Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
ACS Nano ; 17(17): 16952-16959, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37585264

RESUMO

All-dielectric optical metasurfaces can locally control the amplitude and phase of light at the nanoscale, enabling arbitrary wavefront shaping. However, lack of postfabrication tunability has limited the true potential of metasurfaces for many applications. Here, we utilize a thin liquid crystal (LC) layer as a tunable medium surrounding the metasurface to achieve a phase-only spatial light modulator (SLM) with high reflection in the visible frequency, exhibiting active and continuous resonance tuning with associated 2π phase control and uncoupled amplitude. Dynamic wavefront shaping is demonstrated by programming 96 individually addressable electrodes with a small pixel pitch of ∼1 µm. The small pixel size is facilitated by the reduced LC thickness, strongly suppressing cross-talk among pixels. This device is used to demonstrate dynamic beam steering with a wide field-of-view and high absolute diffraction efficiencies. We believe that our demonstration may help realize next-generation, high-resolution SLMs, with wide applications in dynamic holography, tunable optics, and light detection and ranging (LiDAR), to mention a few.

2.
Nano Lett ; 23(7): 2898-2904, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36921228

RESUMO

Optical microscopy plays a critical role in the fabrication of two-dimensional (2D) van der Waals heterostructures. An outstanding challenge in conventional microscopy is to visualize transparent 2D layers as well as embedded monolayers in a stacked heterostructure with high optical contrast. Phase-contrast microscopy, first developed by Frits Zernike in the 1930s, leverages the interference effect between specimen scattered light and background light to increase the contrast of transparent specimens. Such phase-contrast microscopy, always in a transmission configuration, revolutionized the study of transparent cellular structures in biology. Here, we develop a versatile reflective phase-contrast microscopy for imaging 2D heterostructures. We employ two spatial light modulators to flexibly control the intensity and phase of the illumination and the reflected light. This reflective phase-contrast microscopy achieves unprecedented high contrast for imaging a transparent 2D monolayer. It also enables direct observation of 2D monolayers embedded inside a thick heterostructure that are "invisible" in conventional microscopy.

3.
Materials (Basel) ; 15(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36556864

RESUMO

A pulse burst optical system has been developed, able to alter an energetic, ultrafast 10 ps, 5 kHz output pulse train to 323 MHz intra-burst frequency at the fundamental 5 kHz repetition rate. An optical delay line consisting of a beam-splitting polariser cube, mirrors, and waveplates transforms a high-energy pulse into a pulse burst, circulating around the delay line. Interestingly, the reflected first pulse and subsequent pulses from the delay line have orthogonal linear polarisations. This fact allows independent modulation of these pulses using two-phase-only Spatial Light Modulators (SLM) when their directors are also aligned orthogonally. With hybrid Computer Generated Holograms (CGH) addressed to the SLMs, we demonstrate simultaneous multi-spot periodic surface micro-structuring on stainless steel with orthogonal linear polarisations and cylindrical vector (CV) beams with Radial and Azimuthal polarisations. Burst processing produces a major change in resulting surface texture due to plasma absorption on the nanosecond time scale; hence the ablation rates on stainless steel with pulse bursts are always lower than 5 kHz processing. By synchronising the scan motion and CGH application, we show simultaneous independent multi-beam real-time processing with pulse bursts having orthogonal linear polarisations. This novel technique extends the flexibility of parallel beam surface micro-structuring with adaptive optics.

4.
Adv Mater ; 34(19): e2110463, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35148445

RESUMO

Driver's access to information about navigation and vehicle data through in-car displays and personal devices distract the driver from safe vehicle management. The discrepancy between road safety and infotainment must be addressed to develop safely operated modern vehicles. Head-up displays (HUDs) aim to introduce a seamless uptake of visual information for the driver while securely operating a vehicle. HUDs projected on the windshield provide the driver with visual navigation and vehicle data within the comfort of the driver's personal eye box through a customizable extended display space. Windshield HUDs do not require the driver to shift the gaze away from the road to attain road information. This article presents a review of technological advances and future perspectives in holographic HUDs by analyzing the optoelectronics devices and the user experience of the driver. The review elucidates holographic displays and full augmented reality in 3D with depth perception when projecting the visual information on the road within the driver's gaze. Design factors, functionality, and the integration of personalized machine learning technologies into holographic HUDs are discussed. Application examples of the display technologies regarding road safety and security are presented. An outlook is provided to reflect on display trends and autonomous driving.

5.
Micromachines (Basel) ; 12(5)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063449

RESUMO

Spatial light modulators (SLMs) have been widely used to achieve dynamic control of optical traps. Often, holographic optical tweezers have been presumed to provide nanometer or sub-nanometer positioning accuracy. It is known that some features concerning the digitalized structure of SLMs cause a loss in steering efficiency of the optical trap, but their effect on trap positioning accuracy has been scarcely analyzed. On the one hand, the SLM look-up-table, which we found to depend on laser power, produces positioning deviations when the trap is moved at the micron scale. On the other hand, phase quantization, which makes linear phase gratings become phase staircase profiles, leads to unexpected local errors in the steering angle. We have tracked optically trapped microspheres with sub-nanometer accuracy to study the effects on trap positioning, which can be as high as 2 nm in certain cases. We have also implemented a correction strategy that enabled the reduction of errors down to 0.3 nm.

6.
Sensors (Basel) ; 21(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923184

RESUMO

We report an atmospheric multichannel data transmission system with channel separation by vortex beams of various orders, including half-integer values. For the demultiplexing of the communication channels, a multichannel diffractive optical element (DOE) is proposed, being matched with the used vortex beams. The considered approach may be realized without digital processing of the output images, but only based on the numbers of informative diffraction orders, similar to sorting. The system is implemented based on two spatial light modulators (SLMs), one of which forms a multiplexed signal on the transmitting side, and the other implements a multichannel DOE for separating the vortex beams on the receiving side. The stability of the communication channel to atmospheric interference and the crosstalk between the channels are investigated.

7.
Front Cell Neurosci ; 15: 609505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716671

RESUMO

The advent of optogenetics has revolutionized experimental research in the field of Neuroscience and the possibility to selectively stimulate neurons in 3D volumes has opened new routes in the understanding of brain dynamics and functions. The combination of multiphoton excitation and optogenetic methods allows to identify and excite specific neuronal targets by means of the generation of cloud of excitation points. The most widely employed approach to produce the points cloud is through a spatial light modulation (SLM) which works with a refresh rate of tens of Hz. However, the computational time requested to calculate 3D patterns ranges between a few seconds and a few minutes, strongly limiting the overall performance of the system. The maximum speed of SLM can in fact be employed either with high quality patterns embedded into pre-calculated sequences or with low quality patterns for real time update. Here, we propose the implementation of a recently developed compressed sensing Gerchberg-Saxton algorithm on a consumer graphical processor unit allowing the generation of high quality patterns at video rate. This, would in turn dramatically reduce dead times in the experimental sessions, and could enable applications previously impossible, such as the control of neuronal network activity driven by the feedback from single neurons functional signals detected through calcium or voltage imaging or the real time compensation of motion artifacts.

8.
Angew Chem Int Ed Engl ; 60(4): 2018-2023, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-32885573

RESUMO

A new and simple strategy towards electric-field-driven multiple chirality switching device has been designed and fabricated by combining a newly synthesized base-responsive chiroptical polymer switch (R-FLMA) and p-benzoquinone (p-BQ) via proton-coupled electron transfer (PCET) mechanism. Clear and stable triple chirality states (silence, positive, negative) of this device in visible band can be regulated reversibly (>1000 cycles) by adjusting voltage programs. Furthermore, such chiral switching phenomena are also accompanied by apparent changes of color and fluorescence. More importantly, the potential application of this device for a spatial light modulator has also been demonstrated.

9.
J Biomed Opt ; 24(11): 1-7, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31724344

RESUMO

Fiber bundle fluorescence endomicroscopy is an effective method for in vivo imaging of biological tissue samples. Line-scanning confocal laser endomicroscopy realizes confocal imaging at a much higher frame rate compared to the point scanning system, but with reduced optical sectioning. To address this problem, we describe a fiber bundle endomicroscopy system that utilizes the HiLo technique to enhance the optical sectioning while still maintaining high image acquisition rates. Confocal HiLo endomicroscopy is achieved by synchronizing the scanning hybrid-illumination laser line with the rolling shutter of a CMOS camera. An evident improvement of axial sectioning is achieved as compared to the line-scanning confocal endomicroscopy without the HiLo technique. Comparisons are also made with epifluorescence endomicroscopy with and without HiLo. The optical sectioning enhancement is demonstrated on lens tissue as well as porcine kidney tissue.


Assuntos
Endoscopia/instrumentação , Rim/diagnóstico por imagem , Microscopia Confocal/instrumentação , Animais , Desenho de Equipamento , Tecnologia de Fibra Óptica , Processamento de Imagem Assistida por Computador , Luz , Fibras Ópticas , Suínos
10.
J Biomed Opt ; 24(4): 1-6, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30968649

RESUMO

We demonstrate improved optical sectioning in light sheet fluorescence microscopy using tunable structured illumination (SI) frequencies to optimize image quality in scattering specimens. The SI patterns are generated coherently using a one-dimensional spatial light modulator for maximum pattern contrast, and the pattern spatial frequency is adjustable up to half the incoherent cutoff frequency of our detection objective. At this frequency, we demonstrate background reductions of 2 orders of magnitude.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência , Animais , Colo/diagnóstico por imagem , Colo/patologia , Desenho de Equipamento , Luz , Camundongos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Imagens de Fantasmas , Espalhamento de Radiação
11.
Appl Spectrosc ; 73(7): 727-746, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30987431

RESUMO

Advances in consumer display screen technologies have historically been adapted by researchers across the fields of optics as they can be used as electronically controlled spatial light modulators (SLMs) for a variety of uses. The performance characteristics of such SLM devices based on liquid crystal (LC) and digital micromirror device (DMD) technologies, in particular, has developed to the point where they are compatible with increasingly sensitive instrumental applications, for example, Raman spectroscopy. Spatial light modulators provide additional flexibility, from modulation of the laser excitation (including multiple laser foci patterns), manipulation of microscopic samples (optical trapping), or selection of sampling volume (adaptive optics or spatially offset Raman spectroscopy), to modulation in the spectral domain for high-resolution spectral filtering or multiplexed/compressive fast detection. Here, we introduce the benefits of different SLM devices as a part of Raman instrumentation and provide a variety of recent example applications which have benefited from their incorporation into a Raman system.

12.
Biomed Opt Express ; 9(10): 4588-4603, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30319888

RESUMO

Perturbation Monte Carlo (pMC) has been previously proposed to rapidly recompute optical measurements when small perturbations of optical properties are considered, but it was largely restricted to changes associated with prior tissue segments or regions-of-interest. In this work, we expand pMC to compute spatially and temporally resolved sensitivity profiles, i.e. the Jacobians, for diffuse optical tomography (DOT) applications. By recording the pseudo random number generator (PRNG) seeds of each detected photon, we are able to "replay" all detected photons to directly create the 3D sensitivity profiles for both absorption and scattering coefficients. We validate the replay-based Jacobians against the traditional adjoint Monte Carlo (aMC) method, and demonstrate the feasibility of using this approach for efficient 3D image reconstructions using in vitro hyperspectral wide-field DOT measurements. The strengths and limitations of the replay approach regarding its computational efficiency and accuracy are discussed, in comparison with aMC, for point-detector systems as well as wide-field pattern-based and hyperspectral imaging systems. The replay approach has been implemented in both of our open-source MC simulators - MCX and MMC (http://mcx.space).

13.
Biomed Opt Express ; 9(6): 2640-2647, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30258679

RESUMO

How brief can a visual stimulus be and still be seen? To answer this question, we developed a digital micromirror device (DMD) based system operating at high speed (22.7 kHz) to control the rapid presentation of visual stimuli and estimated the minimum time required to identify the orientation of tumbling Snellen E letters. Time thresholds were measured in five subjects using a QUEST algorithm to vary the presentation time of the letters subtending either 0.75°, 1.5° and 4.5° on the retina, for two different effective pupil sizes (0.3 and 1 mm). Additionally, to evaluate the effect of defocus on time thresholds, the experiment was repeated with 1.5° letters and induced myopic defocus with 3, 6 and 9 D trial lenses placed in a conjugated pupil plane. We found that subjects were able to identify the orientation of the letters presented as briefly as 5 ms.

14.
Biomed Opt Express ; 9(4): 1570-1581, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29675302

RESUMO

For transillumination imaging of animal tissues, we have attempted to suppress the scattering effect in a turbid medium using the time-reversal principle of phase-conjugate light. We constructed a digital phase-conjugate system to enable intensity modulation and phase modulation. Using this system, we clarified the effectiveness of the intensity information for restoration of the original light distribution through a turbid medium. By varying the scattering coefficient of the medium, we clarified the limit of time-reversal ability with intensity information of the phase-conjugate light. Experiment results demonstrated the applicability of the proposed technique to animal tissue.

15.
Biomed Opt Express ; 9(3): 1323-1333, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29541524

RESUMO

In adaptive optics scanning laser ophthalmoscope (AOSLO) systems, capturing multiply scattered light can increase the contrast of the retinal microvasculature structure, cone inner segments, and retinal ganglion cells. Current systems generally use either a split detector or offset aperture approach to collect this light. We tested the ability of a spatial light modulator (SLM) as a rapidly configurable aperture to use more complex shapes to enhance the contrast of retinal structure. Particularly, we varied the orientation of a split detector aperture and explored the use of a more complex shape, the half annulus, to enhance the contrast of the retinal vasculature. We used the new approach to investigate the influence of scattering distance and orientation on vascular imaging.

16.
Biomed Opt Express ; 9(2): 591-602, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29552396

RESUMO

Retinal motion detection with an accuracy of 0.77 arcmin corresponding to 3.7 µm on the retina is demonstrated with a novel digital micromirror device based ophthalmoscope. By generating a confocal image as a reference, eye motion could be measured from consecutively measured subsampled frames. The subsampled frames provide 7.7 millisecond snapshots of the retina without motion artifacts between the image points of the subsampled frame, distributed over the full field of view. An ophthalmoscope pattern projection speed of 130 Hz enabled a motion detection bandwidth of 65 Hz. A model eye with a scanning mirror was built to test the performance of the motion detection algorithm. Furthermore, an in vivo motion trace was obtained from a healthy volunteer. The obtained eye motion trace clearly shows the three main types of fixational eye movements. Lastly, the obtained eye motion trace was used to correct for the eye motion in consecutively obtained subsampled frames to produce an averaged confocal image correct for motion artefacts.

17.
Methods Protoc ; 2(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31164587

RESUMO

The use of spatial light modulators to project computer generated holograms is a common strategy for optogenetic stimulation of multiple structures of interest within a three-dimensional volume. A common requirement when addressing multiple targets sparsely distributed in three dimensions is the generation of a points cloud, focusing excitation light in multiple diffraction-limited locations throughout the sample. Calculation of this type of holograms is most commonly performed with either the high-speed, low-performance random superposition algorithm, or the low-speed, high performance Gerchberg-Saxton algorithm. This paper presents a variation of the Gerchberg-Saxton algorithm that, by only performing iterations on a subset of the data, according to compressive sensing principles, is rendered significantly faster while maintaining high quality outputs. The algorithm is presented in high-efficiency and high-uniformity variants. All source code for the method implementation is available as Supplementary Materials and as open-source software. The method was tested computationally against existing algorithms, and the results were confirmed experimentally on a custom setup for in-vivo multiphoton optogenetics. The results clearly show that the proposed method can achieve computational speed performances close to the random superposition algorithm, while retaining the high performance of the Gerchberg-Saxton algorithm, with a minimal hologram quality loss.

18.
Entropy (Basel) ; 20(10)2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-33265820

RESUMO

We present a review of photonic implementations of discrete-time quantum walks (DTQW) in the spatial and temporal domains, based on spatial- and time-multiplexing techniques, respectively. Additionally, we propose a detailed novel scheme for photonic DTQW, using transverse spatial modes of single photons and programmable spatial light modulators (SLM) to manipulate them. Unlike all previous mode-multiplexed implementations, this scheme enables simulation of an arbitrary step of the walker, only limited, in principle, by the SLM resolution. We discuss current applications of such photonic DTQW architectures in quantum simulation of topological effects and the use of non-local coin operations based on two-photon hybrid entanglement.

19.
J Imaging ; 5(1)2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34470178

RESUMO

The collection of high-dimensional hyperspectral data is often the slowest step in the process of hyperspectral Raman imaging. With the conventional array-based Raman spectroscopy acquiring of chemical images could take hours to even days. To increase the Raman collection speeds, a number of compressive detection (CD) strategies, which simultaneously sense and compress the spectral signal, have recently been demonstrated. As opposed to conventional hyperspectral imaging, where full spectra are measured prior to post-processing and imaging CD increases the speed of data collection by making measurements in a low-dimensional space containing only the information of interest, thus enabling real-time imaging. The use of single channel detectors gives the key advantage to CD strategy using optical filter functions to obtain component intensities. In other words, the filter functions are simply the optimized patterns of wavelength combinations characteristic of component in the sample, and the intensity transmitted through each filter represents a direct measure of the associated score values. Essentially, compressive hyperspectral images consist of 'score' pixels (instead of 'spectral' pixels). This paper presents an overview of recent advances in compressive Raman detection designs and performance validations using a DMD based binary detection strategy.

20.
Biomed Opt Express ; 8(11): 5179-5190, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29188112

RESUMO

Optical clearing is emerging as a popular approach particularly for studies in neuroscience. However the use of corrosive clearing solutions typically requires sophisticated objectives or extreme care with optical components chosen for single- or multi-photon imaging. In contrast to the use of complex, custom-made microscope objectives, we show that the use of a corrected multimode fibre (MMF) offers a route that is resistant to corrosion, can be used in clearing media, is not constrained by the refractive index of the immersion medium and offers flexible working distances. Using a corrected MMF, we demonstrate fluorescence imaging of beads and stained neuroblastoma cells through optically cleared mouse brain tissue, as well as imaging in an extreme oxidative environment to show the versatility of our approach. Additionally, we perform Raman imaging of polystyrene beads in clearing media to demonstrate that this approach may be used for vibrational spectroscopy of optically cleared samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA