cartilagem , Diferenciação Celular , Células Cultivadas , Humanos , Camundongos
19.
Biol Proced Online ; 23(1): 12, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34116635

RESUMO

BACKGROUND: Expression of stemness factors, such as octamer-binding transcription factor 3/4 (OCT3/4), sex determining region Y-box 2 (SOX2), and alkaline phosphatase (ALP) in human deciduous tooth-derived dental pulp cells (HDDPCs) can be assessed through fixation and subsequent immuno- or cytochemical staining. Fluorescence-activated cell sorting (FACS), a powerful system to collect cells of interest, is limited by the instrument cost and difficulty in handling. Magnetic-activated cell sorting is inexpensive compared to FACS, but is confined to cells with surface expression of the target molecule. In this study, a simple and inexpensive method was developed for the molecular analysis of immuno- or cytochemically stained cells with intracellular expression of a target molecule, through isolation of a few cells under a dissecting microscope using a mouthpiece-controlled micropipette. RESULTS: Two or more colored cells (~ 10), after staining with a chromogen such a 3,3'-diaminobenzidine, were successfully segregated from unstained cells. Expression of glyceraldehyde 3-phosphate dehydrogenase, a housekeeping gene, was discernible in all samples, while the expression of stemness genes (such as OCT3/4, SOX2, and ALP) was confined to positively stained cells. CONCLUSION: These findings indicate the fidelity of these approaches in profiling cells exhibiting cytoplasmic or nuclear localization of stemness-specific gene products at a small-scale.

20.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073743

RESUMO

The Jun N-terminal kinase (JNK) pathway is an evolutionary conserved kinase cascade best known for its roles during stress-induced apoptosis and tumor progression. Recent findings, however, have identified new roles for this pleiotropic pathway in stem cells during regenerative responses and in cellular plasticity. Here, we provide an overview of recent findings about the new roles of JNK signaling in stem cell biology using two well-established Drosophila models: the testis and the intestine. We highlight the pathway's roles in processes such as proliferation, death, self-renewal and reprogramming, and discuss the known parallels between flies and mammals.


Assuntos
Drosophila/metabolismo , Homeostase , Sistema de Sinalização das MAP Quinases , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Drosophila/fisiologia , Feminino , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA