Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Bioengineering (Basel) ; 11(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38671806

RESUMO

Most currently available wearable devices to noninvasively detect hypoxia use the spatially resolved spectroscopy (SRS) method to calculate cerebral tissue oxygen saturation (StO2). This study applies the single source-detector separation (SSDS) algorithm to calculate StO2. Near-infrared spectroscopy (NIRS) data were collected from 26 healthy adult volunteers during a breath-holding task using a wearable NIRS device, which included two source-detector separations (SDSs). These data were used to derive oxyhemoglobin (HbO) change and StO2. In the group analysis, both HbO change and StO2 exhibited significant change during a breath-holding task. Specifically, they initially decreased to minimums at around 10 s and then steadily increased to maximums, which were significantly greater than baseline levels, at 25-30 s (p-HbO < 0.001 and p-StO2 < 0.05). However, at an individual level, the SRS method failed to detect changes in cerebral StO2 in response to a short breath-holding task. Furthermore, the SSDS algorithm is more robust than the SRS method in quantifying change in cerebral StO2 in response to a breath-holding task. In conclusion, these findings have demonstrated the potential use of the SSDS algorithm in developing a miniaturized wearable biosensor to monitor cerebral StO2 and detect cerebral hypoxia.

2.
J Biomed Opt ; 28(7): 075002, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37465166

RESUMO

Significance: Continuous wave near infrared spectroscopy (CW-NIRS) is widely exploited in clinics to estimate skeletal muscles and brain cortex oxygenation. Spatially resolved spectroscopy (SRS) is generally implemented in commercial devices. However, SRS suffers from two main limitations: the a priori assumption on the spectral dependence of the reduced scattering coefficient [µs'(λ)] and the modeling of tissue as homogeneous. Aim: We studied the accuracy and robustness of SRS NIRS. We investigated the errors in retrieving hemodynamic parameters, in particular tissue oxygen saturation (StO2), when µs'(λ) was varied from expected values, and when layered tissue was considered. Approach: We simulated hemodynamic variations mimicking real-life scenarios for skeletal muscles. Simulations were performed by exploiting the analytical solutions of the photon diffusion equation in different geometries: (1) semi-infinite homogeneous medium and constant µs'(λ); (2) semi-infinite homogeneous medium and linear changes in µs'(λ); (3) two-layered media with a superficial thickness s1=5, 7.5, 10 mm and constant µs'(λ). All simulated data were obtained at source-detector distances ρ=35, 40, 45 mm, and analyzed with the SRS approach to derive hemodynamic parameters (concentration of oxygenated and deoxygenated hemoglobin, total hemoglobin concentration, and tissue oxygen saturation, StO2) and their relative error. Results: Variations in µs'(λ) affect the estimated StO2 (up to ±10%), especially if changes are different at the two wavelengths. However, the main limitation of the SRS method is the presence of a superficial layer: errors strongly larger than 20% were retrieved for the estimated StO2 when the superficial thickness exceeds 5 mm. Conclusions: These results highlight the need for more sophisticated strategies (e.g., the use of multiple short and long distances) to reduce the influence of superficial tissues in retrieving hemodynamic parameters and warn the SRS users to be aware of the intrinsic limitation of this approach, particularly when exploited in the clinical environment.


Assuntos
Oxigênio , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Encéfalo/diagnóstico por imagem , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/química , Hemoglobinas/análise
3.
Int J Pharm ; 641: 123064, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37211236

RESUMO

In scope of achieving real-time release of tablets, quality attributes need to be monitored and controlled through Process Analytical Technology tools such as near-infrared spectroscopy (NIRS). The authors evaluated the suitability of NIR-Spatially Resolved Spectroscopy (NIR-SRS) for continuous real-time monitoring and control of content uniformity, hardness and homogeneity of tablets with challenging dimensions. A novel user-friendly research and development inspection unit was used as standalone equipment for the analysis of small oblong tablets with deep-cut break lines. A total of 66 tablets varying in hardness and Active Pharmaceutical Ingredient (API) content were inspected, with each tablet being analysed five times and measurements repeated on three different days. Partial Least Squares (PLS) models were developed to assess content uniformity and hardness, of which the former showed higher accuracy. The authors attempted to visualize tablet homogeneity through NIR-SRS spectra by regressing all spectra obtained during a single measurement using a content uniformity PLS model. The NIR-SRS probe demonstrated its potential towards real-time release testing through its ability to quickly monitor content uniformity, hardness and visualize homogeneity, even for tablets with challenging dimensions.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Tecnologia Farmacêutica , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Tecnologia Farmacêutica/métodos , Comprimidos/química , Análise dos Mínimos Quadrados , Dureza
4.
Front Plant Sci ; 14: 1324881, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38269139

RESUMO

Agriculture is the primary source of human survival, which provides the most basic living and survival conditions for human beings. As living standards continue to improve, people are also paying more attention to the quality and safety of agricultural products. Therefore, the detection of agricultural product quality is very necessary. In the past decades, the spectroscopy technique has been widely used because of its excellent results in agricultural quality detection. However, traditional spectral inspection methods cannot accurately describe the internal information of agricultural products. With the continuous research and development of optical properties, it has been found that the internal quality of an object can be better reflected by separating the properties of light, such as its absorption and scattering properties. In recent years, spatially resolved spectroscopy has been increasingly used in the field of agricultural product inspection due to its simple compositional structure, low-value cost, ease of operation, efficient detection speed, and outstanding ability to obtain information about agricultural products at different depths. It can also separate optical properties based on the transmission equation of optics, which allows for more accurate detection of the internal quality of agricultural products. This review focuses on the principles of spatially resolved spectroscopy, detection equipment, analytical methods, and specific applications in agricultural quality detection. Additionally, the optical properties methods and direct analysis methods of spatially resolved spectroscopy analysis methods are also reported in this paper.

5.
Foods ; 11(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35563921

RESUMO

Damage occurs easily and is difficult to find inside fruits and vegetables during transportation or storage, which not only brings losses to fruit and vegetable distributors, but also reduces the satisfaction of consumers. Spatially resolved spectroscopy (SRS) is able to detect the quality attributes of fruits and vegetables at different depths, which is of great significance to the quality classification and defect detection of horticultural products. This paper is aimed at reviewing the applications of spatially resolved spectroscopy for measuring the quality attributes of fruits and vegetables in detail. The principle of light transfer in biological tissues, diffusion approximation theory and methodologies are introduced, and different configuration designs for spatially resolved spectroscopy are compared and analyzed. Besides, spatially resolved spectroscopy applications based on two aspects for assessing the quality of fruits and vegetables are summarized. Finally, the problems encountered in previous studies are discussed, and future development trends are presented. It can be concluded that spatially resolved spectroscopy demonstrates great application potential in the field of fruit and vegetable quality attribute evaluation. However, due to the limitation of equipment configurations and data processing speed, the application of spatially resolved spectroscopy in real-time online detection is still a challenge.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120251, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34455387

RESUMO

Pregnancy diagnosis is essential for rabbit's reproductive management. The early identification of non-pregnant rabbits allows for earlier re-insemination, increases the service rate, and reduces the laboring interval in commercial operations. The objective of this study was to establish the feasibility of using a Vis-NIR spatially resolved spectroscopy for diagnosing pregnancy in female rabbits. A total of 141 female rabbits, including 67 pregnant female rabbits (PRs) and 74 non-pregnant female rabbits (NPRs), were measured spectrally between 350 and 1000 nm with different source-detector distances (SDD). Different preprocessing methods were used to transform and enhance the spectral signal. A partial least squares-discriminant analysis (PLS-DA) classification model of the original and preprocessed spectra was established. The highest accuracy of the calibration set and prediction set was 91.75% and 86.05%, respectively. Competitive adaptive reweighted sampling (CARS) and successive projection algorithm (SPA) were used to select characteristic wavelengths from the variables of VIP > 1 (Variable importance in projection),and four classification models were established based on selected wavelengths, including PLS-DA, support vector machine (SVM), K-Nearest Neighbor (KNN) and Naïve Bayes. SPA-SVM was the optimal classification model, the sensitivity, specificity, and accuracy of the validation set and prediction set were 93.18%, 94.44%, 93.88%, 86.96%, 90.00%, 90.69% respectively. The results showed that Vis-NIR spatially resolved spectroscopy combined with classification models could discriminate the PRs and NPRs.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Máquina de Vetores de Suporte , Algoritmos , Animais , Teorema de Bayes , Análise Discriminante , Feminino , Análise dos Mínimos Quadrados , Gravidez , Coelhos
7.
J Biophotonics ; 15(1): e202100202, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34476912

RESUMO

A spatially resolved multimodal spectroscopic device was used on a two-layered "hybrid" model made of ex vivo skin and fluorescent gel to investigate the effect of skin optical clearing on the depth sensitivity of optical spectroscopy. Time kinetics of fluorescence and diffuse reflectance spectra were acquired in four experimental conditions: with optical clearing agent (OCA) 1 made of polyethylene glycol 400 (PEG-400), propylene glycol and sucrose; with OCA 2 made of PEG-400 and dimethyl sulfoxide (DMSO); with saline solution as control and a "dry" condition. An increase in the gel fluorescence back reflected intensity was measured after optical clearing. Effect of OCA 2 turned out to be stronger than that of OCA 1, possibly due to DMSO impact on the stratum corneum keratin conformation. Complementary experimental results showed increased light transmittance through the skin and confirmed that the improvement in the depth sensitivity of the multimodal spectroscopic approach is related not only to the dehydration and refractive indices matching due to optical clearing, but also to the mechanical compression of tissues caused by the application of the spectroscopic probe.


Assuntos
Propilenoglicol , Pele , Epiderme , Humanos , Análise Espectral
8.
Magn Reson Med ; 87(5): 2099-2110, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34866240

RESUMO

PURPOSE: Biologically interesting signals can exhibit fast transverse relaxation and frequency shifts compared to free water. For spectral assignment, a ultra-short echo time (UTE) imaging sequence was modified to provide pixel-wise free-induction decay (FID) acquisition. METHODS: The UTE-FID approach presented relies on a multi-echo 3D spiral UTE sequence with six echoes per radiofrequency (RF) excitation (TEmin 0.05 ms, echo spacing 3 ms). A complex pixel-wise raw data set for FID spectroscopy is obtained by several multi-echo UTE measurements with systematic shifting of the readout by 0.25 or 0.5 ms, until the time domain is filled for 18 or 45 ms. B0 drifts are compensated by mapping and according phase correction. Autoregressive extrapolation of the signal is performed before Gaussian filtering. This method was applied to a phantom containing collagen-water solutions of different concentrations. To calculate the collagen content, a 19-peak collagen model was extracted from a non-selective FID spectrum (50% collagen solution). Proton-density-collagen-fraction (PDCF) was calculated for 10 collagen solutions (2%-50%). Furthermore, an in vivo UTE-FID spectrum of adipose tissue was recorded. RESULTS: UTE-FID signal patterns agreed well with the non-spatially selective pulse-acquire FID spectrum from a sphere filled with 50% collagen. Differentiation of collagen solution from distilled water in the PDCF map was possible from 4% collagen concentration for a UTE-FID sequence with 128 × 128 × 64 matrix (voxel size 1 × 1 × 2.85 mm3 ). The mean values of the PDCF correlate linearly with collagen concentration. CONCLUSION: The presented UTE-FID approach allows pixel-wise raw data acquisition similar to non-spatially selective pulse-acquire spectroscopy. Spatially resolved applications for assessment of spectra of rapidly decaying signals seem feasible.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Prótons , Análise Espectral
9.
Sensors (Basel) ; 21(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34451015

RESUMO

Tissue oxygenation sensing at a few millimeters deep is useful for surgical and postoperative management. However, the measurement sensitivity at each depth and the proper sensor combination have not been clarified. Here, the measurement characteristics of oximetry by spatially resolved near-infrared spectroscopy were analyzed using Monte Carlo simulation and phantom experiment. From summing the sensitivities of each depth, it was quantitatively found that the measurement sensitivity curve had a peak, and the measurement depth can be adjusted by combining the two distances between the light source and the detector. Furthermore, the gastric tissue was 10-20% smaller in terms of measurement depth than the skin-subcutaneous tissue. A miniaturized oximeter was prototyped so that it could be used in combination with an endoscope or laparoscope. The optical probes consisted of light emitting diodes with wavelengths of 770 nm and 830 nm and photodetectors located 3 to 30 mm from the light source. Phantom experiments using the probes demonstrated the tendency of theoretical analysis. These results suggest the possibility of measuring tissue oxygen saturation with a selectable measurement depth. This selectable method will be useful for obtaining oxygenation information at a depth of 2-5 mm, which is difficult to measure using only laparoscopic surface imaging.


Assuntos
Oximetria , Espectroscopia de Luz Próxima ao Infravermelho , Simulação por Computador , Método de Monte Carlo , Oxigênio
10.
Chemphyschem ; 21(3): 204-211, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31802597

RESUMO

Lead halide perovskite is one of the attractive functional materials owing to its outstanding opto-electronic properties, which have been addressed in numerous studies. This study aims to clarify the link between the growth pattern and the charge carrier related properties for the highly oriented perovskite film along the [100] direction. For this purpose, a CH3 NH3 PbI3 thin film mainly grown along the [100] direction was fabricated and subjected to spectroscopic analysis to understand the basic optoelectronic features of the oriented film. A perovskite film with random growth was also fabricated for comparison. In particular, results from excitation polarization photoluminescence spectroscopy (ExPPS) revealed that the orientation of transition dipole moment, which is relevant to the anisotropic property of the film, is attributed to the growth direction of the perovskite film. This study suggests that the absorption anisotropy can affect the anisotropy in properties of the perovskite device. Furthermore, photodetectors with the perovskite films were fabricated to investigate the effect of growth direction on the photodetector performances, revealing that a photodetector with the oriented perovskite film showed larger photoresponses. In order to provide an explanation for such result, we performed a PL lifetime imaging study of the oriented and randomly grown perovskite films.

11.
Meat Sci ; 144: 100-109, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29960721

RESUMO

Spectroscopy in the visible near-infrared spectral (Vis-NIRS) range combined with imaging techniques (hyperspectral imaging, HSI) allows assessment of chemical composition, texture, and meat structure. The use of HSI in the meat and food industry has observed a significant growth in the last decade, yet its use for assessment of meat it is not optimal yet. The application of HSI for assessment of meat is reviewed with focus on its ability to capture meat unique chemical and structural characteristics. While HSI is widely used for assessment of chemical composition, a limited number of evidences on its ability to handle the effect of different sources of variation on the assessment is found. The use of spatially resolved spectroscopy has been able to detect structural information related to animal background, muscle type, rigor process and ageing. Similarly the use of texture features seem to capture unique characteristics of meat.


Assuntos
Análise de Alimentos/métodos , Carne/análise , Carne/normas , Animais , Controle de Qualidade , Espectroscopia de Luz Próxima ao Infravermelho/métodos
12.
J Biomed Opt ; 23(3): 1-4, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29524320

RESUMO

We quantitatively investigated the measurement sensitivity of spatially resolved spectroscopy (SRS) across six tissue models: cerebral tissue, a small animal brain, the forehead of a fetus, an adult brain, forearm muscle, and thigh muscle. The optical path length in the voxel of the model was analyzed using Monte Carlo simulations. It was found that the measurement sensitivity can be represented as the product of the change in the absorption coefficient and the difference in optical path length in two states with different source-detector distances. The results clarified the sensitivity ratio between the surface layer and the deep layer at each source-detector distance for each model and identified changes in the deep measurement area when one of the detectors was close to the light source. A comparison was made with the results from continuous-wave spectroscopy. The study also identified measurement challenges that arise when the surface layer is inhomogeneous. Findings on the measurement sensitivity of SRS at each voxel and in each layer can support the correct interpretation of measured values when near-infrared oximetry or functional near-infrared spectroscopy is used to investigate different tissue structures.


Assuntos
Oximetria/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto , Animais , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Testa/irrigação sanguínea , Humanos , Método de Monte Carlo , Músculo Esquelético/irrigação sanguínea , Processamento de Sinais Assistido por Computador
13.
Appl Spectrosc ; 71(1): 78-86, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27864446

RESUMO

A dual framing camera system was coupled with custom-designed ultrafast imaging spectrometer optics to yield simultaneous imaging and imaging spectroscopy of extremely short detonation interaction events in reactive materials. For short exposures of 100 ns or less, spectral resolutions of 2.4 Å are achievable, allowing for time-resolved identification of key intermediate species evolving from prompt reaction. Under some circumstances, emission can be fit to a local emission temperature, assuming the optically thin limit. Applications to reactive metal systems involving aluminum, magnesium, titanium, boron, and silicon are demonstrated.

14.
Adv Exp Med Biol ; 876: 27-33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26782191

RESUMO

UNLABELLED: Both the change in total hemoglobin concentration (cHb), assessed by near-infrared continuous-wave spectroscopy (NIR-CWS), and the normalized tissue hemoglobin index (nTHI), assessed by NIR spatially resolved spectroscopy (NIR-SRS), were used to quantify changes in tissue blood volume. However, it is possible that these parameters may show different changes because of the different measurement systems. The present study aimed to compare changes in cHb and nTHI in working muscles, which were selected for measurement because the parameters changed dynamically. METHODS: After a standing rest, seven male runners (age 24±3 years, mean±S.D.) performed an incremental running exercise test on a treadmill (inclination=1%) from 180 to 300 m min(-1). During the tests, cHb and nTHI were monitored from the vastus lateralis (VL) and medial gastrocnemius (GM) muscles. These parameters were relatively evaluated from the minimal to maximal values through the test. RESULTS: When the exercise began, cHb and nTHI quickly decreased and then gradually increased during running. In comparison with both VL and GM, there was significant interaction between cHb and nTHI. CONCLUSIONS: The present results suggest that cHb and nTHI in working muscles are not always synchronized, particularly at the onset of exercise and at high intensities. Although cHb was previously used as the change of tissue blood volume, it is implied that tissue blood volume assessed by cHb is overestimated.


Assuntos
Volume Sanguíneo , Corrida/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Adulto , Hemoglobinas/análise , Humanos , Masculino
15.
J Pharm Sci ; 104(12): 4074-4081, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26317576

RESUMO

Near-infrared (NIR) spectroscopy has become a well-established tool for the characterization of solid oral dosage forms manufacturing processes and finished products. In this work, the utility of a traditional single-point NIR measurement was compared with that of a spatially resolved spectroscopic (SRS) measurement for the determination of tablet assay. Experimental designs were used to create samples that allowed for calibration models to be developed and tested on both instruments. Samples possessing a poor distribution of ingredients (highly heterogeneous) were prepared by under-blending constituents prior to compaction to compare the analytical capabilities of the two NIR methods. The results indicate that SRS can provide spatial information that is usually obtainable only through imaging experiments for the determination of local heterogeneity and detection of abnormal tablets that would not be detected with single-point spectroscopy, thus complementing traditional NIR measurement systems for in-line, and in real-time tablet analysis.


Assuntos
Comprimidos/química , Calibragem , Espectroscopia de Luz Próxima ao Infravermelho/métodos
16.
ACS Nano ; 8(10): 10101-10, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25198060

RESUMO

The origins of performance enhancement in hybrid plasmonic organic photovoltaic devices are often embroiled in a complex interaction of light scattering, localized surface plasmon resonances, exciton-plasmon energy transfer and even nonplasmonic effects. To clearly deconvolve the plasmonic contributions from a single nanostructure, we herein investigate the influence of a single silver nanowire (NW) on the charge carriers in bulk heterojunction polymer solar cells using spatially resolved optical spectroscopy, and correlate to electrical device characterization. Polarization-dependent photocurrent enhancements with a maximum of ∼ 36% over the reference are observed when the transverse mode of the plasmonic excitations in the Ag NW is activated. The ensuing higher absorbance and light scattering induced by the electronic motion perpendicular to the NW long axis lead to increased exciton and polaron densities instead of direct surface plasmon-exciton energy transfer. Finite-difference time-domain simulations also validate these findings. Importantly, our study at the single nanostructure level explores the fundamental limits of plasmonic enhancement achievable in organic solar cells with a single plasmonic nanostructure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA