RESUMO
Age-related macular degeneration (AMD) and related macular dystrophies (MDs) primarily affect the retinal pigment epithelium (RPE) in the eye. A hallmark of AMD/MDs that drives later-stage pathologies is drusen. Drusen are sub-RPE lipid-protein-rich extracellular deposits, but how drusen forms and accumulates is not known. We utilized human induced pluripotent stem cell (iPSC)-derived RPE from patients with AMD and three distinct MDs to demonstrate that reduced activity of RPE-secreted matrix metalloproteinase 2 (MMP2) contributes to drusen in multiple maculopathies in a genotype-agnostic manner by instigating sterile inflammation and impaired lipid homeostasis via damage-associated molecular pattern molecule (DAMP)-mediated activation of receptor for advanced glycation end-products (RAGE) and increased secretory phospholipase 2-IIA (sPLA2-IIA) levels. Therapeutically, RPE-specific MMP2 supplementation, RAGE-antagonistic peptide, and a small molecule inhibitor of sPLA2-IIA ameliorated drusen accumulation in AMD/MD iPSC-RPE. Ultimately, this study defines a causal role of the MMP2-DAMP-RAGE-sPLA2-IIA axis in AMD/MDs.
RESUMO
Macular dystrophies (MDs) constitute a collection of hereditary retina disorders leading to notable visual impairment, primarily due to progressive macular atrophy. These conditions are distinguished by bilateral and relatively symmetrical abnormalities in the macula that significantly impair central visual function. Recent strides in fundus imaging, especially optical coherence tomography (OCT), have enhanced our comprehension and diagnostic capabilities for MD. OCT enables the identification of neurosensory retinal disorganization patterns and the extent of damage to retinal pigment epithelium (RPE) and photoreceptor cells in the dystrophies before visible macular pathology appears on fundus examinations. It not only helps us in diagnostic retinal and choroidal pathologies but also guides us in monitoring the progression of, staging of, and response to treatment. In this review, we summarize the key findings on OCT in some of the most common MD.
RESUMO
Sorsby macular dystrophy is an autosomal dominant disorder secondary to heterozygous mutations in the TIMP3 gene in 22q12. It begins with fine, pale, drusen-like deposits or confluent, faint yellow material or sheets beneath the retinal pigment epithelium, but it eventually progresses to either geographic atrophy with pigmentary clumps or scars due to the choroidal neovascular membrane around the fourth decade of life. We describe a patient who presented with a progressive loss of unilateral visual acuity, wrongly suggesting an infectious or inflammatory disease.
RESUMO
We aim to report the ocular phenotype and molecular genetic findings in two Czech families with Sorsby fundus dystrophy and to review all the reported TIMP3 pathogenic variants. Two probands with Sorsby fundus dystrophy and three first-degree relatives underwent ocular examination and retinal imaging, including optical coherence tomography angiography. The DNA of the first proband was screened using a targeted ocular gene panel, while, in the second proband, direct sequencing of the TIMP3 coding region was performed. Sanger sequencing was also used for segregation analysis within the families. All the previously reported TIMP3 variants were reviewed using the American College of Medical Genetics and the Association for Molecular Pathology interpretation framework. A novel heterozygous variant, c.455A>G p.(Tyr152Cys), in TIMP3 was identified in both families and potentially de novo in one. Optical coherence tomography angiography documented in one patient the development of a choroidal neovascular membrane at 54 years. Including this study, 23 heterozygous variants in TIMP3 have been reported as disease-causing. Application of gene-specific criteria denoted eleven variants as pathogenic, eleven as likely pathogenic, and one as a variant of unknown significance. Our study expands the spectrum of TIMP3 pathogenic variants and highlights the importance of optical coherence tomography angiography for early detection of choroidal neovascular membranes.
Assuntos
Neovascularização de Coroide , Degeneração Macular , Humanos , República Tcheca , Olho , Mutação , Inibidor Tecidual de Metaloproteinase-3/genéticaRESUMO
Inherited retinal diseases (IRD) are a leading cause of blindness in the working age population and in children. The scope of this review is to familiarise clinicians and scientists with the current landscape of molecular genetics, clinical phenotype, retinal imaging and therapeutic prospects/completed trials in IRD. Herein we present in a comprehensive and concise manner: (i) macular dystrophies (Stargardt disease (ABCA4), X-linked retinoschisis (RS1), Best disease (BEST1), PRPH2-associated pattern dystrophy, Sorsby fundus dystrophy (TIMP3), and autosomal dominant drusen (EFEMP1)), (ii) cone and cone-rod dystrophies (GUCA1A, PRPH2, ABCA4, KCNV2 and RPGR), (iii) predominant rod or rod-cone dystrophies (retinitis pigmentosa, enhanced S-Cone syndrome (NR2E3), Bietti crystalline corneoretinal dystrophy (CYP4V2)), (iv) Leber congenital amaurosis/early-onset severe retinal dystrophy (GUCY2D, CEP290, CRB1, RDH12, RPE65, TULP1, AIPL1 and NMNAT1), (v) cone dysfunction syndromes (achromatopsia (CNGA3, CNGB3, PDE6C, PDE6H, GNAT2, ATF6), X-linked cone dysfunction with myopia and dichromacy (Bornholm Eye disease; OPN1LW/OPN1MW array), oligocone trichromacy, and blue-cone monochromatism (OPN1LW/OPN1MW array)). Whilst we use the aforementioned classical phenotypic groupings, a key feature of IRD is that it is characterised by tremendous heterogeneity and variable expressivity, with several of the above genes associated with a range of phenotypes.
Assuntos
Oftalmopatias Hereditárias , Doenças Retinianas , Humanos , Distrofias de Cones e Bastonetes/genética , Distrofias de Cones e Bastonetes/fisiopatologia , Oftalmopatias Hereditárias/genética , Oftalmopatias Hereditárias/fisiopatologia , Genótipo , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/terapia , Amaurose Congênita de Leber/fisiopatologia , Biologia Molecular , Fenótipo , Doenças Retinianas/genética , Doenças Retinianas/fisiopatologia , Doenças Retinianas/terapiaRESUMO
Inherited retinal diseases (IRDs) are the most common cause of blindness in working-age adults. Macular neovascularization (MNV) may be a presenting feature or occurs as a late-stage complication in several IRDs. We performed an extensive literature review on MNV associated with IRDs. MNV is a well-known complication of Sorsby fundus dystrophy and pseudoxanthoma elasticum. Those with late-onset Stargardt disease may masquerade as exudative age-related macular degeneration (AMD) when MNV is the presenting feature. Peripherinopathies may develop MNV that responds well to a short course of anti-vascular endothelial growth factor (anti-VEGF) therapy, while bestrophinopathies tend to develop MNV in the early stages of the disease without vision loss. Enhanced S-cone syndrome manifests type 3 MNV that typically regresses into a subfoveal fibrotic nodule. MNV is only a rare complication in choroideraemia and rod-cone dystrophies. Most IRD-related MNVs exhibit a favorable visual prognosis requiring less intensive regimens of anti-vascular endothelial growth factor therapy compared to age-related macular degeneration. We discuss the role of key imaging modalities in the diagnosis of MNV across a wide spectrum of IRDs and highlight the gaps in our knowledge with respect to the natural history and prognosis to pave the way for future directions of research.
Assuntos
Neovascularização de Coroide , Degeneração Macular , Degeneração Retiniana , Neovascularização Retiniana , Adulto , Humanos , Fatores de Crescimento Endotelial , Retina , Degeneração Macular/complicações , Degeneração Macular/diagnóstico , Degeneração Retiniana/complicações , Neovascularização Patológica , Angiofluoresceinografia , Tomografia de Coerência Óptica , Estudos Retrospectivos , Neovascularização Retiniana/complicaçõesRESUMO
Inherited retinal dystrophies (IRDs) as well as genetically complex retinal phenotypes represent a heterogenous group of ocular diseases, both on account of their phenotypic and genotypic characteristics. Therefore, overlaps in clinical features often complicate or even impede their correct clinical diagnosis. Deciphering the molecular basis of retinal diseases has not only aided in their disease classification but also helped in our understanding of how different molecular pathologies may share common pathomechanisms. In particular, these relate to dysregulation of two key processes that contribute to cellular integrity, namely extracellular matrix (ECM) homeostasis and inflammation. Pathological changes in the ECM of Bruch's membrane have been described in both monogenic IRDs, such as Sorsby fundus dystrophy (SFD) and Doyne honeycomb retinal dystrophy (DHRD), as well as in the genetically complex age-related macular degeneration (AMD) or diabetic retinopathy (DR). Additionally, complement system dysfunction and distorted immune regulation may also represent a common connection between some IRDs and complex retinal degenerations. Through highlighting such overlaps in molecular pathology, this review aims to illuminate how inflammatory processes and ECM homeostasis are linked in the healthy retina and how their interplay may be disturbed in aging as well as in disease.
Assuntos
Degeneração Macular , Drusas do Disco Óptico , Humanos , Degeneração Macular/genética , Retina/patologia , Drusas do Disco Óptico/patologia , Inflamação/patologiaRESUMO
Macular dystrophies are a heterogeneous group of genetic disorders that often severely threatens the bilateral central vision of the affected patient. While advances in molecular genetics have been instrumental in the understanding and diagnosis of these disorders, there remains significant phenotypical variation among patients within any particular subset of macular dystrophies. Electrophysiological testing remains a vital tool not only to characterize vision loss for differential diagnosis but also to understand the pathophysiology of these disorders and to monitor the treatment effect, potentially leading to therapeutic advances. This review summarizes the application of electrophysiological testing in macular dystrophies, including Stargardt disease, bestrophinopathies, X-linked retinoschisis, Sorsby fundus dystrophy, Doyne honeycomb retina dystrophy, autosomal dominant drusen, occult macular dystrophy, North Carolina macular dystrophy, pattern dystrophy, and central areolar choroidal dystrophy.
RESUMO
Sorsby Fundus Dystrophy (SFD) is a rare form of macular degeneration that is clinically similar to age-related macular degeneration (AMD), and a histologic hallmark of SFD is a thick layer of extracellular deposits beneath the retinal pigment epithelium (RPE). Previous studies of SFD patient-induced pluripotent stem cell (iPSC) derived RPE differ as to whether these cultures recapitulate this key clinical feature by forming increased drusenoid deposits. The primary purpose of this study is to examine whether SFD patient-derived iPSC-RPE form basal deposits similar to what is found in affected family member SFD globes and to determine whether SFD iPSC RPE may be more oxidatively stressed. We performed a careful comparison of iPSC RPE from three control individuals, multiple iPSC clones from two SFD patients' iPSC RPE, and post-mortem eyes of affected SFD family members. We also examined the effect of CRISPR-Cas9 gene correction of the S204C TIMP3 mutation on RPE phenotype. Finally, targeted metabolomics with liquid chromatography and mass spectrometry analysis and stable isotope-labeled metabolite analysis were performed to determine whether SFD RPE are more oxidatively stressed. We found that SFD iPSC-RPE formed significantly more sub-RPE deposits (â¼6-90 µm in height) compared to control RPE at 8 weeks. These deposits were similar in composition to the thick layer of sub-RPE deposits found in SFD family member globes by immunofluorescence staining and TEM imaging. S204C TIMP3 correction by CRISPR-Cas9 gene editing in SFD iPSC RPE cells resulted in significantly reduced basal laminar and sub-RPE calcium deposits. We detected a â¼18-fold increase in TIMP3 accumulation in the extracellular matrix (ECM) of SFD RPE, and targeted metabolomics showed that intracellular 4-hydroxyproline, a major breakdown product of collagen, is significantly elevated in SFD RPE, suggesting increased ECM turnover. Finally, SFD RPE cells have decreased intracellular reduced glutathione and were found to be more vulnerable to oxidative stress. Our findings suggest that elements of SFD pathology can be demonstrated in culture which may lead to insights into disease mechanisms.
Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Macular , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismoRESUMO
PURPOSE: The aim of the study was to quantify choriocapillaris (CC) flow alterations in early Sorsby fundus dystrophy (SFD) and to investigate the relationship of the CC flow deficits with the choroidal and outer retinal microstructure. METHODS: In this prospective case-control study, 18 eyes of 11 patients with early SFD and 31 eyes of 31 controls without ocular pathology underwent multimodal imaging, including spectral-domain optical coherence tomography (OCT), followed by deep-learning-based layer segmentation. OCT angiography (OCTA) was performed to quantify CC flow signal deficits (FDs). Differences in CC FD density between SFD patients and controls were determined, and the relationships with choroidal thickness, retinal pigment epithelium-drusen complex (RPEDC) thickness and outer retinal layer thicknesses were analyzed using mixed-model analysis. RESULTS: SFD patients exhibited a significantly greater CC FD density than controls (estimate [95% CI]: +20.0%FD [13.3; 26.7], p < 0.001 for SFD patients), even when adjusted for age. Square-root transformed choroidal thickness was a structural OCT surrogate of the CC FD density (-2.1%FD per âµm, p < 0.001), whereas RPEDC thickness was not informative regarding CC FD (p = 0.061). The CC FD density was associated with an altered microstructure of the overlying photoreceptors (outer segments, inner segments, and outer nuclear layer thinning of -0.19 µm, -0.08 µm and -0.30 µm per %FD, respectively, all p < 0.001). CONCLUSIONS: Patients with early SFD exhibit pronounced abnormalities of CC flow signal on OCTA, which are not limited to areas of sub-RPE deposits seen on OCT imaging. Thus, analysis of the CC flow may enable clinical trials at earlier disease stages in SFD.
Assuntos
Corioide , Tomografia de Coerência Óptica , Estudos de Casos e Controles , Angiofluoresceinografia/métodos , Humanos , Degeneração Macular , Tomografia de Coerência Óptica/métodosRESUMO
PURPOSE: To elucidate morphological determinants of rod and cone dysfunction in Sorsby fundus dystrophy (SFD), and to systematically compare visual function tests for interventional trials. DESIGN: Prospective cross-sectional study. METHODS: Patients with SFD (n = 16) and controls (n = 20) underwent visual function testing (best-corrected visual acuity [BCVA] and low luminance visual acuity [LLVA], contrast sensitivity, mesopic and dark-adapted (DA) fundus-controlled perimetry [FCP], rod-mediated dark adaptation [RMDA]), and multimodal imaging. Vision-related quality of life was evaluated. FCP and RMDA thresholds were analyzed using mixed models and structure-function correlation using machine learning (ML). Longitudinal data of 1 patient with high-dose vitamin A supplementation were available. RESULTS: Although photopic BCVA was normative in SFD, LLVA was impaired (0.30 LogMAR [0.20; 0.45] vs 0.20 LogMAR [0.03; 0.28], P < .05). Scotopic visual function exhibited a delayed rod-intercept time (21 minutes [12.15; 21] vs 4.05 minutes [3.22; 5.36], P < .001), and marked DA cyan mean sensitivity loss (-11.80 dB [-3.47; -19.85]), paralleled by a reduced vision-related quality of life. ML-based structure-function correlation allowed prediction of mesopic, DA cyan, and red sensitivity with high accuracy (cross-validated mean absolute error: 4.36, 7.77, and 5.31 dB, respectively), whereas RMDA could be slowed even in the absence of fundus alterations on multimodal imaging. After high-dose vitamin A supplementation, RMDA and DA thresholds improved markedly. CONCLUSIONS: Patients with SFD exhibit severely impaired scotopic visual function even in the absence of funduscopic alterations on multimodal imaging. In contrast to BCVA, scotopic visual function tests are suitable to quantify dysfunction in the early stages. Improvement of scotopic dysfunction after (off-label) high-dose vitamin A intake, as observed in one patient in our study, is compatible with the hypothesized local deficiency of vitamin A secondary to Bruch's membrane alterations.
Assuntos
Qualidade de Vida , Campos Visuais , Estudos Transversais , Adaptação à Escuridão , Humanos , Estudos Prospectivos , Acuidade Visual , Testes de Campo Visual/métodosRESUMO
The aim of this paper is to summarise our own and to review published experience regarding the long-term outcome of intravitreal treatment for macular neovascularisation (MNV) secondary to Sorsby's fundus dystrophy (SFD). A systematic literature search using the MeSH terms [Sorsby] and [anti-vascular endothelial growth factor (VEGF)] was conducted in NCBI/PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), ScienceDirect, Google Scholar and ClinicalTrials.gov to identify publications reporting anti-VEGF treatment outcomes in SFD. Treatment outcomes were extracted for this meta-analysis from 14 publications and an own patient reporting a total of 31 cases with a mean follow-up (FU) of 54 months. Both eyes were affected in ten (32.3%) instances. Heterogenous reporting limited the comparability of the outcomes. All papers in common, however, reported satisfied to excellent responses to anti-VEGF therapy if patients were diagnosed and treated immediately after onset of symptoms. Of 20 eyes, for which visual acuity was reported before and after treatment, five worsened and seven improved by more than 1 line, whereas eight eyes maintained their function by end of the follow up, and 11 eyes (55%) maintained a driving vision (Snellen VA ≥ 0.5). Of six eyes with a VA < 0.5, VA improved in one to VA ≥ 0.5, whereas of 14 eyes with an initial VA ≥ 0.5, this dropped to <0.5 despite therapy. In MNV secondary to SFD, the delay between first symptoms and access to anti-VEGF treatment determines subretinal scar formation and thereby, functional prognosis. If treated early, this is generally favourable under regular controls and a consequent anti-VEGF treatment of MNV activity.
