Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Virus Evol ; 10(1): veae027, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699215

RESUMO

Since 2016, A(H5Nx) high pathogenic avian influenza (HPAI) virus of clade 2.3.4.4b has become one of the most serious global threats not only to wild and domestic birds, but also to public health. In recent years, important changes in the ecology, epidemiology, and evolution of this virus have been reported, with an unprecedented global diffusion and variety of affected birds and mammalian species. After the two consecutive and devastating epidemic waves in Europe in 2020-2021 and 2021-2022, with the second one recognized as one of the largest epidemics recorded so far, this clade has begun to circulate endemically in European wild bird populations. This study used the complete genomes of 1,956 European HPAI A(H5Nx) viruses to investigate the virus evolution during this varying epidemiological outline. We investigated the spatiotemporal patterns of A(H5Nx) virus diffusion to/from and within Europe during the 2020-2021 and 2021-2022 epidemic waves, providing evidence of ongoing changes in transmission dynamics and disease epidemiology. We demonstrated the high genetic diversity of the circulating viruses, which have undergone frequent reassortment events, providing for the first time a complete overview and a proposed nomenclature of the multiple genotypes circulating in Europe in 2020-2022. We described the emergence of a new genotype with gull adapted genes, which offered the virus the opportunity to occupy new ecological niches, driving the disease endemicity in the European wild bird population. The high propensity of the virus for reassortment, its jumps to a progressively wider number of host species, including mammals, and the rapid acquisition of adaptive mutations make the trend of virus evolution and spread difficult to predict in this unfailing evolving scenario.

2.
Viruses ; 16(4)2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675966

RESUMO

A devastating bluetongue (BT) epidemic caused by bluetongue virus serotype 3 (BTV-3) has spread throughout most of the Netherlands within two months since the first infection was officially confirmed in the beginning of September 2023. The epidemic comes with unusually strong suffering of infected cattle through severe lameness, often resulting in mortality or euthanisation for welfare reasons. In total, tens of thousands of sheep have died or had to be euthanised. By October 2023, more than 2200 locations with ruminant livestock were officially identified to be infected with BTV-3, and additionally, ruminants from 1300 locations were showing BTV-associated clinical symptoms (but not laboratory-confirmed BT). Here, we report on the spatial spread and dynamics of this BT epidemic. More specifically, we characterized the distance-dependent intensity of the between-holding transmission by estimating the spatial transmission kernel and by comparing it to transmission kernels estimated earlier for BTV-8 transmission in Northwestern Europe in 2006 and 2007. The 2023 BTV-3 kernel parameters are in line with those of the transmission kernel estimated previously for the between-holding spread of BTV-8 in Europe in 2007. The 2023 BTV-3 transmission kernel has a long-distance spatial range (across tens of kilometres), evidencing that in addition to short-distance dispersal of infected midges, other transmission routes such as livestock transports probably played an important role.


Assuntos
Vírus Bluetongue , Bluetongue , Epidemias , Sorogrupo , Animais , Bluetongue/epidemiologia , Bluetongue/transmissão , Bluetongue/virologia , Vírus Bluetongue/classificação , Países Baixos/epidemiologia , Ovinos , Bovinos , Doenças dos Bovinos/virologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/transmissão
3.
Ecol Evol ; 13(11): e10753, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38020706

RESUMO

Movement behavior is central to understanding species distributions, population dynamics and coexistence with other species. Although the relationship between conspecific density and emigration has been well studied, little attention has been paid to how interspecific competitor density affects another species' movement behavior. We conducted releases of two species of competing Tribolium flour beetles at different densities, alone and together in homogeneous microcosms, and tested whether their recaptures-with-distance were well described by a random-diffusion model. We also determined whether mean displacement distances varied with the release density of conspecific and heterospecific beetles. A diffusion model provided a good fit to the redistribution of T. castaneum and T. confusum at all release densities, explaining an average of >60% of the variation in recaptures. For both species, mean displacement (directly proportional to the diffusion rate) exhibited a humped-shaped relationship with conspecific density. Finally, we found that both species of beetle impacted the within-patch movement rates of the other species, but the effect depended on density. For T. castaneum in the highest density treatment, the addition of equal numbers of T. castaneum or T. confusum had the same effect, with mean displacements reduced by approximately one half. The same result occurred for T. confusum released at an intermediate density. In both cases, it was total beetle abundance, not species identity that mattered to mean displacement. We suggest that displacement or diffusion rates that exhibit a nonlinear relationship with density or depend on the presence or abundance of interacting species should be considered when attempting to predict the spatial spread of populations or scaling up to heterogeneous landscapes.

4.
J Math Biol ; 87(1): 10, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330418

RESUMO

Individual variability in dispersal and reproduction abilities can lead to evolutionary processes that may have significant effects on the speed and shape of biological invasions. Spatial sorting, an evolutionary process through which individuals with the highest dispersal ability tend to agglomerate at the leading edge of an invasion front, and spatial selection, spatially heterogeneous forces of selection, are among the fundamental evolutionary forces that can change range expansions. Most mathematical models for these processes are based on reaction-diffusion equations, i.e., time is continuous and dispersal is Gaussian. We develop novel theory for how evolution shapes biological invasions with integrodifference equations, i.e., time is discrete and dispersal can follow a variety of kernels. Our model tracks how the distribution of growth rates and dispersal ability in the population changes from one generation to the next in continuous space. We include mutation between types and a potential trade-off between dispersal ability and growth rate. We perform the analysis of such models in continuous and discrete trait spaces, i.e., we determine the existence of travelling wave solutions, asymptotic spreading speeds and their linear determinacy, as well as the population distributions at the leading edge. We also establish the relation between asymptotic spreading speeds and mutation probabilities. We observe conditions for when spatial sorting emerges and when it does not and also explore conditions where anomalous spreading speeds occur, as well as possible effects of deleterious mutations in the population.


Assuntos
Modelos Teóricos , Reprodução , Humanos , Dinâmica Populacional , Mutação , Viagem , Modelos Biológicos , Evolução Biológica
5.
Sci Total Environ ; 877: 162754, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921858

RESUMO

Non-native species are spreading at an unprecedented rate over large spatial scales, with global environmental change and growth in commerce providing novel opportunities for range expansion. Assessing the pattern and rate of spread is key to the development of strategies for safeguarding against future invasions and efficiently managing existing ones. Such assessments often depend on spatial distribution data from online repositories, which can be spatially biased, imprecise, and lacking in quantity. Here, the influence of disparities between occurrence records from online data repositories and what is known of the invasion history from peer-reviewed published literature on non-native species range expansion was evaluated using 6693 records of the Pacific oyster, Magallana gigas (Thunberg, 1793), spanning 56 years of its invasion in Europe. Two measures of spread were calculated: maximum rate of spread (distance from introduction site over time) and accumulated area (spatial expansion). Results suggest that despite discrepancies between online and peer-reviewed data sources, including a paucity of records from the early invasion history in online repositories, the use of either source does not result in significantly different estimates of spread. Our study significantly improves our understanding of the European distribution of M. gigas and suggests that a combination of short- and long-range dispersal drives range expansions. More widely, our approach provides a framework for comparison of online occurrence records and invasion histories as documented in the peer-reviewed literature, allowing critical evaluation of both data sources and improving our understanding of invasion dynamics significantly.


Assuntos
Big Data , Ostreidae , Animais , Europa (Continente) , Espécies Introduzidas
6.
Influenza Other Respir Viruses ; 16(4): 617-620, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35137538

RESUMO

We used a validated proxy of respiratory syncytial virus (RSV) activity in the United States (Google search data) to evaluate the onsets of RSV epidemics in 2021 and 2016-2019. Despite the unusual out-of-season summer timing, the relative timing of RSV epidemics between states in 2021 shared a similar spatial pattern with typical winter RSV seasons. Our results suggest that the onset of RSV epidemics in Florida can serve as a baseline to adjust the initiation of prophylaxis administration and clinical trials in other states regardless of the seasonality of RSV epidemics.


Assuntos
Epidemias , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , Estações do Ano , Estados Unidos/epidemiologia
7.
Viruses ; 13(7)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34372514

RESUMO

The hepatitis C virus (HCV) is capable of spreading within a host by two different transmission modes: cell-free and cell-to-cell. However, the contribution of each of these transmission mechanisms to HCV spread is unknown. To dissect the contribution of these different transmission modes to HCV spread, we measured HCV lifecycle kinetics and used an in vitro spread assay to monitor HCV spread kinetics after a low multiplicity of infection in the absence and presence of a neutralizing antibody that blocks cell-free spread. By analyzing these data with a spatially explicit mathematical model that describes viral spread on a single-cell level, we quantified the contribution of cell-free, and cell-to-cell spread to the overall infection dynamics and show that both transmission modes act synergistically to enhance the spread of infection. Thus, the simultaneous occurrence of both transmission modes represents an advantage for HCV that may contribute to viral persistence. Notably, the relative contribution of each viral transmission mode appeared to vary dependent on different experimental conditions and suggests that viral spread is optimized according to the environment. Together, our analyses provide insight into the spread dynamics of HCV and reveal how different transmission modes impact each other.


Assuntos
Hepacivirus/fisiologia , Hepatite C/fisiopatologia , Hepatite C/virologia , Interações entre Hospedeiro e Microrganismos , Linhagem Celular Tumoral , Humanos , Cinética , Modelos Teóricos , Internalização do Vírus
8.
J Neurosci Methods ; 358: 109212, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33957156

RESUMO

BACKGROUND: Models of auditory nerve fiber (ANF) responses to electrical stimulation are helpful to develop advanced coding for cochlear implants (CIs). A phenomenological model of ANF population responses to CI electrical stimulation with a lower computational complexity compared to a biophysical model would be beneficial to evaluate new CI coding strategies. NEW METHOD: This study presents a phenomenological model which combines four temporal characteristics of ANFs (refractoriness, facilitation, accommodation and spike rate adaptation) in addition to a spatial spread of the electric field. RESULTS: The model predicts the performances of CI subjects in the melodic contour identification (MCI) experiment. The simulations for the MCI experiment were consistent with CI recipients' experimental outcomes that were not predictable from the electrical stimulation patterns themselves. COMPARISON WITH EXISTING METHODS: Previously, no phenomenological population model of ANFs has combined all four aforementioned temporal phenomena. CONCLUSIONS: The proposed model would help the further investigations of ANFs responses to different electrical stimulation patterns and comparison of different sound coding strategies in CIs.


Assuntos
Implante Coclear , Implantes Cocleares , Estimulação Acústica , Nervo Coclear , Estimulação Elétrica , Humanos
9.
J Anim Ecol ; 89(11): 2657-2664, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32890416

RESUMO

Dispersal is a key process in shaping species spatial distributions. Species interactions and variation in dispersal probabilities may jointly influence species spatial dynamics. However, many studies examine dispersal as a neutral process, independent of community context or intraspecific variation in dispersal behaviour. Here, we use controlled, replicated communities of two Tribolium species (T. castaneum and T. confusum) to examine how intraspecific variation in dispersal behaviour and community context influence dispersal dynamics in simple experimental landscapes composed of homogeneous habitat patches. We found considerable individual-level variation in dispersal probability that was unrelated to body size variation. Further, the context of dispersal mattered, as T. castaneum dispersal was reduced in two-species communities, while T. confusum dispersal was unaffected by community composition. Incorporating individual-level variation into a two-species stochastic spatial Ricker model, we provide evidence that individual-level variability in dispersal behaviour results in more variable spatial spread than assuming individuals have the same dispersal probability. Further, interspecific competition resulted in more variable spatial spread. The variability in spatial spread observed in our tightly controlled and replicated experimental system and in our stochastic model simulations points to potential fundamental limitations in forecasting species shifting ranges without considering potential interspecific interactions and demographic variability in dispersal behaviour.


Assuntos
Ecossistema , Tribolium , Animais , Tamanho Corporal , Dinâmica Populacional , Probabilidade
10.
Infect Genet Evol ; 83: 104342, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32348876

RESUMO

Since 2005, H5Nx highly pathogenic avian influenza (HPAI) viruses of the Goose/Guangdong (Gs/GD) lineage have spread worldwide, affecting poultry and wild birds in Asia, Europe, Africa and North America. So far, the role of Western Asia and the Middle East in the diffusion dynamics of this virus has been poorly explored. In order to investigate the genetic diversity and the role of Iran in the transmission dynamics of the Gs/GD lineage, we sequenced the complete genome of twenty-eight H5Nx viruses which were circulating in the country between 2016 and 2018. We reported the first characterization of the HPAI H5N6 subtype of clade 2.3.4.4B in Iran and gave evidence of the high propensity of the Gs/GD H5 AIVs to reassort, describing six novel H5N8 genotypes of clade 2.3.4.4B, some of them likely generated in this area, and one H5N1 reassortant virus of clade 2.3.2.1c. Our spatial analyses demonstrated that the viruses resulted from different viral introductions from Asia and Europe and provided evidence of virus spread from Iran to the Middle East. Therefore, Iran may represent a hot-spot for virus introduction, dissemination and for the generation of new genetic variability. Increasing surveillance efforts in this high-risk area is of utmost importance for the early detection of novel emerging strains with zoonotic potential.


Assuntos
Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H5N8/genética , Vírus Reordenados/genética , Animais , Aves , Genótipo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Influenza A Subtipo H5N8/patogenicidade , Influenza Aviária/virologia , Irã (Geográfico) , Filogenia , Filogeografia
11.
Evol Lett ; 3(5): 555-566, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31636946

RESUMO

Repeated extinction and recolonization events generate a landscape of host populations that vary in their time since colonization. Within this dynamic landscape, pathogens that excel at invading recently colonized host populations are not necessarily those that perform best in host populations at or near their carrying capacity, potentially giving rise to divergent selection for pathogen traits that mediate the invasion process. Rarely, however, has this contention been empirically tested. Using Daphnia magna, we explored how differences in the colonization history of a host population influence the invasion success of different genotypes of the pathogen Pasteuria ramosa. By partitioning the pathogen invasion process into a series of individual steps, we show that each pathogen optimizes invasion differently when encountering host populations that vary in their time since colonization. All pathogen genotypes were more likely to establish successfully in recently colonized host populations, but the production of transmission spores was typically maximized in either the subsequent growth or stationary phase of host colonization. Integrating across the first three pathogen invasion steps (initial establishment, proliferation, and secondary infection) revealed that overall pathogen invasion success (and its variance) was, nonetheless, highest in recently colonized host populations. However, only pathogens that were slow to kill their host were able to maximize host-facilitated dispersal. This suggests that only a subset of pathogen genotypes-the less virulent and more dispersive-are more likely to encounter newly colonized host populations at the front of a range expansion or in metapopulations with high extinction rates. Our results suggest a fundamental trade-off for a pathogen between dispersal and virulence, and evidence for higher invasion success in younger host populations, a finding with clear implications for pathogen evolution in spatiotemporally dynamic settings.

12.
Evolution ; 73(6): 1278-1295, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31001816

RESUMO

Maternally transmitted Wolbachia bacteria infect about half of all insect species. Many Wolbachia cause cytoplasmic incompatibility (CI) and reduced egg hatch when uninfected females mate with infected males. Although CI produces a frequency-dependent fitness advantage that leads to high equilibrium Wolbachia frequencies, it does not aid Wolbachia spread from low frequencies. Indeed, the fitness advantages that produce initial Wolbachia spread and maintain non-CI Wolbachia remain elusive. wMau Wolbachia infecting Drosophila mauritiana do not cause CI, despite being very similar to CI-causing wNo from Drosophila simulans (0.068% sequence divergence over 682,494 bp), suggesting recent CI loss. Using draft wMau genomes, we identify a deletion in a CI-associated gene, consistent with theory predicting that selection within host lineages does not act to increase or maintain CI. In the laboratory, wMau shows near-perfect maternal transmission; but we find no significant effect on host fecundity, in contrast to published data. Intermediate wMau frequencies on the island of Mauritius are consistent with a balance between unidentified small, positive fitness effects and imperfect maternal transmission. Our phylogenomic analyses suggest that group-B Wolbachia, including wMau and wPip, diverged from group-A Wolbachia, such as wMel and wRi, 6-46 million years ago, more recently than previously estimated.


Assuntos
Drosophila/microbiologia , Drosophila/fisiologia , Wolbachia/fisiologia , Animais , Evolução Biológica , Citoplasma/microbiologia , Feminino , Fertilidade , Ilhas , Maurício , Filogenia , Wolbachia/genética
13.
J Neurosci ; 39(22): 4299-4311, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-30914446

RESUMO

Electrocorticogram (ECoG), obtained by low-pass filtering the brain signal recorded from a macroelectrode placed on the cortex, is extensively used to find the seizure focus in drug-resistant epilepsy and is of growing importance in cognitive and brain-machine-interfacing studies. To accurately estimate the epileptogenic cortex or to make inferences about cognitive processes, it is important to determine the "spatial spread" of ECoG (i.e., the extent of cortical tissue that contributes to its activity). However, the ECoG spread is currently unknown; even the spread of local field potential (LFP) obtained from microelectrodes is debated, with estimates ranging from a few hundred micrometers to several millimeters. Spatial spread can be estimated by measuring the receptive field (RF) and multiplying by the cortical magnification factor, but this method overestimates the spread because RF size gets inflated due to several factors. This issue can be partially addressed using a model that compares the RFs of two measures, such as LFP and multi-unit activity (MUA). To use this approach for ECoG, we designed a customized array containing both microelectrodes and ECoG electrodes to simultaneously map MUA, LFP, and ECoG RFs from the primary visual cortex of awake monkeys (three female Macaca radiata). The spatial spread of ECoG was surprisingly local (diameter ∼3 mm), only 3 times that of the LFP. Similar results were obtained using a model to simulate ECoG as a sum of LFPs of varying electrode sizes. Our results further validate the use of ECoG in clinical and basic cognitive research.SIGNIFICANCE STATEMENT Brains signals capture different attributes of the neural network depending on the size and location of the recording electrode. Electrocorticogram (ECoG), obtained by placing macroelectrodes (typically 2-3 mm diameter) on the exposed surface of the cortex, is widely used by neurosurgeons to identify the source of seizures in drug-resistant epileptic patients. The brain area responsible for seizures is subsequently surgically removed. Accurate estimation of the epileptogenic cortex and its removal requires the estimation of spatial spread of ECoG. Here, we estimated the spatial spread of ECoG in five behaving monkeys using two different approaches. Our results suggest that ECoG is a local signal (diameter of ∼3 mm), which can provide a useful tool for clinical, cognitive neuroscience, and brain-machine-interfacing applications.


Assuntos
Eletrocorticografia/métodos , Modelos Neurológicos , Córtex Visual/fisiologia , Animais , Feminino , Macaca radiata
14.
Artigo em Inglês | MEDLINE | ID: mdl-30646629

RESUMO

There is increasing concern about another influenza pandemic in China. However, the understanding of the roles of transport modes in the 2009 influenza A(H1N1) pandemic spread across mainland China is limited. Herein, we collected 127,797 laboratory-confirmed cases of influenza A(H1N1)pdm09 in mainland China from May 2009 to April 2010. Arrival days and peak days were calculated for all 340 prefectures to characterize the dissemination patterns of the pandemic. We first evaluated the effects of airports and railway stations on arrival days and peak days, and then we applied quantile regressions to quantify the relationships between arrival days and air, rail, and road travel. Our results showed that early arrival of the virus was not associated with an early incidence peak. Airports and railway stations in prefectures significantly advanced arrival days but had no significant impact on peak days. The pandemic spread across mainland China from the southeast to the northwest in two phases that were split at approximately 1 August 2009. Both air and road travel played a significant role in accelerating the spread during phases I and II, but rail travel was only significant during phase II. In conclusion, in addition to air and road travel, rail travel also played a significant role in accelerating influenza A(H1N1)pdm09 spread between prefectures. Establishing a multiscale mobility network that considers the competitive advantage of rail travel for mid to long distances is essential for understanding the influenza pandemic transmission in China.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana/transmissão , Meios de Transporte , China/epidemiologia , Humanos , Influenza Humana/epidemiologia , Instalações de Transporte , Viagem
15.
Viruses ; 10(11)2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30428545

RESUMO

The spread of viral pathogens both between and within hosts is inherently a spatial process. While the spatial aspects of viral spread at the epidemiological level have been increasingly well characterized, the spatial aspects of viral spread within infected hosts are still understudied. Here, with a focus on influenza A viruses (IAVs), we first review experimental studies that have shed light on the mechanisms and spatial dynamics of viral spread within hosts. These studies provide strong empirical evidence for highly localized IAV spread within hosts. Since mathematical and computational within-host models have been increasingly used to gain a quantitative understanding of observed viral dynamic patterns, we then review the (relatively few) computational modeling studies that have shed light on possible factors that structure the dynamics of spatial within-host IAV spread. These factors include the dispersal distance of virions, the localization of the immune response, and heterogeneity in host cell phenotypes across the respiratory tract. While informative, we find in these studies a striking absence of theoretical expectations of how spatial dynamics may impact the dynamics of viral populations. To mitigate this, we turn to the extensive ecological and evolutionary literature on range expansions to provide informed theoretical expectations. We find that factors such as the type of density dependence, the frequency of long-distance dispersal, specific life history characteristics, and the extent of spatial heterogeneity are critical factors affecting the speed of population spread and the genetic composition of spatially expanding populations. For each factor that we identified in the theoretical literature, we draw parallels to its analog in viral populations. We end by discussing current knowledge gaps related to the spatial component of within-host IAV spread and the potential for within-host spatial considerations to inform the development of disease control strategies.


Assuntos
Interações Hospedeiro-Patógeno , Vírus da Influenza A/fisiologia , Influenza Humana/virologia , Infecções por Orthomyxoviridae/virologia , Animais , Evolução Biológica , Simulação por Computador , Humanos , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Modelos Biológicos , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/transmissão , Fatores de Risco
16.
Epidemiol Infect ; 146(13): 1654-1662, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29983134

RESUMO

Human movement contributes to the probability that pathogens will be introduced to new geographic locations. Here we investigate the impact of human movement on the spatial spread of Chikungunya virus (CHIKV) in Southern Thailand during a recent re-emergence. We hypothesised that human movement, population density, the presence of habitat conducive to vectors, rainfall and temperature affect the transmission of CHIKV and the spatiotemporal pattern of cases seen during the emergence. We fit metapopulation transmission models to CHIKV incidence data. The dates at which incidence in each of 151 districts in Southern Thailand exceeded specified thresholds were the target of model fits. We confronted multiple alternative models to determine which factors were most influential in the spatial spread. We considered multiple measures of spatial distance between districts and adjacency networks and also looked for evidence of long-distance translocation (LDT) events. The best fit model included driving-distance between districts, human movement, rubber plantation area and three LDT events. This work has important implications for predicting the spatial spread and targeting resources for control in future CHIKV emergences. Our modelling framework could also be adapted to other disease systems where population mobility may drive the spatial advance of outbreaks.


Assuntos
Aedes/fisiologia , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/transmissão , Surtos de Doenças , Ecossistema , Densidade Demográfica , Viagem , Animais , Febre de Chikungunya/virologia , Vírus Chikungunya/fisiologia , Humanos , Incidência , Modelos Teóricos , Mosquitos Vetores/fisiologia , Chuva , Temperatura , Tailândia/epidemiologia
17.
R Soc Open Sci ; 5(3): 171784, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29657782

RESUMO

We investigated how an invading organism's dispersal characteristics affect the efficacy of different surveillance strategies aimed at detecting that organism as it spreads following a new incursion. Specifically, we assessed whether, out of the surveillance strategies tested, the best surveillance strategy for an organism varied depending on the way it disperses. We simulated the spread of invasive organisms with different dispersal characteristics including leptokurtic and non-leptokurtic kernels with different median dispersal distances and degrees of kurtosis. We evaluated surveillance strategies with different sampling arrangements, densities and frequencies. Surveillance outcomes compared included the time to detection, the total spread of the invasion and the likelihood of the invasion reaching new areas. Overall, dispersal characteristics affected the surveillance outcomes, but the grid surveillance arrangement consistently performed best in terms of early detection and reduced spread within and between fields. Additionally, the results suggest that dispersal characteristics may influence spread to new areas and surveillance strategies. Therefore, knowledge on an invasive organism's dispersal characteristics may influence how we search for it and how we manage the invasion to prevent spread to new areas.

18.
J Anim Ecol ; 87(1): 36-46, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28220487

RESUMO

The rate at which a population grows and spreads can depend on individual behaviour and interactions with others. In many species with two sexes, males and females differ in key life-history traits (e.g. growth, survival and dispersal), which can scale up to affect population rates of growth and spread. In sexually reproducing species, the mechanics of locating mates and reproducing successfully introduce further complications for predicting the invasion speed (spread rate), as both can change nonlinearly with density. Most models of population spread are based on one sex, or include limited aspects of sex differences. Here we ask whether and how the dynamics of finding mates interact with sex-specific life-history traits to influence the rate of population spread. We present a hybrid approach for modelling invasions of populations with two sexes that links individual-level mating behaviour (in an individual-based model) to population-level dynamics (in an integrodifference equation model). We find that limiting the amount of time during which individuals can search for mates causes a demographic Allee effect which can slow, delay, or even prevent an invasion. Furthermore, any sex-based asymmetries in life history or behaviour (skewed sex ratio, sex-biased dispersal, and sex-specific mating behaviours) amplify these effects. In contrast, allowing individuals to mate more than once ameliorates these effects, enabling polygynandrous populations to invade under conditions where monogamously mating populations would fail to establish. We show that details of individuals' mating behaviour can impact the rate of population spread. Based on our results, we propose a stricter definition of a mate-finding Allee effect, which is not met by the commonly used minimum mating function. Our modelling approach, which links individual- and population-level dynamics in a single model, may be useful for exploring other aspects of individual behaviour that are thought to impact the rate of population spread.


Assuntos
Distribuição Animal , Aptidão Genética , Preferência de Acasalamento Animal , Animais , Feminino , Masculino , Modelos Genéticos , Densidade Demográfica , Fatores Sexuais
19.
EMBO Rep ; 18(5): 693-711, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28404606

RESUMO

Efficient neuronal function depends on the continued modulation of the local neuronal proteome. Local protein synthesis plays a central role in tuning the neuronal proteome at specific neuronal regions. Various aspects of translation such as the localization of translational machinery, spatial spread of the newly translated proteins, and their site of action are carried out in specialized neuronal subcompartments to result in a localized functional outcome. In this review, we focus on the various aspects of these local translation compartments such as size, biochemical and organelle composition, structural boundaries, and temporal dynamics. We also discuss the apparent absence of definitive components of translation in these local compartments and the emerging state-of-the-art tools that could help dissecting these conundrums in greater detail in the future.


Assuntos
Plasticidade Neuronal , Neurônios/fisiologia , Biossíntese de Proteínas , Animais , Dendritos/fisiologia , Neurônios/citologia , Organelas/fisiologia , Proteoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Ecology ; 98(5): 1229-1238, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28194758

RESUMO

The abundance and spatial distribution of resources in a landscape and the behavioral response of individuals determines whether and how fast an invasive species spreads in an environment. Whether and how landscape manipulations can be used to slow invasive species is of great interest, in particular in forest ecosystems, where tree removal, thinning, and increasing tree diversity are discussed as management options. Classically, the focus is on availability and accessibility of resources; more recent considerations include individual-level behavioral movement responses to a spatially heterogeneous resource distribution. We derive a novel model for insect-host dynamics that includes three common behavioral aspects of foraging: higher movement rate in resource-poor areas, lower ovipositioning rate in resource-poor areas, and movement preference for resource-rich areas. We show that each of these basic mechanisms can increase the speed of invasion in a source-sink landscape above that in a homogeneous landscape with larger overall resource availability. We parameterize our model and illustrate our results with data for emerald ash borer, a recent highly destructive forest pest in North America. Our results highlight the importance of empirical work on movement behavior in different landscape types and near the interface between types.


Assuntos
Comportamento Animal , Ecossistema , Espécies Introduzidas , Animais , Florestas , Herbivoria , América do Norte , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA