RESUMO
In the realm of petrochemical operations, persistent efforts have been made to curtail specific energy consumption; however, certain heat sources continue to be underutilized. This paper investigates the condition of a Lurgi methanol plant to identify process streams with enough wasted heat that have the potential to produce electricity. After a thorough analysis, one particular zone is identified where an air cooler package and seawater exchanger are used to decrease the temperature of crude methanol vapor. To harness this untapped heat for electricity generation, an organic Rankine cycle (ORC) is proposed. In the quest for efficient electricity production, three distinct working fluids-dry (R600a), wet (R134a), and isentropic (R11)- are scrutinized to compare their performance in generating electricity within the ORC system. In addition, the maximum amount of electricity that can be generated from this waste heat recovery (WHR) project is determined and optimized using a multi-objective optimization method. By leveraging genetic algorithms, the system's exergy is enhanced while minimizing costs. A comprehensive economic comparison is conducted using probability analysis to evaluate each system's financial viability. The results show that dry and isentropic working fluids yield the best results for electricity production, generating approximately 9-10 MW. The return on investment (ROI) for these working fluids is also nearly similar, at 16 %. Among the chosen working fluids, R600a is selected as the superior option due to its lower outlet temperature for crude methanol. Additionally, because the cooling water flow for the condenser of the ORC is identified as a limitation in the current petrochemical plant, a new optimization is conducted with a constraint on the flow of cooling water, aiming for approximately 3000 tons/h. The results show that the proposed WHR-ORC system can generate a maximum of approximately 7.5 MW net electricity in the studied petrochemical plant, while also reducing CO2 emissions by up to 40,000 tons per year. The innovative methodology showcased in this research underscores its economic viability, paving the way for heightened energy efficiency and environmentally conscious methanol production practices.
RESUMO
This study investigates how temperature and forward osmosis (FO) membrane properties, such as water permeability (A), solute permeability (B), and structural parameter (S), affect the specific energy consumption (SEC) of forward osmosis-reverse osmosis system. The results show that further SEC reduction beyond the water permeability of 3 LMH bar-1 is limited owing to high concentration polarization (CP). Increasing S by 10-fold increases FO recovery by 177.6%, causing SEC decreases by 33.6%. However, membrane with smaller S also increases external CP. To reduce SEC, future work should emphasize mixing strategies to reduce external CP. Furthermore, increasing the temperature from 10 to 40 °C can reduce SEC by 14.3%, highlighting the energy-saving potential of temperature-elevated systems. The factorial design indicates that at a lower temperature, increasing A and decreasing S have a more significant impact on reducing SEC. This underlines the importance of developing advanced FO membranes, particularly for lower-temperature processes.
Assuntos
Membranas Artificiais , Osmose , Temperatura , Purificação da Água , Purificação da Água/métodos , PermeabilidadeRESUMO
Forward Osmosis (FO), a membrane desalination technology and Capacitive Deionization (CDI), an electrically operated desalination technology, are numerically integrated utilizing four different configurations for the high-water recovery rate and ultrapure water production from brackish water resource. To minimize the wastewater rejection, the CDI desorption stream is continuously fed to the FO unit, efficiently recovering the remaining freshwater. To produce ultrapure water, freshwater stream obtained from FO is provided to the CDI cell, which adsorbs the remaining dissolved solute particles. These two configurations serve the purpose of both industrial as well as domestic water supply requirements. Continuing this concept, the formation of the other two configurations allows us to obtain fresh water and ultrapure water simultaneously and up to a 90% freshwater recovery rate for the areas with inadequate supply. The performance parameters to assess the integration are the Water Recovery Rate (WRR) and Specific Energy Consumption (SEC). The first configuration (CDI-FO), proposed for a high freshwater recovery rate, resulted in 79.33% WRR with an SEC of 0.689kWh/m3. While, for the second configuration (FO-CDI), 34.25% water was recovered as 2.87â ppm ultrapure water along with 34.25% freshwater. The third proposed configuration (CDI-FO-CDI) had a WRR of 79.33%, 14.67% of which was recovered as ultrapure water of concentration 2.86â ppm. The fourth configuration (CDI-FO-FO) developed for high water recovery, removed the maximum of water from the feed stream with a WRR of 91.33% and remained energy-efficient, consuming an SEC of 0.908kWh/m3.
RESUMO
Thermoelectric membrane distillation has shown promise as a new membrane distillation technique capable of improving energy consumption metrics. This study features an experimental design approach to investigating the performance of a thermoelectric membrane distillation system. Screening and full factorial designs were implemented in Minitab 16 to determine the optimal process conditions for minimizing the specific energy consumption of the system. The process parameter with the most significant impact on the specific energy consumption of thermoelectric membrane distillation systems was determined and a mathematical model for predicting the specific energy consumption was derived. The study showed that adjusting the feed flowrate, the most influential continuous parameter, from a sub-optimal level to an optimal level, while keeping other process variables at their optimal levels, could lead to a 34% reduction in the system's specific energy consumption. At the optimized process parameters of the thermoelectric membrane distillation system, the minimized specific energy consumption fell about 35% below the threshold value of 1,000 kWh/m3 found among the efficient membrane distillation systems in the literature.â¢Thermoelectric heat exchanger provides the driving force for the membrane distillation processâ¢Seven process variables are assumed to influence the energy consumption of the distillation processâ¢The variables are screened before being analyzed in a full factorial experimental design.
RESUMO
Desalination of hypersaline brine is known as one of the methods to cope with the rising global concern on brine disposal in high-salinity water treatment. However, the main problem of hypersaline brine desalination is the high energy usage resulting from the high operating pressure. In this work, we carried out a parametric analysis on a spiral wound membrane (SWM) module to predict the performance of hypersaline brine desalination, in terms of mass transfer and specific energy consumption (SEC). Our analysis shows that at a low inlet pressure of 65 bar, a significantly higher SEC is observed for high feed concentration of brine water compared with seawater (i.e., 0.08 vs. 0.035) due to the very low process recovery ratio (i.e., 1%). Hence, an inlet pressure of at least 75 bar is recommended to minimise energy consumption. A higher feed velocity is also preferred due to its larger productivity when compared with a slightly higher energy requirement. This study found that the SEC reduction is greatly affected by the pressure recovery and the pump efficiencies for brine desalination using SWM, and employing them with high efficiencies (ηR ≥ 95% and ηpump ≥ 50%) can reduce SEC by at least 33% while showing a comparable SEC with SWRO desalination (<5.5 kWh/m3).
RESUMO
Capacitive deionization (CDI) is a promising and cost-effective technology that is currently being widely explored for removing dissolved ions from saline water. This research developed materials based on activated carbon (AC) materials modified with zinc oxide (ZnO) nanorods and used them as high-performance CDI electrodes for water desalination. The as-prepared electrodes were characterized by cyclic voltammetry, and their physical properties were studied through SEM and XRD. ZnO-coated AC electrodes revealed a better specific absorption capacity (SAC) and an average salt adsorption rate (ASAR) compared to pristine AC, specifically with values of 123.66 mg/g and 5.06 mg/g/min, respectively. The desalination process was conducted using a 0.4 M sodium chloride (NaCl) solution with flow rates from 45 mL/min to 105 mL/min under an applied potential of 1.2 V. Furthermore, the energy efficiency of the desalination process, the specific energy consumption (SEC), and the maximum and minimum of the effluent solution concentration were quantified using thermodynamic energy efficiency (TEE). Finally, this work suggested that AC/ZnO material has the potential to be utilized as a CDI electrode for the desalination of saline water.
Assuntos
Purificação da Água , Óxido de Zinco , Carvão Vegetal , Cloreto de Sódio , Águas Salinas , EletrodosRESUMO
Türkiye is one of the biggest developing countries and the second biggest cement exporter in the world. In 2021, the country exported around $1billion of cement, which is responsible for over 8% of emissions globally. In order to fulfill the EU norms, energy, emissions, and cost reduction investments continue in the country. The aim of this paper is to perform a detailed exergoeconomic assessment of a rotary burner to increase the energy and exergy performance and decrease energy consumption, exergy costs and environmental impacts of a real scale cement factory in Türkiye. During the 2-year period, detailed data has been obtained from the factory by real time detection of clinker manufacturing process. By applying the specific exergy costing (SPECO) method, energy and exergy destructions, and exergetic cost distributions for the rotary burner are calculated in detail. The 1st and 2nd law efficiencies of the overall factory, specific energy (SEC) and exergy (SExC) consumption, and SPECO for clinker production are calculated to be 59.84%, 39.04%, 4786.75 MJ/ton, 5230.38 MJ/ton, and 10.11 $/MJ, respectively. The use of magnesia-spinel composite refractory bricks and the anzast layer formation decreased the SPECO by 2.71% corresponding to a saving of $2,280,000 preventing 13.74 MtCO2 emissions yearly.
Assuntos
Meio Ambiente , IndústriasRESUMO
With the increased usage of hydrocarbon-based fossil fuels, air pollution and global warming have accelerated. To solve this problem, renewable energy, such as hydrogen technology, has gained global attention. Hydrogen has a low volumetric density and thus requires compression technologies at high pressures to reduce storage and transportation costs. Techniques for compressing hydrogen include using mechanical and electrochemical hydrogen compressors. Mechanical compressors require higher specific energy consumption than electrochemical hydrogen compressors. Here, we used an electrochemical hydrogen compressor as a pseudo-two-dimensional model focused on electroosmotic drag, water back-diffusion, and hydrogen crossover flux at various temperatures, polymer electrolyte membrane thicknesses, and relative humidity conditions. To date, there have been few studies based on various operating conditions to find the optimal conditions. This study was conducted to determine the optimal parameters under various operating conditions. A numerical analysis demonstrated that the specific energy consumption was low in a specific current density section when the temperature was decreased. At the above-mentioned current density, the specific energy consumption decreased as the temperature increased. The polymer electrolyte membrane thickness yielded similar results. However, according to the relative humidity, it was confirmed that the higher the relative humidity, the lower the specific energy consumption in all of the current density sections. Therefore, when comparing temperatures of 30 °C and 80 °C at 145 A/m2, operating at 30 °C reduces the specific energy consumption by 12.12%. At 3000 A/m2 and 80 °C, the specific energy consumption is reduced by 11.7% compared to operating at 30 °C. Using N117 compared to N211 at 610 A/m2 for polymer electrolyte membranes can reduce specific energy consumption by 10.4%. Using N211 in the 1500 A/m2 condition reduces the specific energy demand by 9.6% compared to N117.
RESUMO
The continuous production of fatty acid methyl ester (FAME) from waste cooking oil (WCO) via transesterification was carried out under theoretical methanol to oil molar ratio using a high-performance bumpy surface rotor reactor (BSRR). Three types of rotors with different area fractions (AF) of 6.9%, 13.8% and 27.6% were used to equip the BSRR. The selection of the highest performance rotor was compared by factorial experiments. Absolute methanol with 99.9 vol% purity was used as the reactant and potassium hydroxide with 90 wt% purity was used as the base catalyst. Response surface methodology (RSM) was applied to design the experiments and predict the optimal conditions. The three variables in RSM were 0.58-1.43 wt% potassium hydroxide concentration [KOH], 2160-3840 rpm rotor speed, and 1.38-4.74 L/min flow rate. The performance was the specific energy consumption (SEC). The highest performance rotor was AF27.6%. In the first step, the transesterification process was performed using [KOH] 1.5 wt%, a rotor speed of 3000 rpm and a flow rate of 2.027 L/min to produce 98.6 wt% FAME and using SEC at 12.5 W h/kg. In the second step, RSM predicted the optimal condition of [KOH] 1.016 wt%, rotor speed 2910 rpm, flow rate 2.134 L/min and FAME content 97.3 wt%. The actual FAME content averaged 97.16 wt%. The biodiesel properties complied with the EN 14214 standard. This biodiesel production can reduce the cost of methanol by one-half and the cost of KOH by one-third. The energy consumption is only 0.012 kWã»h/kg, so the methanol recovery process is not necessary. It has low KOH residue, so washing with water is superfluous and uses minimal energy, which can reduce a lot of costs. The high flow rate of 128 L/h can be used to scale up commercial production.
Assuntos
Biocombustíveis , Metanol , Metanol/química , Óleos de Plantas/química , Esterificação , Ácidos Graxos/química , CatáliseRESUMO
The direct end-of-life recycling of reverse osmosis membranes (RO) into recycled nanofiltration (r-NF) membranes has been pointed out as a circular technology. For the first time, an environmental analysis of the whole life cycle of r-NF membranes was performed, focused on their usage. The carbon footprint (CF) of NF water treatment processes (Functional Unit: 1 m3 of treated water) with different pressure vessel (PV) designs and energy sources using r-NF and commercial NF-270-400 was quantified. Moreover, to compensate for the lower permeability of the r-NF, two design strategies were assessed: A) an increment in inlet pressure, and B) an increase in the number of modules. The inventory included energy modelling for each design and membrane. The interaction of both strategies with the permeability and service life of r-NF, together with different energy sources, was assessed using a novel hybrid analytical-numerical method. The relevance of energy use at the usage stage was highlighted. Therefore, r-NF permeability is the foremost relevant parameter for the definition of CF. The low impact of the r-NF replacement favoured strategy B. The use of an environmental indicator (CF) made it possible to identify the frontiers of the recyclability and applicability of r-NF membranes.
RESUMO
This study aimed to investigate how infrared (1000-2000 W) and microwave power (100-900 W), air velocity (1-5 m/s) and temperature (40-80 °C) affected the specific energy consumption, the moisture removal rate, and the product's quality (whiteness index, head rice yield, water uptake ratio, and elongation ratio) in hybrid dryer. Rising temperature, velocity and microwave power and lower temperatures resulted in improving head rice yield of paddy samples. The experiments proved that the new hybrid system significantly increased the moisture removal rate (from 100 to 700%), head rice yield (from 5 to 40 %) and decreased the specific energy consumption (from 10 to 80%) compared to the single fluidized bed dryer. The water uptake ratio and elongation ratio of the dried samples in the hybrid dryer were higher than the single dryer, however their whiteness index was not significantly different. The best drying conditions are associated with the lowest specific energy consumption and the highest moisture removal ratio and rice quality. Experimental data were fitted into empirical drying models to explain moisture ratio variations during drying. Nomhorm and verma,s model was found to be the best for moisture ratio prediction. Also, the central composite design of response surface methodology was applied to forecast outputs. A modified cubic model was observed in all responses with high R2 values (greater than0.9). The drying parameters were optimized for the specified constraints, resulting in 68 °C temperature, 5 m/s air velocity, 900 w microwave power, and 1479 w infrared power. The experimental values were found to be 0.368607 g/s for the moisture removal rate, 7.16988 MJ/kg water for the specific energy consumption, 90.6% for the head rice yield, 58 for the whiteness index, 3.63 for the water uptake ratio, and 2.28627 for the elongation ratio, at the optimum treatment conditions.
Assuntos
Micro-Ondas , Oryza , Manipulação de Alimentos/métodos , Modelos Teóricos , Água/análiseRESUMO
The shortage of fresh water resources has made the desalination of seawater a widely adopted technology. Seawater reverse osmosis (SWRO) is the most commonly used method for desalination. The SWRO process is energy-intensive, and most of the energy in SWRO is spent on pressurizing the seawater to overcome the osmotic barrier for producing fresh water. The pressure needed depends on the salinity of the seawater, its temperature, and the membrane surface properties. Membrane compaction occurs in SWRO due to hydraulic pressure application for long-term operations and operating temperature fluctuations due to seasonal seawater changes. This study investigates the effects of short-term feed water temperature increase on the SWRO process in a full-scale pilot with pretreatment and a SWRO installation consisting of a pressure vessel which contains seven industrial-scale 8" diameter spiral wound membrane elements. A SWRO feed water temperature of 40 °C, even for a short period of 7 days, caused a permanent performance decline illustrated by a strong specific energy consumption increase of 7.5%. This study highlights the need for membrane manufacturer data that account for the water temperature effect on membrane performance over a broad temperature range. There is a need to develop new membranes that are more tolerant to temperature fluctuations.
RESUMO
The use of membrane filtration as a downstream process for microbial biomass harvesting is hampered due to the low permeate flux values achieved during the microfiltration of fermentation broths. Several hydrodynamic methods for increasing permeate flux by creating turbulent flow patterns inside the membrane module are used to overcome this problem. The main goal of this study was to investigate the combined use of a Kenics static mixer and gas sparging during cross-flow microfiltration of Bacillus velezensis IP22 cultivation broth. Optimization of the microfiltration process was performed by using the response surface methodology. It was found that the combined use of a static mixer and gas sparging leads to a considerable increase in the permeate flux, up to the optimum steady-state permeate flux value of 183.42 L·m-2·h-1 and specific energy consumption of 0.844 kW·h·m-3. The optimum steady-state permeate flux is almost four times higher, whilst, at the same time, the specific energy consumption is almost three times lower compared to the optimum results achieved using gas sparging alone. The combination of Kenics static mixer and gas sparging during cross-flow microfiltration is a promising technique for the enhancement of steady-state permeate flux with simultaneously decreasing specific energy consumption.
RESUMO
Capacitive deionization (CDI) is an emerging water desalination technology whose principle lies in ion electrosorption at the surface of a pair of electrically charged electrodes. The aim of this study was to obtain the best performance of a CDI cell made of activated carbon as the active material for water desalination. In this work, electrodes of different active layer thicknesses were fabricated from a slurry of activated carbon deposited on graphite sheets. The as-prepared electrodes were characterized by cyclic voltammetry, and their physical properties were also studied using SEM and DRX. A CDI cell was fabricated with nine pairs of electrodes with the highest specific capacitance. The effect of the flow rate on the electrochemical performance of the CDI cell operating in charge-discharge electrochemical cycling was analyzed. We obtained a specific absorption capacity (SAC) of 10.2 mg/g and a specific energetic consumption (SEC) of 217.8 Wh/m3 at a flow rate of 55 mL/min. These results were contrasted with those available in the literature; in addition, other parameters such as Neff and SAR, which are necessary for the characterization and optimal operating conditions of the CDI cell, were analyzed. The findings from this study lay the groundwork for future research and increase the existing knowledge on CDI based on activated carbon electrodes.
RESUMO
This research compares the performance efficiencies of Nanofiltration (NF), Reverse osmosis (RO), and Nanofiltration-Reverse Osmosis (NF-RO) hybrid membrane filtration systems, for treatment of brackish groundwater in Delhi-NCR region. Central composite design (CCD) of response surface methodology (RSM) were applied to formulate predictive models for the optimization and simulation of various responses, viz. Water flux, salt rejection, permeate recovery and specific energy consumption (SEC). Three different input factors (feed concentration, pH and pressure) were evaluated. Significance of RSM model was tested and validated with use of an analysis of variance (ANOVA). The models were also compared graphically for their prediction ability. The optimum conditions were determined by numerical optimization of the NF and RO membrane pilot plants. Finally, hybrid configurations of NF and RO were investigated utilising the optimum conditions to identify the technology suitable for the remediation of brackish groundwater. Despite, RO membrane eliminating over 99% of TDS from groundwater, the lower recovery rate renders it environmentally unfavourable. Result indicates that recovery of the hybrid system (40.35%) was greater than that of RO alone (18.796%) and SEC also decreases (5.090-3.8 kW H/m3). Hence, combining a hybrid membrane arrangement with NF-RO to treat brackish groundwater for improved recovery and lower SEC is a viable alternative.
Assuntos
Água Subterrânea , Purificação da Água , Filtração , Membranas Artificiais , Osmose , Purificação da Água/métodosRESUMO
Membrane distillation (MD) is an attractive separation process for wastewater treatment and desalination. There are continuing challenges in implementing MD technologies at a large industrial scale. This work attempts to investigate the desalination performance of a pilot-scale direct contact membrane distillation (DCMD) system using synthetic thermal brine mimicking industrial wastewater in the Gulf Cooperation Council (GCC). A commercial polyethylene membrane was used in all tests in the DCMD pilot unit. Long-term performance exhibited up to 95.6% salt rejection rates using highly saline feed (75,500 ppm) and 98% using moderate saline feed (25,200 ppm). The results include the characterization of the membrane surface evolution during the tests, the fouling determination, and the assessment of the energy consumption. The fouling effect of the polyethylene membrane was studied using Humic acid (HA) as the feed for the whole DCMD pilot unit. An optimum specific thermal energy consumption (STEC) reduction of 10% was achieved with a high flux recovery ratio of 95% after 100 h of DCMD pilot operation. At fixed operating conditions for feed inlet temperature of 70 °C, a distillate inlet temperature of 20 °C, with flowrates of 70 l/h for both streams, the correlations were as high as 0.919 between the pure water flux and water contact angle, and 0.963 between the pure water flux and salt rejection, respectively. The current pilot unit study provides better insight into existing thermal desalination plants with an emphasis on specific energy consumption (SEC). The results of this study may pave the way for the commercialization of such filtration technology at a larger scale in global communities.
RESUMO
In this study, theoretical models for specific energy consumption (SEC) were established for water recovery in different integrated processes, such as RO-PRO, RO-MD and RO-MD-PRO. Our models can evaluate SEC under different water recovery conditions and for various proportions of supplied waste heat. Simulation results showed that SEC in RO increases with the water recovery rate when the rate is greater than 30%. For the RO-PRO process, the SEC also increases with the water recovery rate when the rate is higher than 38%, but an opposite trend can be observed at lower water recovery rates. If sufficient waste heat is available as the heat source for MD, the integration of MD with the RO or RO-PRO process can significantly reduce SEC. If the total water recovery rate is 50% and MD accounts for 10% of the recovery when sufficient waste heat is available, the SEC values of RO, RO-PRO, RO-MD and RO-MD-PRO are found to be 2.28, 1.47, 1.75 and 0.67 kWh/m3, respectively. These critical analyses provide a road map for the future development of process integration for desalination.
RESUMO
The Azo dyes are primarily employed in textile industries to produce high amounts of colored organic and inorganic wastewater. Therefore, their treatments are critical. In this research, the removal and mineralization of Acid red 88 (AR88), as a widely used mono Azo dye, was inspected by the Electro-peroxone(E-peroxone) method. It is a coupling of electrochemically produced H2O2 and ozone that can produce robust hydroxyl radicals. The Central Composite Design (CCD) was applied to explore the influence of operational variables on the removal of AR88 as a response. The optimal conditions predicted by the CCD were as the following; Applied current at 0.7 A, pH at 7.35, O3 Flowrate at 1.03 L min-1 and the concentration of AR88 at 527.29 mg. L-1. The Pareto chart showed that the concentration of AR88 has a significant influence on the response. At the predicted optimal conditions, the actual and predicted AR 88 removal were 95.4 and 92.96%, respectively. The removal of COD after 45 min was 70% representing the excessive efficiency of E-peroxone in mineralization of AR88. The E-peroxone follows the pseudo-first-order kinetics (kobs-E-peroxone = 6.56 × 10-2 min-1), which was more remarkable than the single ozonation, and electrolysis. The calculated specific energy consumption (SEC) in the E-peroxone was 40.14 kWh/Kg AR 18 removal, which was lower than the individual ozonation, and electrolysis methods. The operative production of H2O2 from O2 at the cathode is the critical factor in the high removal of AR88 in this process.
Assuntos
Ozônio , Poluentes Químicos da Água , Compostos Azo , Peróxido de Hidrogênio , Cinética , Oxirredução , Poluentes Químicos da Água/análiseRESUMO
Atmospheric water harvesting (AWH) is an emerging technology for decentralized water supply and is proving to be viable for use in emergencies, military deployment, and sustainable industries. The atmosphere is a freshwater reservoir that contains 12,900 km3 of water, 6-fold more than the volume of global rivers. Dehumidification water harvesting technologies can be powered by solar, wind, or electric sources. Compressor/refrigerant-based dehumidifiers operate via dew point condensation and provide a cold surface upon which water vapor can condense. Conversely, desiccant-based technologies saturate water vapor using a sorbent that is then heated, and the supersaturated water vapor condenses on a surface when interacting with cooler ambient process air. This work compares productivity, energy consumption, efficiency, cost and quality of water produced of two water-harvesting mechanisms. Electric-powered compressor and desiccant dehumidifiers were operated outdoors for more than one year in the arid southwestern USA, where temperatures ranged from 3.1 to 43.7 °C and relative humidity (RH) ranged from 6 to 85%. The compressor system harvested >2-fold more water than the desiccant system when average RH during the run cycle was >30%, average temperature was >20 °C, and average dew point temperature was >5 °C. Desiccant systems performed more favorably when average RH during the run cycle was <30%, average temperature was <20 °C, and average dew point temperature was <5 °C. Water collected by compressor-based technologies had conductivity up to 180 µS/cm, turbidity up to 190 NTU, and aluminum, iron and manganese near or above the US EPA secondary drinking water standard. Dissolved organic carbon (DOC) averaged <2 mg C/L but ranged up to 12 mg C/L. Water collected by desiccant-based technologies had significantly lower conductivity, metals, and turbidity, and DOC was always <6 mg/L. Aldehydes such as formaldehyde and acetaldehyde and carboxylic acids such as formic acid and acetic acid were primary contributors to DOC. The differences in harvested water quality were attributed to differences in the condensation method between compressor and desiccant AWH technologies. Multiple strategies could be employed to prevent these volatile organic compounds (VOCs) from contributing to DOC in harvested water, such as pretreating air to remove VOCs or post-treating DOC in harvested liquid water.
Assuntos
Higroscópicos , Compostos Orgânicos Voláteis , Atmosfera , Estações do Ano , Vapor , Qualidade da ÁguaRESUMO
The present study examines the preheated (95 °C) and unheated (35 °C) Vateria indica methyl ester (VIME) blends by studying the engine performance, combustion, and emission characteristics at various loads. A single-cylinder, TV1 Kirloskar direct injection diesel engine is used to carry out the tests. Biodiesel produced from Dhupa fat through the transesterification process is used as a renewable fuel in a diesel engine. In this work, diesel (B0), VIME (B100), and two binary blends (B30 and B50) are used. VIME has a higher viscosity, higher density, and lower calorific value than diesel, resulting in lesser brake thermal efficiency (BTE) and higher brake specific energy consumption (BSEC). Due to high viscosity of the biodiesel, preheating of fuel is done before injecting into cylinder. Preheating reduces the viscosity, and enhances the atomization and vaporization of fuel, resulting in improved engine performance. For a given blend of VIME biodiesel and diesel, the preheated blend has better BTE, decreased BSEC and lesser CO and HC emissions, with a slight increment in NOX emission compared to the unheated blend. The preheated B30 blend has a BTE value of 30.3% which is close to the BTE value of 30.1% of unheated diesel at 100% load condition. CO, HC, and soot emissions are decreased by 16.2%, 34.4%, and 16.5%, respectively, for preheated B100 fuel compared to unheated B100, at full load.