RESUMO
The retinal pigment epithelium (RPE)-choriocapillaris (CC) complex in the eye is compromised in age-related macular degeneration (AMD) and related macular dystrophies (MDs), yet in vitro models of RPE-CC complex that enable investigation of AMD/MD pathophysiology are lacking. By incorporating iPSC-derived cells into a hydrogel-based extracellular matrix, we developed a 3D RPE-CC model that recapitulates key features of both healthy and AMD/MD eyes and provides modular control over RPE and CC layers. Using this 3D RPE-CC model, we demonstrated that both RPE- and mesenchyme-secreted factors are necessary for the formation of fenestrated CC-like vasculature. Our data show that choroidal neovascularization (CNV) and CC atrophy occur in the absence of endothelial cell dysfunction and are not necessarily secondary to drusen deposits underneath RPE cells, and CC atrophy and/or CNV can be initiated systemically by patient serum or locally by mutant RPE-secreted factors. Finally, we identify FGF2 and matrix metalloproteinases as potential therapeutic targets for AMD/MDs.
Assuntos
Doenças da Coroide , Células-Tronco Pluripotentes Induzidas , Degeneração Macular , Corioide , Humanos , Epitélio Pigmentado da RetinaRESUMO
Sorsby Fundus Dystrophy (SFD) is a rare inherited autosomal dominant macular degeneration caused by specific mutations in TIMP3. Patients with SFD present with pathophysiology similar to the more common Age-related Macular Degeneration (AMD) and loss of vision due to both choroidal neovascularization and geographic atrophy. Previously, it has been shown that RPE degeneration in AMD is due in part to oxidative stress. We hypothesized that similar mechanisms may be at play in SFD. The objective of this study was to evaluate whether mice carrying the S179C-Timp3 mutation, a variant commonly observed in SFD, showed increased sensitivity to oxidative stress. Antioxidant genes are increased at baseline in the RPE in SFD mouse models, but not in the retina. This suggests the presence of a pro-oxidant environment in the RPE in the presence of Timp3 mutations. To determine if the RPE of Timp3 mutant mice is more susceptible to degeneration when exposed to low levels of oxidative stress, mice were injected with low doses of sodium iodate. The RPE and photoreceptors in Timp3 mutant mice degenerated at low doses of sodium iodate, which had no effect in wildtype control mice. These studies suggest that TIMP3 mutations may result in a dysregulation of pro-oxidant-antioxidant homeostasis in the RPE, leading to RPE degeneration in SFD.
Assuntos
Degeneração Macular , Estresse Oxidativo , Epitélio Pigmentado da Retina , Animais , Humanos , Degeneração Macular/genética , Camundongos , Mutação , Estresse Oxidativo/genética , Retina , Inibidores Teciduais de Metaloproteinases , Inibidor Tecidual 4 de MetaloproteinaseRESUMO
BACKGROUND: Sorsby Fundus Dystrophy is an inherited macular degeneration caused by pathogenic variants in the TIMP3 gene. Clinical exam findings typically drusen -like deposits beneath the RPE or reticular pseudo drusen deposits above the RPE with a majority of patients developing choroidal neovascularization. MATERIALS AND METHODS: Case report of two members of a family that present with atypical clinical exam findings. Protein modeling of the novel Y137CTIMP3 variant was performed and compared with other known variants. RESULTS: In this study we describe a father and son initially diagnosed with retinitis pigmentosa of unknown genetic origin. More recent genetic testing of the patients, identified a novel c.410A>G; p.Tyr137Cys variant of uncertain clinical significance in the Tissue Inhibitor of Metalloproteinase-3 (TIMP3) gene. The atypical clinical findings led us to compare the theoretical molecular effects of this variant on the TIMP3 protein structure and interactions with other proteins using homology modeling and machine learning predictions. CONCLUSIONS: It is important to consider mutations in TIMP3 in atypical cases of Retinitis Pigmentosa particularly in the absence of known variants.
Assuntos
Mutação , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Inibidor Tecidual de Metaloproteinase-3/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , FenótipoRESUMO
Sorsby fundus dystrophy (SFD) is a rare autosomal dominant disease of the macula that leads to bilateral loss of central vision and is caused by mutations in the TIMP3 gene. However, the mechanisms by which TIMP3 mutations cause SFD are poorly understood. Here, we generated human induced pluripotent stem cell-derived retinal pigmented epithelial (hiPSC-RPE) cells from three SFD patients carrying TIMP3 p.(Ser204Cys) and three non-affected controls to study disease-related structural and functional differences in the RPE. SFD-hiPSC-RPE exhibited characteristic RPE structure and physiology but showed significantly reduced transepithelial electrical resistance associated with enriched expression of cytoskeletal remodelling proteins. SFD-hiPSC-RPE exhibited basolateral accumulation of TIMP3 monomers, despite no change in TIMP3 gene expression. TIMP3 dimers were observed in both SFD and control hiPSC-RPE, suggesting that mutant TIMP3 dimerisation does not drive SFD pathology. Furthermore, mutant TIMP3 retained matrix metalloproteinase activity. Proteomic profiling showed increased expression of ECM proteins, endothelial cell interactions and angiogenesis-related pathways in SFD-hiPSC-RPE. By contrast, there were no changes in VEGF secretion. However, SFD-hiPSC-RPE secreted higher levels of monocyte chemoattractant protein 1, PDGF and angiogenin. Our findings provide a proof-of-concept that SFD patient-derived hiPSC-RPE mimic mature RPE cells and support the hypothesis that excess accumulation of mutant TIMP3, rather than an absence or deficiency of functional TIMP3, drives ECM and angiogenesis-related changes in SFD. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Degeneração Macular/patologia , Epitélio Pigmentado da Retina/patologia , Inibidor Tecidual de Metaloproteinase-3/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Adulto , Células Cultivadas , Feminino , Humanos , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas , Degeneração Macular/genética , Degeneração Macular/metabolismo , Pessoa de Meia-Idade , Mutação , Estudo de Prova de Conceito , Epitélio Pigmentado da Retina/metabolismoRESUMO
Sorsby's fundus dystrophy (SFD) is an inherited blinding disorder caused by mutations in the tissue inhibitor of metalloproteinase-3 (TIMP3) gene. The SFD pathology of macular degeneration with subretinal deposits and choroidal neovascularization (CNV) closely resembles that of the more common age-related macular degeneration (AMD). The objective of this study was to gain further insight into the molecular mechanism(s) by which mutant TIMP3 induces CNV. In this study we demonstrate that hyaluronan (HA), a large glycosaminoglycan, is elevated in the plasma and retinal pigment epithelium (RPE)/choroid of patients with AMD. Mice carrying the S179C-TIMP3 mutation also showed increased plasma levels of HA as well as accumulation of HA around the RPE in the retina. Human RPE cells expressing the S179C-TIMP3 mutation accumulated HA apically, intracellularly and basally when cultured long-term compared with cells expressing wildtype TIMP3. We recently reported that RPE cells carrying the S179C-TIMP3 mutation have the propensity to induce angiogenesis via basic fibroblast growth factor (FGF-2). We now demonstrate that FGF-2 induces accumulation of HA in RPE cells. These results suggest that the TIMP3-MMP-FGF-2-HA axis may have an important role in the pathogenesis of CNV in SFD and possibly AMD.
Assuntos
Neovascularização de Coroide/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Degeneração Macular/metabolismo , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Células Cultivadas , Neovascularização de Coroide/genética , Humanos , Degeneração Macular/genética , Degeneração Macular/patologia , Mutação/genética , Retina/metabolismo , Retina/patologiaRESUMO
PURPOSE: To describe long-term outcomes with intravitreal Bevacizumab for choroidal neovascularization secondary to Sorsby fundus dystrophy. MATERIALS/METHODS: Observational case series. RESULTS: Two sisters of the same family formally diagnosed with Sorsby fundus dystrophy were followed-up for 12 years. The elder sister (S1) presented with significant decline in vision due to choroidal neovascularization in her right eye (OD). She developed choroidal neovascularization 3 years later in her left eye (OS). She was treated with Bevacizumab intravitreal injections on a on a pro-re-nata (PRN) until April 2015, when a treat-and-extend (T&E) approach was adopted. Best corrected visual acuities at the time of switch to T&E were 1.09 OD and 0.85 LogMar OS. Best corrected visual acuities at the last follow-up were LogMar 1.1 OD and 0.82 OS. Her younger sister (S2) presented with best corrected visual acuities of LogMar 0.1 OD and 0.0 OS. She developed choroidal neovascularization 5 years later in both eyes. OS developed choroidal neovascularization 18 months after her right eye. She received Bevacizumab on a pro re nata basis until April 2015 when a switch to a T&E was performed. Best corrected visual acuity in the left eye at the switch to T&E was 0.34 LogMar. At the last follow-up, best corrected visual acuities were LogMar 1.2 OD and 0.29 OS. CONCLUSION: Bevacizumab is an effective therapy for choroidal neovascularization secondary to Sorsby fundus dystrophy. A T&E protocol appears more effective compared to pro re nata protocol in minimizing recurrence of choroidal neovascularization with potential secondary scar formation or atrophy.
Assuntos
Inibidores da Angiogênese/uso terapêutico , Bevacizumab/uso terapêutico , Neovascularização de Coroide/tratamento farmacológico , Degeneração Macular/complicações , Adulto , Neovascularização de Coroide/diagnóstico , Neovascularização de Coroide/etiologia , Protocolos Clínicos , Feminino , Angiofluoresceinografia , Humanos , Injeções Intravítreas , Degeneração Macular/diagnóstico , Pessoa de Meia-Idade , Imagem Multimodal , Retratamento , Estudos Retrospectivos , Irmãos , Tomografia de Coerência Óptica , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Acuidade Visual/fisiologiaRESUMO
Macular dystrophies (MDs) consist of a heterogeneous group of disorders that are characterised by bilateral symmetrical central visual loss. Advances in genetic testing over the last decade have led to improved knowledge of the underlying molecular basis. The developments in high-resolution multimodal retinal imaging have also transformed our ability to make accurate and more timely diagnoses and more sensitive quantitative assessment of disease progression, and allowed the design of optimised clinical trial endpoints for novel therapeutic interventions. The aim of this review was to provide an update on MDs, including Stargardt disease, Best disease, X-linked r etinoschisis, pattern dystrophy, Sorsby fundus dystrophy and autosomal dominant drusen. It highlights the range of innovations in retinal imaging, genotype-phenotype and structure-function associations, animal models of disease and the multiple treatment strategies that are currently in clinical trial or planned in the near future, which are anticipated to lead to significant changes in the management of patients with MDs.
Assuntos
Diagnóstico por Imagem , Degeneração Macular , Biologia Molecular , Terapêutica , Humanos , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/genética , Degeneração Macular/terapiaRESUMO
Tissue inhibitor of metalloproteinase-3 (TIMP-3) is a component of the extracellular environment, where it mediates diverse processes including matrix regulation/turnover, inflammation and angiogenesis. Rare TIMP-3 risk alleles and mutations are directly linked with retinopathies such as age-related macular degeneration (AMD) and Sorsby fundus dystrophy, and potentially, through indirect mechanisms, with Alzheimer's disease. Insights into TIMP-3 activities may be gleaned from studying Sorsby-linked mutations. However, recent findings do not fully support the prevailing hypothesis that a gain of function through the dimerisation of mutated TIMP-3 is responsible for retinopathy. Findings from Alzheimer's patients suggest a hitherto poorly studied relationship between TIMP-3 and the Alzheimer's-linked amyloid-beta (Aï¢) proteins that warrant further scrutiny. This may also have implications for understanding AMD as aged/diseased retinae contain high levels of Aï¢. Findings from TIMP-3 knockout and mutant knock-in mice have not led to new treatments, particularly as the latter does not satisfactorily recapitulate the Sorsby phenotype. However, recent advances in stem cell and in vitro approaches offer novel insights into understanding TIMP-3 pathology in the retina-brain axis, which has so far not been collectively examined. We propose that TIMP-3 activities could extend beyond its hitherto supposed functions to cause age-related changes and disease in these organs.