Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 513
Filtrar
1.
Ecol Lett ; 27(8): e14487, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39086139

RESUMO

The hypothesis that species' ranges are limited by interspecific competition has motivated decades of debate, but a general answer remains elusive. Here we test this hypothesis for lowland tropical birds by examining species' precipitation niche breadths. We focus on precipitation because it-not temperature-is the dominant climate variable that shapes the biota of the lowland tropics. We used 3.6 million fine-scale citizen science records from eBird to measure species' precipitation niche breadths in 19 different regions across the globe. Consistent with the predictions of the interspecific competition hypothesis, multiple lines of evidence show that species have narrower precipitation niches in regions with more species. This means species inhabit more specialized precipitation niches in species-rich regions. We predict this niche specialization should make tropical species in high diversity regions disproportionately vulnerable to changes in precipitation regimes; preliminary empirical evidence is consistent with this prediction.


Assuntos
Distribuição Animal , Aves , Chuva , Clima Tropical , Animais , Aves/fisiologia , Ecossistema , Comportamento Competitivo , Biodiversidade
2.
Environ Toxicol Chem ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189720

RESUMO

Effect assessments of metals are mostly based on single-metal, single-species tests, thereby ignoring metal-mixture effects and indirect effects through species interactions. We tested the combined effects of metal and species interactions in two-trophic algal-daphnid microcosms. Metal-mixture effects on daphnid communities may propagate from effects on the generally more sensitive algal communities. Four different algal communities (three species each), with and without addition of the same daphnid community (three species) were exposed to single metals and one metal mixture (17:17:51 µg/L Ni:Cu:Zn). Daphnid densities were negatively affected by metals in the two-trophic test, the magnitude of which depended on the algal community composition. Algal densities were overall positively affected by the metals in the two-trophic test but negatively in the single-trophic test, illustrating an indirect positive effect in the two-trophic system due to a reduced grazing pressure. Metal effects on daphnid communities in the two-trophic test (day 21) were correlated with metal effects on the single-trophic-level algal communities during exponential growth (R2 = 0.55, p = 0.0011). This finding suggests that metal effects propagate across trophic levels due to a reduced food quantity. However, the indirect positive effects on algal densities, resulting in abundant food quantity, suggests that metal effects can also propagate to daphnids due to a reduced food quality (not measured directly). Metal-mixture interactions on daphnid densities varied during exposure, but were additive or antagonistic relative to independent action when final daphnid densities were considered (day 56). This suggests stronger indirect effects of the mixture compared with the single metals. Overall, our study highlights the dynamic aspect of community-level effects, which empirical reference models such as independent action or concentration addition cannot predict. Environ Toxicol Chem 2024;00:1-15. © 2024 SETAC.

3.
J Anim Ecol ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39126185

RESUMO

Global change stressors can modify ecological niches of species, thereby altering ecological interactions within communities and food webs. Yet, some species might take advantage of a fast-changing environment, allowing species with high niche plasticity to thrive under climate change. We used natural CO2 vents to test the effects of ocean acidification on niche modifications of a temperate rocky reef fish assemblage. We quantified three ecological niche traits (overlap, shift and breadth) across three key niche dimensions (trophic, habitat and behavioural). Only one species increased its niche width along multiple niche dimensions (trophic and behavioural), shifted its niche in the remaining (habitat) was the only species to experience a highly increased density (i.e. doubling) at vents. The other three species that showed slightly increased or declining densities at vents only displayed a niche width increase in one (habitat niche) out of seven niche metrics considered. This niche modification was likely in response to habitat simplification (transition to a system dominated by turf algae) under ocean acidification. We further showed that, at the vents, the less abundant fishes had a negligible competitive impact on the most abundant and common species. This species appeared to expand its niche space, overlapping with other species, which likely led to lower abundances of the latter under elevated CO2. We conclude that niche plasticity across multiple dimensions could be a potential adaptation in fishes to benefit from a changing environment in a high-CO2 world.

4.
Proc Natl Acad Sci U S A ; 121(34): e2322063121, 2024 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-39136989

RESUMO

Global migrations of diverse animal species often converge along the same routes, bringing together seasonal assemblages of animals that may compete, prey on each other, and share information or pathogens. These interspecific interactions, when energetic demands are high and the time to complete journeys is short, may influence survival, migratory success, stopover ecology, and migratory routes. Numerous accounts suggest that interspecific co-migrations are globally distributed in aerial, aquatic, and terrestrial systems, although the study of migration to date has rarely investigated species interactions among migrating animals. Here, we test the hypothesis that migrating animals are communities engaged in networks of ecological interactions. We leverage over half a million records of 50 bird species from five bird banding sites collected over 8 to 23 y to test for species associations using social network analyses. We find strong support for persistent species relationships across sites and between spring and fall migration. These relationships may be ecologically meaningful: They are often stronger among phylogenetically related species with similar foraging behaviors and nonbreeding ranges even after accounting for the nonsocial contributions to associations, including overlap in migration timing and habitat use. While interspecific interactions could result in costly competition or beneficial information exchange, we find that relationships are largely positive, suggesting limited competitive exclusion at the scale of a banding station during migratory stopovers. Our findings support an understanding of animal migrations that consist of networked communities rather than random assemblages of independently migrating species, encouraging future studies of the nature and consequences of co-migrant interactions.


Assuntos
Migração Animal , Aves , Ecossistema , Estações do Ano , Animais , Migração Animal/fisiologia , Aves/fisiologia
5.
Ecol Evol ; 14(8): e70096, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39108561

RESUMO

Freshwater ecosystems are increasingly affected by rising annual mean temperatures and heatwaves. While heatwaves are expected to have more immediate effects than mean temperature increases on local communities, comparative experimental studies are largely lacking. We conducted a 1-month mesocosm experiment to test the effect of different warming treatments, constantly raised temperatures (+3°C) and recurring heatwaves (+6°C), on plankton communities. We specifically tested how shifts in zooplankton trait composition and functional groups are reflected in ecosystem function (top-down control on primary producers). We found that heatwaves had a stronger and more immediate effect on zooplankton trait composition (specifically on body length and body mass) and functional groups. Heatwaves led to the decrease of small-bodied grazers (i.e., Rotifera) and the dominance of larger omnivorous Copepoda, and these shifts resulted in weaker top-down control, leading to elevated phytoplankton biomass. Altogether, our results highlight the importance of the indirect effects of heatwaves via inducing shifts in zooplankton functional groups and trait composition, which may lead to algal blooms.

6.
Ecol Evol ; 14(7): e70031, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39050654

RESUMO

Camera traps have been widely used in wildlife research, offering significant potential for monitoring species interactions at ephemeral resources. However, raw data obtained from camera traps often face limitations due to observation censoring, where resource consumption by dominant animals may obscure potential resource use by less dominant animals. We extended time-to-detection occupancy modeling to quantify interspecific consumptive competition and redundancy of ecosystem functions through consumption between two species, while accounting for observation censoring. By treating resource use by rival species as censored data, we estimated the proportion of resources potentially used in the absence of rival species and calculated the loss caused by the rival species, which is defined as "Competition Intensity Index." We also defined the Unique Functional Contribution, which represents the net functional loss when a species is removed, calculated by excluding the contribution potentially substituted by the other species. We also considered resource degradation and computed the quantity of resources acquired by each species. This established framework was applied to predation data on bird nests by alien squirrels and other predators (Case 1) as well as scavenging on mammalian carcasses by two carnivores (Case 2). In Case 1, the introduction of squirrels significantly affected the breeding success of birds. Although nests were being preyed upon by native crows also, our model estimated that Unique Functional Contribution by the squirrels was 0.47. This means that, by eradicating the squirrels, the reproductive success of the birds could potentially increase by as much as 47%. In Case 2, the Competition Intensity Index for foxes was 0.17, whereas that for raccoon dogs was 0.46, suggesting an asymmetric effect of resource competition between the two species. The frequency distribution of wet mass available to the two species differed significantly. This approach will enable a more robust construction of resource-consumer interaction networks.

7.
Tree Physiol ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073894

RESUMO

Climate change is raising concerns about how forests will respond to extreme droughts, heat waves, and their co-occurrence. In this greenhouse study, we tested how carbon and water relations relate to seedling growth and mortality of northeastern US trees during and after extreme drought, warming, and combined drought and warming. We compared the response of our focal species red spruce (Picea rubens Sarg.) to a common associate (paper birch, Betula papyrifera Marsh.) and a species expected to increase abundance in this region with climate change (northern red oak, Quercus rubra L.). We tracked growth and mortality, photosynthesis, and water use of 216 seedlings of these species through a treatment and a recovery year. Each red spruce seedling was planted in containers either alone or with another seedling to simulate potential competition and seedlings were exposed to combinations of drought (irrigated, 15-day 'short', or 30-day 'long') and temperature (ambient or 16 days at +3.5 °C daily maximum) treatments. We found dominant effects of the drought reducing photosynthesis, midday water potential, and growth of spruce and birch, but that oak showed considerable resistance to drought stress. The effects of planting seedlings together were moderate and likely due to competition for limited water. Despite high temperatures reducing photosynthesis for all species, the warming imposed in this study minorly impacted growth only for oak in the recovery year. Overall, we found that the diverse water-use strategies employed by the species in our study related to their growth and recovery following drought stress. This study provides physiological evidence to support the prediction that native species to this region like red spruce and paper birch are susceptible to future climate extremes that may favor other species like northern red oak, leading to potential impacts on tree community dynamics under climate change.

8.
Vet Parasitol ; 331: 110267, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39024696

RESUMO

Dung beetles provide a variety of ecosystem services in both natural and farmed landscapes. Amongst these services, reductions in the abundance of the free-living stages of pests and parasites that develop in faeces is considered to be of great importance. There is evidence from Australia that enhanced dung beetle populations can reduce populations of pest fly species, particularly the bush fly, however, there is little empirical evidence for reductions in the incidence and impact of nematode parasitism in grazing ruminants. There are two main pathways whereby beetles can disrupt worm life-cycles: predaceous species that feed on eggs or larvae can directly reduce populations in dung whereas coprophagous species can affect parasite development, survival and translocation by altering the location, microclimate and infrastructure of dung deposits. In addition, predaceous mites that are phoretic on dung beetles, can also prey on larval stages in the faeces. To date, reductions in both larval survival and the acquisition of gastrointestinal nematode burdens in ruminants on pasture has been reported only in association with the activity of large tunnelers that bury dung 15 cm or more below ground. The activity of dwellers, rollers and shallow tunnelers can either limit or enhance larval development and translocation, depending on the influence of other factors, notably rainfall. Currently, the scientific evidence for dung beetles playing a major role in the control of gastrointestinal nematodes in domestic ruminants is very limited and may have been overestimated in assessments of their ecosystem services.

9.
Ecol Lett ; 27(7): e14475, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39060898

RESUMO

Trophic interaction modifications (TIM) are widespread in natural systems and occur when a third species indirectly alters the strength of a trophic interaction. Past studies have focused on documenting the existence and magnitude of TIMs; however, the underlying processes and long-term consequences remain elusive. To address this gap, we experimentally quantified the density-dependent effect of a third species on a predator's functional response. We conducted short-term experiments with ciliate communities composed of a predator, prey and non-consumable 'modifier' species. In both communities, increasing modifier density weakened the trophic interaction strength, due to a negative effect on the predator's space clearance rate. Simulated long-term dynamics indicate quantitative differences between models that account for TIMs or include only pairwise interactions. Our study demonstrates that TIMs are important to understand and predict community dynamics and highlights the need to move beyond focal species pairs to understand the consequences of species interactions in communities.


Assuntos
Cilióforos , Cadeia Alimentar , Comportamento Predatório , Animais , Cilióforos/fisiologia , Modelos Biológicos , Dinâmica Populacional , Densidade Demográfica
10.
Ecology ; 105(8): e4322, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39014865

RESUMO

Accompanying the climate crisis is the more enigmatic biodiversity crisis. Rapid reorganization of biodiversity due to global environmental change has defied prediction and tested the basic tenets of conservation and restoration. Conceptual and practical innovation is needed to support decision making in the face of these unprecedented shifts. Critical questions include: How can we generalize biodiversity change at the community level? When are systems able to reorganize and maintain integrity, and when does abiotic change result in collapse or restructuring? How does this understanding provide a template to guide when and how to intervene in conservation and restoration? To this end, we frame changes in community organization as the modulation of external abiotic drivers on the internal topology of species interactions, using plant-plant interactions in terrestrial communities as a starting point. We then explore how this framing can help translate available data on species abundance and trait distributions to corresponding decisions in management. Given the expectation that community response and reorganization are highly complex, the external-driver internal-topology (EDIT) framework offers a way to capture general patterns of biodiversity that can help guide resilience and adaptation in changing environments.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Conservação dos Recursos Naturais/métodos , Modelos Biológicos , Mudança Climática , Plantas/classificação
11.
Ecol Evol ; 14(7): e70047, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39035041

RESUMO

Climate change is projected to increase the frequency and intensity of extreme heat events, and may increase humidity levels, leading to coupled thermal and hydric stress. However, how humidity modulates the impacts of heat stress on species and their interactions is currently unknown. Using an insect host-parasitoid interaction: the Indian meal moth, Plodia interpunctella, and its endoparasitoid wasp, Venturia canescens, we investigated how humidity interacted with heat stress duration, applied at different host developmental stages, to affect life history traits. Hosts parasitized as 4th instar larvae and unparasitized hosts were maintained in high- (60.8% RH) or low-humidity (32.5% RH) at constant 28°C. They were then exposed to a 38°C thermal stress with a duration of 0 (no heat stress), 6 or 72 h in either the 4th or 5th host instar. Neither humidity nor heat stress duration affected emergence of unparasitized hosts, but increasing heat stress duration during the 4th instar decreased parasitoid emergence irrespective of humidity. When applied during the 5th instar, increasing heat duration decreased parasitoid emergence under low humidity, but no effect of heat stress was found under high humidity. Moreover, experiencing longer heat stress in the 4th instar increased host larval development time and decreased body size under high humidity, but this effect differed under low humidity; increasing heat duration in the 5th instar decreased parasitoid body sizes only under low humidity. Larval stage and heat stress duration directly affected parasitized host survival time, with a concomitant indirect reduction of parasitoid sizes. We show that humidity modifies key life history responses of hosts and parasitoids to heat stress in species-specific ways, highlighting the potential importance of humidity in regulating host-parasitoid interactions and their population dynamics. Finally, we emphasize that interactions between environmental stressors need to be considered in climate change research.

12.
Mol Ecol ; 33(17): e17482, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39082382

RESUMO

The spread and adaptation of fungal plant pathogens in agroecosystems are facilitated by environmental homogeneity. Metagenomic sequencing of infected tissues allowed us to monitor eco-evolutionary dynamics and interactions between host, pathogen and plant microbiome. Exserohilum turcicum, the causal agent of northern corn leaf blight (NCLB) in maize, is distributed in multiple clonal lineages throughout Europe. To characterize regional pathogen diversity, we conducted metagenomic DNA sequencing on 241 infected leaf samples from the highly susceptible Swiss maize landrace Rheintaler Ribelmais, collected over 3 years (2016-2018) from an average of 14 agricultural farms within the Swiss Rhine Valley. All major European clonal lineages of E. turcicum were identified. Lineages differ by their mating types which indicates potential for sexual recombination and rapid evolution of new pathogen strains, although we found no evidence of recent recombination. The associated eukaryotic and prokaryotic leaf microbiome exhibited variation in taxonomic diversity between years and locations and is likely influenced by local weather conditions. A network analysis revealed distinct clusters of eukaryotic and prokaryotic taxa that correlates with the frequency of E. turcicum sequencing reads, suggesting causal interactions. Notably, the yeast genus Metschnikowia exhibited a strongly negative association with E. turcicum, supporting its known potential as biological control agent against fungal pathogens. Our findings show that metagenomic sequencing is a useful tool for analysing the role of environmental factors and potential pathogen-microbiome interactions in shaping pathogen dynamics and evolution, suggesting their potential for effective pathogen management strategies.


Assuntos
Ascomicetos , Metagenômica , Microbiota , Doenças das Plantas , Folhas de Planta , Zea mays , Zea mays/microbiologia , Suíça , Ascomicetos/genética , Folhas de Planta/microbiologia , Doenças das Plantas/microbiologia , Microbiota/genética
13.
Mar Environ Res ; 200: 106646, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39048495

RESUMO

Rocky shore communities are shaped by complex interactions among environmental drivers and a range of biological processes. Here, we investigated the importance of abiotic and biotic drivers on the population structure of key rocky intertidal species at 62 sites, spanning ∼50% of the Brazilian rocky shoreline (i.e., ∼500 km). Large-scale population patterns were generally explained by differences in ocean temperature and wave exposure. For the gastropod species Lottia subrugosa, differences at smaller scales (i.e., 0.1-1 km) were better explained by other abiotic influences such as freshwater discharge and substrate roughness. Based on the general population patterns of intertidal species identified, three main oceanographic groups were observed: a cold-oligotrophic grouping at northern sites (Lakes sub-region), a eutrophic group associated with large estuaries and urban zones (Santos and Guanabara bays); and a transitional warm-water group found between the two more productive areas. Larger individuals of Stramonita brasiliensis, L. subrugosa and Echinolittorina lineolata were generally found in the cold-oligotrophic system (i.e., upwelling region), while small suspension feeders dominate the warm-eutrophic systems. Evidence of bottom-up regulation was not observed, and top-down regulation effects were only observed between the whelk S. brasiliensis and its mussel prey Pernaperna. Environmental drivers as compared to biotic interactions, therefore, play a key role determining the population structure of multiple intertidal species, across a range of spatial scales along the SW Atlantic shores.


Assuntos
Ecossistema , Brasil , Animais , Monitoramento Ambiental , Gastrópodes/fisiologia , Dinâmica Populacional , Biodiversidade , Temperatura
14.
Water Res ; 261: 122054, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38986279

RESUMO

Phytoplankton communities are crucial components of aquatic ecosystems, and since they are highly interactive, they always form complex networks. Yet, our understanding of how interactive phytoplankton networks vary through time under changing environmental conditions is limited. Using a 29-year (339 months) long-term dataset on Lake Taihu, China, we constructed a temporal network comprising monthly sub-networks using "extended Local Similarity Analysis" and assessed how eutrophication, climate change, and restoration efforts influenced the temporal dynamics of network complexity and stability. The network architecture of phytoplankton showed strong dynamic changes with varying environments. Our results revealed cascading effects of eutrophication and climate change on phytoplankton network stability via changes in network complexity. The network stability of phytoplankton increased with average degree, modularity, and nestedness and decreased with connectance. Eutrophication (increasing nitrogen) stabilized the phytoplankton network, mainly by increasing its average degree, while climate change, i.e., warming and decreasing wind speed enhanced its stability by increasing the cohesion of phytoplankton communities directly and by decreasing the connectance of network indirectly. A remarkable shift and a major decrease in the temporal dynamics of phytoplankton network complexity (average degree, nestedness) and stability (robustness, persistence) were detected after 2007 when numerous eutrophication mitigation efforts (not all successful) were implemented, leading to simplified phytoplankton networks and reduced stability. Our findings provide new insights into the organization of phytoplankton networks under eutrophication (or re-oligotrophication) and climate change in subtropical shallow lakes.


Assuntos
Mudança Climática , Eutrofização , Lagos , Fitoplâncton , China , Ecossistema , Humanos
15.
New Phytol ; 243(6): 2486-2500, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39049577

RESUMO

Changes to flowering phenology are a key response of plants to climate change. However, we know little about how these changes alter temporal patterns of reproductive overlap (i.e. phenological reassembly). We combined long-term field (1937-2012) and herbarium records (1850-2017) of 68 species in a flowering plant community in central North America and used a novel application of Bayesian quantile regression to estimate changes to flowering season length, altered richness and composition of co-flowering assemblages, and whether phenological shifts exhibit seasonal trends. Across the past century, phenological shifts increased species' flowering durations by 11.5 d on average, which resulted in 94% of species experiencing greater flowering overlap at the community level. Increases to co-flowering were particularly pronounced in autumn, driven by a greater tendency of late season species to shift the ending of flowering later and to increase flowering duration. Our results demonstrate that species-level phenological shifts can result in considerable phenological reassembly and highlight changes to flowering duration as a prominent, yet underappreciated, effect of climate change. The emergence of an autumn co-flowering mode emphasizes that these effects may be season-dependent.


Assuntos
Mudança Climática , Flores , Estações do Ano , Flores/fisiologia , Biodiversidade , Fatores de Tempo , Especificidade da Espécie , Reprodução/fisiologia , Teorema de Bayes
16.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230142, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38913061

RESUMO

Dispersal is a well-recognized driver of ecological and evolutionary dynamics, and simultaneously an evolving trait. Dispersal evolution has traditionally been studied in single-species metapopulations so that it remains unclear how dispersal evolves in metacommunities and metafoodwebs, which are characterized by a multitude of species interactions. Since most natural systems are both species-rich and spatially structured, this knowledge gap should be bridged. Here, we discuss whether knowledge from dispersal evolutionary ecology established in single-species systems holds in metacommunities and metafoodwebs and we highlight generally valid and fundamental principles. Most biotic interactions form the backdrop to the ecological theatre for the evolutionary dispersal play because interactions mediate patterns of fitness expectations across space and time. While this allows for a simple transposition of certain known principles to a multispecies context, other drivers may require more complex transpositions, or might not be transferred. We discuss an important quantitative modulator of dispersal evolution-increased trait dimensionality of biodiverse meta-systems-and an additional driver: co-dispersal. We speculate that scale and selection pressure mismatches owing to co-dispersal, together with increased trait dimensionality, may lead to a slower and more 'diffuse' evolution in biodiverse meta-systems. Open questions and potential consequences in both ecological and evolutionary terms call for more investigation. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Assuntos
Distribuição Animal , Evolução Biológica , Animais , Ecossistema
17.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230131, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38913062

RESUMO

Dispersal is a key process in ecology and evolution. While the effects of dispersal on diversity are broadly acknowledged, our understanding of the influence of diversity on dispersal remains limited. This arises from the dynamic, context-dependent, nonlinear and ubiquitous nature of dispersal. Diversity outcomes, such as competition, mutualism, parasitism and trophic interactions can feed back on dispersal, thereby influencing biodiversity patterns at several spatio-temporal scales. Here, we shed light on the dispersal-diversity causal links by discussing how dispersal-diversity ecological and evolutionary feedbacks can impact macroecological patterns. We highlight the importance of dispersal-diversity feedbacks for advancing our understanding of macro-eco-evolutionary patterns and their challenges, such as establishing a unified framework for dispersal terminology and methodologies across various disciplines and scales. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Assuntos
Distribuição Animal , Biodiversidade , Evolução Biológica , Animais , Ecossistema
18.
Theor Popul Biol ; 158: 185-194, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925487

RESUMO

The host microbiome can be considered an ecological community of microbes present inside a complex and dynamic host environment. The host is under selective pressure to ensure that its microbiome remains beneficial. The host can impose a range of ecological filters including the immune response that can influence the assembly and composition of the microbial community. How the host immune response interacts with the within-microbiome community dynamics to affect the assembly of the microbiome has been largely unexplored. We present here a mathematical framework to elucidate the role of host immune response and its interaction with the balance of ecological interactions types within the microbiome community. We find that highly mutualistic microbial communities characteristic of high community density are most susceptible to changes in immune control and become invasion prone as host immune control strength is increased. Whereas highly competitive communities remain relatively stable in resisting invasion to changing host immune control. Our model reveals that the host immune control can interact in unexpected ways with a microbial community depending on the prevalent ecological interactions types for that community. We stress the need to incorporate the role of host-control mechanisms to better understand microbiome community assembly and stability.


Assuntos
Microbiota , Humanos , Interações entre Hospedeiro e Microrganismos , Simbiose
19.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230140, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38913052

RESUMO

Theory links dispersal and diversity, predicting the highest diversity at intermediate dispersal levels. However, the modulation of this relationship by macro-eco-evolutionary mechanisms and competition within a landscape is still elusive. We examine the interplay between dispersal, competition and landscape structure in shaping biodiversity over 5 million years in a dynamic archipelago landscape. We model allopatric speciation, temperature niche, dispersal, competition, trait evolution and trade-offs between competitive and dispersal traits. Depending on dispersal abilities and their interaction with landscape structure, our archipelago exhibits two 'connectivity regimes', that foster speciation events among the same group of islands. Peaks of diversity (i.e. alpha, gamma and phylogenetic), occurred at intermediate dispersal; while competition shifted diversity peaks towards higher dispersal values for each connectivity regime. This shift demonstrates how competition can boost allopatric speciation events through the evolution of thermal specialists, ultimately limiting geographical ranges. Even in a simple landscape, multiple intermediate dispersal diversity relationships emerged, all shaped similarly and according to dispersal and competition strength. Our findings remain valid as dispersal- and competitive-related traits evolve and trade-off; potentially leaving identifiable biodiversity signatures, particularly when trade-offs are imposed. Overall, we scrutinize the convoluted relationships between dispersal, species interactions and landscape structure on macro-eco-evolutionary processes, with lasting imprints on biodiversity.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Assuntos
Biodiversidade , Evolução Biológica , Distribuição Animal , Especiação Genética , Ecossistema , Modelos Biológicos , Animais
20.
Oecologia ; 205(2): 411-422, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898337

RESUMO

The interplay of positive and negative species interactions controls species assembly in communities. Dryland plant communities, such as savannas, are important to global biodiversity and ecosystem functioning. Sandhill oaks in xeric savannas of the southeastern United States can facilitate longleaf pine by enhancing seedling survival, but the effects of oaks on recruitment and growth of longleaf pine have not been examined. We censused, mapped, and monitored nine contiguous hectares of longleaf pine in a xeric savanna to quantify oak-pine facilitation, and to examine other factors impacting recruitment, such as vegetation cover and longleaf pine tree density. We found that newly recruited seedlings and grass stage longleaf pines were more abundant in oak-dominated areas where densities were 230% (newly recruited seedlings) and 360% (grass stage) greater from lowest to highest oak neighborhood densities. Longleaf pine also grew faster under higher oak density. Longleaf pine recruitment was lowest under longleaf pine canopies. Mortality of grass stage and bolt stage longleaf pine was low (~1.0% yr-1) in the census interval without fire. Overall, our findings highlight the complex interactions between pines and oaks-two economically and ecologically important genera globally. Xeric oaks should be incorporated as a management option for conservation and restoration of longleaf pine ecosystems.


Assuntos
Ecossistema , Pradaria , Pinus , Quercus , Plântula , Pinus/crescimento & desenvolvimento , Quercus/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA