Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Physiol Biochem ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39155330

RESUMO

Acute kidney injury is a serious public health problem worldwide, being ischemia and reperfusion (I/R) the main lesion-aggravating factor that contributes to the evolution towards chronic kidney disease. Nonetheless, intervention approaches currently available are just considered palliative options. In order to offer an alternative treatment, it is important to understand key factors involved in the development of the disease including the rescue of the affected cells and/or the release of paracrine factors that are crucial for tissue repair. Bioactive lipids such as sphingosine 1-phosphate (S1P) have significant effects on the modulation of signaling pathways involved in tissue regeneration, such as cell survival, proliferation, differentiation, and migration. The main objective of this work was to explore the protective effect of S1P using human kidney proximal tubule cells submitted to a mimetic I/R lesion, via ATP depletion. We observed that the S1P pre-treatment increases cell survival by 50% and preserves the cell proliferation capacity of injured cells. We showed the presence of different bioactive lipids notably related to tissue repair but, more importantly, we noted that the pre-treatment with S1P attenuated the ischemia-induced effects in response to the injury, resulting in higher endogenous S1P production. All receptors but S1PR3 are present in these cells and the protective and proliferative effect of S1P/S1P receptors axis occur, at least in part, through the activation of the SAFE pathway. To our knowledge, this is the first time that S1PR4 and S1PR5 are referred in these cells and also the first indication of JAK2/STAT3 pathway involvement in S1P-mediated protection in an I/R renal model.

2.
J Leukoc Biol ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976501

RESUMO

Multiple sclerosis (MS) is a neurodegenerative, autoimmune disease that is still incurable. Nowadays, a variety of new drugs are being developed to prevent excessive inflammation and halt neurodegeneration. Among these are the inhibitors of Bruton's tyrosine kinase (BTK). Being indispensable for B cells, this enzyme became an appealing therapeutic target for autoimmune diseases. Recognizing the emerging importance of BTK in myeloid cells, we investigated the impact of upcoming BTK inhibitors on neutrophil functions. Although adaptive immunity in MS has been thoroughly studied, unanswered questions about the pathogenesis can be addressed by studying the effects of candidate MS drugs on innate immune cells such as neutrophils, previously overlooked in MS. In this study, we used three BTK inhibitors (evobrutinib, fenebrutinib and tolebrutinib), and found that they reduce neutrophil activation by the bacterial peptide N-formylmethionyl-leucyl-phenylalanine and the chemokine interleukin 8/CXCL8. Furthermore, they diminished the production of reactive oxygen species and release of neutrophil extracellular traps. Additionally, the production of CXCL8 and interleukin-1ß in response to inflammatory stimuli was decreased. Inhibitory effects of the drugs on neutrophil activation were not related to toxicity. Instead, BTK inhibitors prolonged neutrophil survival in an inflammatory environment. Finally, treatment with BTK inhibitors decreased neutrophil migration towards CXCL8 in a Boyden chamber assay but not in a trans endothelial set-up. Also, in vivo CXCL1-induced migration was unaffected by BTK inhibitors. Collectively, this study provides novel insights into the impact of BTK inhibitors on neutrophil functions, thereby holding important implications for autoimmune or hematological diseases where BTK is crucial.

3.
FEBS Lett ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965662

RESUMO

Cardiometabolic disorders contribute to the global burden of cardiovascular diseases. Emerging sphingolipid metabolites like sphingosine-1-phosphate (S1P) and its receptors, S1PRs, present a dynamic signalling axis significantly impacting cardiac homeostasis. S1P's intricate mechanisms extend to its transportation in the bloodstream by two specific carriers: high-density lipoprotein particles and albumin. This intricate transport system ensures the accessibility of S1P to distant target tissues, influencing several physiological processes critical for cardiovascular health. This review delves into the diverse functions of S1P and S1PRs in both physiological and pathophysiological conditions of the heart. Emphasis is placed on their diverse roles in modulating cardiac health, spanning from cardiac contractility, angiogenesis, inflammation, atherosclerosis and myocardial infarction. The intricate interplays involving S1P and its receptors are analysed concerning different cardiac cell types, shedding light on their respective roles in different heart diseases. We also review the therapeutic applications of targeting S1P/S1PRs in cardiac diseases, considering existing drugs like Fingolimod, as well as the prospects and challenges in developing novel therapies that selectively modulate S1PRs.

4.
FEBS J ; 291(8): 1744-1758, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287231

RESUMO

Endometriosis is a chronic gynecological syndrome characterized by endometrial cell invasion of the extra-uterine milieu, pelvic pain and infertility. Treatment relies on either symptomatic drugs or hormonal therapies, even though the mechanism involved in the onset of endometriosis is yet to be elucidated. The signaling of sphingolipid sphingosine 1-phosphate (S1P) is profoundly dysregulated in endometriosis. Indeed, sphingosine kinase (SK)1, one of the two isoenzymes responsible for S1P biosynthesis, and S1P1, S1P3 and S1P5, three of its five specific receptors, are more highly expressed in endometriotic lesions compared to healthy endometrium. Recently, missense coding variants of the gene encoding the receptor 1 for neuropeptide S (NPS) have been robustly associated with endometriosis in humans. This study aimed to characterize the biological effect of NPS in endometriotic epithelial cells and the possible involvement of the S1P signaling axis in its action. NPS was found to potently induce cell invasion and actin cytoskeletal remodeling. Of note, the NPS-induced invasive phenotype was dependent on SK1 and SK2 as well as on S1P1 and S1P3, given that the biological action of the neuropeptide was fully prevented when one of the two biosynthetic enzymes or one of the two selective receptors was inhibited or silenced. Furthermore, the RhoA/Rho kinase pathway, downstream to S1P receptor signaling, was found to be critically implicated in invasion and cytoskeletal remodeling elicited by NPS. These findings provide new information to the understanding of the molecular mechanisms implicated in endometriosis pathogenesis, establishing the rationale for non-hormonal therapeutic targets for its treatment.


Assuntos
Endometriose , Receptores de Lisoesfingolipídeo , Esfingosina , Feminino , Humanos , Endometriose/genética , Lisofosfolipídeos/metabolismo , Fenótipo , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/metabolismo , Esfingosina/análogos & derivados
5.
J Drug Target ; 32(3): 300-310, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38269855

RESUMO

Cardiovascular disease is the leading cause of death worldwide, and it's of great importance to understand its underlying mechanisms and find new treatments. Sphingosine 1-phosphate (S1P) is an active lipid that exerts its effects through S1P receptors on the cell surface or intracellular signal, and regulates many cellular processes such as cell growth, cell proliferation, cell migration, cell survival, and so on. S1PR modulators are a class of modulators that can interact with S1PR subtypes to activate receptors or block their activity, exerting either agonist or functional antagonist effects. Many studies have shown that S1P plays a protective role in the cardiovascular system and regulates cardiac physiological functions mainly through interaction with cell surface S1P receptors (S1PRs). Therefore, S1PR modulators may play a therapeutic role in cardiovascular diseases. Here, we review five S1PRs and their functions and the progress of S1PR modulators. In addition, we focus on the effects of S1PR modulators on atherosclerosis, myocardial infarction, myocardial ischaemia/reperfusion injury, diabetic cardiovascular diseases, and myocarditis, which may provide valuable insights into potential therapeutic strategies for cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Lisofosfolipídeos , Esfingosina/análogos & derivados , Humanos , Receptores de Esfingosina-1-Fosfato/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Receptores de Lisoesfingolipídeo/metabolismo , Sistema Cardiovascular/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-37949293

RESUMO

Sphingolipids exert important roles within the cardiovascular system and related diseases. Perturbed sphingolipid metabolism was previously reported in cerebral and renal tissues of spontaneously hypertensive rats (SHR). Specific defects related to the synthesis of sphingolipids and to the metabolism of Sphingosine-1-Phospahte (S1P) were exclusively identified in the stroke-prone (SHRSP) with the respect to the stroke-resistant (SHRSR) strain. In this study, we explored any existing perturbation in either protein or gene expression of enzymes involved in the sphingolipid pathways in cardiac tissue from both SHRSP and SHRSR strains, compared to the normotensive Wistar Kyoto (WKY) strain. The two hypertensive rat models showed an overall perturbation of the expression of different enzymes involved in the sphingolipid metabolism in the heart. In particular, whereas the expression of the S1P-metabolizing-enzyme, SPHK2, was significantly reduced in both SHR strains, SGPL1 protein levels were decreased only in SHRSP. The protein levels of S1P receptors 1-3 were reduced only in the cardiac tissue of SHRSP, whereas S1PR2 levels were reduced in both SHR strains. The de novo synthesis of sphingolipids was aberrant in the two hypertensive strains. A significant reduction of mRNA expression of the Sgms1 and Smpd3 enzymes, implicated in the metabolism of sphingomyelin, was found in both hypertensive strains. Interestingly, Smpd2, devoted to sphingomyelin degradation, was reduced only in the heart of SHRSP. In conclusion, alterations in the expression of sphingolipid-metabolizing enzymes may be involved in the susceptibility to cardiac damage of hypertensive rat strains. Specific differences detected in the SHRSP, however, deserve further elucidation.


Assuntos
Hipertensão , Acidente Vascular Cerebral , Ratos , Animais , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Esfingolipídeos , Esfingomielinas , Hipertensão/genética , Hipertensão/metabolismo , Acidente Vascular Cerebral/metabolismo
7.
Circulation ; 148(16): 1231-1249, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37609838

RESUMO

BACKGROUND: Lymphedema is a global health problem with no effective drug treatment. Enhanced T-cell immunity and abnormal lymphatic endothelial cell (LEC) signaling are promising therapeutic targets for this condition. Sphingosine-1-phosphate (S1P) mediates a key signaling pathway required for normal LEC function, and altered S1P signaling in LECs could lead to lymphatic disease and pathogenic T-cell activation. Characterizing this biology is relevant for developing much needed therapies. METHODS: Human and mouse lymphedema was studied. Lymphedema was induced in mice by surgically ligating the tail lymphatics. Lymphedematous dermal tissue was assessed for S1P signaling. To verify the role of altered S1P signaling effects in lymphatic cells, LEC-specific S1pr1-deficient (S1pr1LECKO) mice were generated. Disease progression was quantified by tail-volumetric and -histopathologic measurements over time. LECs from mice and humans, with S1P signaling inhibition, were then cocultured with CD4 T cells, followed by an analysis of CD4 T-cell activation and pathway signaling. Last, animals were treated with a monoclonal antibody specific to P-selectin to assess its efficacy in reducing lymphedema and T-cell activation. RESULTS: Human and experimental lymphedema tissues exhibited decreased LEC S1P signaling through S1P receptor 1 (S1PR1). LEC S1pr1 loss-of-function exacerbated lymphatic vascular insufficiency, tail swelling, and increased CD4 T-cell infiltration in mouse lymphedema. LECs, isolated from S1pr1LECKO mice and cocultured with CD4 T cells, resulted in augmented lymphocyte differentiation. Inhibiting S1PR1 signaling in human dermal LECs promoted T-helper type 1 and 2 (Th1 and Th2) cell differentiation through direct cell contact with lymphocytes. Human dermal LECs with dampened S1P signaling exhibited enhanced P-selectin, an important cell adhesion molecule expressed on activated vascular cells. In vitro, P-selectin blockade reduced the activation and differentiation of Th cells cocultured with shS1PR1-treated human dermal LECs. P-selectin-directed antibody treatment improved tail swelling and reduced Th1/Th2 immune responses in mouse lymphedema. CONCLUSIONS: This study suggests that reduction of the LEC S1P signaling aggravates lymphedema by enhancing LEC adhesion and amplifying pathogenic CD4 T-cell responses. P-selectin inhibitors are suggested as a possible treatment for this pervasive condition.


Assuntos
Linfedema , Selectina-P , Humanos , Camundongos , Animais , Transdução de Sinais , Inflamação/patologia , Linfedema/patologia
8.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445724

RESUMO

Irisin is a hormone-like myokine produced in abundance by skeletal muscle (SkM) in response to exercise. This myokine, identical in humans and mice, is involved in many signaling pathways related to metabolic processes. Despite much evidence on the regulators of irisin and the relevance of sphingolipids for SkM cell biology, the contribution of these latter bioactive lipids to the modulation of the myokine in SkM is missing. In particular, we have examined the potential involvement in irisin formation/release of sphingosine-1-phosphate (S1P), an interesting bioactive molecule able to act as an intracellular lipid mediator as well as a ligand of specific G-protein-coupled receptors (S1PR). We demonstrate the existence of distinct intracellular pools of S1P able to affect the expression of the irisin precursor FNDC. In addition, we establish the crucial role of the S1P/S1PR axis in irisin formation/release as well as the autocrine/paracrine effects of irisin on myoblast proliferation and myogenic differentiation. Altogether, these findings provide the first evidence for a functional crosstalk between the S1P/S1PR axis and irisin signaling, which may open new windows for potential therapeutic treatment of SkM dysfunctions.


Assuntos
Fibronectinas , Esfingosina , Camundongos , Humanos , Animais , Receptores de Esfingosina-1-Fosfato/metabolismo , Fibronectinas/metabolismo , Esfingosina/metabolismo , Músculo Esquelético/metabolismo , Lisofosfolipídeos/metabolismo
9.
FASEB J ; 37(8): e23061, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37389926

RESUMO

Endometriosis is a chronic gynecological disease affecting ~10% women in the reproductive age characterized by the growth of endometrial glands and stroma outside the uterine cavity. The inflammatory process has a key role in the initiation and progression of the disorder. Currently, there are no available early diagnostic tests and therapy relies exclusively on symptomatic drugs, so that elucidation of the complex molecular mechanisms involved in the pathogenesis of endometriosis is an unmet need. The signaling of the bioactive sphingolipid sphingosine 1-phosphate (S1P) is deeply dysregulated in endometriosis. S1P modulates a variety of fundamental cellular processes, including inflammation, neo-angiogenesis, and immune responses acting mainly as ligand of a family of G-protein-coupled receptors named S1P receptors (S1PR), S1P1-5 . Here, we demonstrated that the mitogen-activated protein kinase ERK5, that is expressed in endometriotic lesions as determined by quantitative PCR, is activated by S1P in human endometrial stromal cells. S1P-induced ERK5 activation was shown to be triggered by S1P1/3 receptors via a SFK/MEK5-dependent axis. S1P-induced ERK5 activation was, in turn, responsible for the increase of reactive oxygen species and proinflammatory cytokine expression in human endometrial stromal cells. The present findings indicate that the S1P signaling, via ERK5 activation, supports a proinflammatory response in the endometrium and establish the rationale for the exploitation of innovative therapeutic targets for endometriosis.


Assuntos
Endometriose , Humanos , Feminino , Masculino , Espécies Reativas de Oxigênio , Esfingosina , Esfingolipídeos
10.
Mol Immunol ; 160: 55-66, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37379683

RESUMO

Lupus nephritis (LN) is a common complication of systemic lupus erythematosus (SLE) as well as the leading cause of mortality in patients. Previous studies revealed that S1P level is elevated in plasma samples of SLE patients and murine lupus models. FTY720, targeting S1P receptors, exhibited therapeutic effects in improving the nephritis symptoms of lupus mouse models. However, few studies have discussed the potential relevance of S1P/S1PR to the pathogenesis of LN. Macrophages have been shown to be an important causative agent of renal inflammation, while the pro-inflammatory M1-type promotes kidney injury and inflammation during LN. Importantly, macrophages express various S1P receptors, and how they respond to S1P in the setting of LN remains unclear. Therefore, we examined the level of S1P in the lupus MRL/lpr mice and explored the ensuing interaction of macrophages and S1P. We found that S1P level was elevated in the MRL/lpr mice with a subsequent enhancement of the S1PR1 expression, and blocking S1PR1 by FTY720, the nephritis symptoms of MRL/lpr mice were improved. Mechanistically, we demonstrated that elevated S1P level increase the M1-type macrophage accumulation. And the in-vitro studies proved that S1P/S1PR1 was involved in the promotion of macrophage polarization towards M1 type through activation of NLRP3 inflammasome. These findings confer a novel role to macrophage S1PR1 and provide a new perspective for targeting S1P during LN.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Animais , Camundongos , Cloridrato de Fingolimode/metabolismo , Cloridrato de Fingolimode/uso terapêutico , Inflamassomos/metabolismo , Inflamação/patologia , Lúpus Eritematoso Sistêmico/metabolismo , Nefrite Lúpica/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos MRL lpr , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Receptores de Esfingosina-1-Fosfato/metabolismo
11.
Neurosci Lett ; 801: 137131, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36801239

RESUMO

Recent research shows a correlation between altered sphingolipid metabolism and nociceptive processing. Activation of the sphingosine-1-phosphate receptor 1 subtype (S1PR1) by its ligand, sphingosine-1-phosphate (S1P), causes neuropathic pain. However, its role in remifentanil-induced hyperalgesia (RIH) has not been investigated. The purpose of this research was to establish if the SphK/S1P/S1PR1 axis mediated remifentanil-induced hyperalgesia and identify its potential targets. This study examined the protein expression of ceramide, sphingosine kinases (SphK), S1P, and S1PR1 in the spinal cord of rats treated with remifentanil (1.0 µg/kg/min for 60 min). Prior to receiving remifentanil, rats were injected with SK-1 (a SphK inhibitor); LT1002 (a S1P monoclonal antibody); CYM-5442, FTY720, and TASP0277308(the S1PR1 antagonists); CYM-5478 (a S1PR2 agonist); CAY10444 (a S1PR3 antagonist); Ac-YVAD-CMK (a caspase-1 antagonist); MCC950 (the NOD-like receptor protein 3 (NLRP3) inflammasome antagonist); and N-tert-Butyl-α-phenylnitrone (PBN, a reactive oxygen species (ROS) scavenger). Mechanical and thermal hyperalgesia were evaluated at baseline (24 h prior to remifentanil infusion) and 2, 6, 12, and 24 h following remifentanil administration. The expression of the NLRP3-related protein (NLRP3, caspase-1), pro-inflammatory cytokines (interleukin-1ß(IL-1ß), IL-18), and ROS was found in the spinal dorsal horns. In the meantime, immunofluorescence was used to ascertain if S1PR1 co-localizes with astrocytes. Remifentanil infusion induced considerable hyperalgesia in addition to increased ceramide, SphK, S1P, and S1PR1, NLRP3-related protein (NLRP3, Caspase-1, IL-1ß, IL-18) and ROS expression, and S1PR1 localized astrocytes. By blocking the SphK/S1P/S1PR1 axis, remifentanil-induced hyperalgesia was reduced, as was the expression of NLRP3, caspase-1, pro-inflammatory cytokines (IL-1ß, IL-18) and ROS in the spinal cord. In addition, we observed that suppressing NLRP3 or ROS signal attenuated the mechanical and thermal hyperalgesia induced by remifentanil. Our findings indicate that the SphK/SIP/S1PR1 axis regulates the expression of NLRP3, Caspase-1, IL-1ß, IL-18 and ROS in the spinal dorsal horn to mediate remifentanil-induced hyperalgesia. These findings may contribute to pain and SphK/S1P/S1PR1 axis research positively, and inform the future study of this commonly used analgesic.


Assuntos
Hiperalgesia , Interleucina-18 , Ratos , Animais , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Remifentanil , Ratos Sprague-Dawley , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio , Transdução de Sinais/fisiologia , Citocinas , Ceramidas , Caspases/metabolismo , Receptores de Esfingosina-1-Fosfato
12.
J Periodontol ; 94(4): 564-574, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36193723

RESUMO

BACKGROUND: Bile acids, as a group of cholesterol metabolites, play important roles in inflammation and bone metabolism. However, the possible link between bile acids and periodontitis is still unclear. This study aimed to clarify the alterations of the bile acid profile and corresponding receptor expression levels in periodontitis patients, and evaluate their association with periodontitis severity. METHODS: The concentrations of 15 bile acids in gingival tissues from 16 periodontitis patients and 16 healthy individuals were tested by metabolomics. Sphingosine-1-phosphate receptor 2 (S1PR2) expression was determined by real-time PCR and immunohistochemistry, which was also validated in two datasets, GSE16134 and GSE10334. The correlation between bile acids, S1PR2, and clinical parameters was analyzed by Spearman's correlation analysis, and receiver-operator characteristic (ROC) curves were examined to access the ability of bile acids and S1PR2 for defining local periodontitis status. RESULTS: In the periodontitis group, concentrations of total bile acids were elevated by increases of all bile acid forms, and five conjugated bile acids were significantly increased. Meanwhile, the expression of their receptor, S1PR2, was also upregulated in the periodontitis group. Positive correlations were further observed between glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), taurocholic acid (TCA), S1PR2, and periodontal clinical parameters. ROC analysis also showed combinations of two bile acids (GCA and TCDCA) with S1PR2 as novel signatures for indicating local periodontitis status. CONCLUSION: Our findings demonstrated the alterations of the bile acid profile and receptor S1PR2 expression in periodontitis patients, and provided evidence of association between bile acids and periodontitis status.


Assuntos
Ácidos e Sais Biliares , Periodontite , Humanos , Receptores de Esfingosina-1-Fosfato , Ácido Tauroquenodesoxicólico , Ácido Taurocólico
13.
FEBS J ; 290(1): 112-133, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35851748

RESUMO

Soluble oligomers arising from the aggregation of the amyloid beta peptide (Aß) have been identified as the main pathogenic agents in Alzheimer's disease (AD). Prefibrillar oligomers of the 42-residue form of Aß (Aß42 O) show membrane-binding capacity and trigger the disruption of Ca2+ homeostasis, a causative event in neuron degeneration. Since bioactive lipids have been recently proposed as potent protective agents against Aß toxicity, we investigated the involvement of sphingosine 1-phosphate (S1P) signalling pathway in Ca2+ homeostasis in living neurons exposed to Aß42 O. We show that both exogenous and endogenous S1P rescued neuronal Ca2+ dyshomeostasis induced by toxic Aß42 O in primary rat cortical neurons and human neuroblastoma SH-SY5Y cells. Further analysis revealed a strong neuroprotective effect of S1P1 and S1P4 receptors, and to a lower extent of S1P3 and S1P5 receptors, which activate the Gi -dependent signalling pathways, thus resulting in the endocytic internalization of the extrasynaptic GluN2B-containing N-methyl-D-aspartate receptors (NMDARs). Notably, the S1P beneficial effect can be sustained over time by sphingosine kinase-1 overexpression, thus counteracting the down-regulation of the S1P signalling induced by Aß42 O. Our findings disclose underlying mechanisms of S1P neuronal protection against harmful Aß42 O, suggesting that S1P and its signalling axis can be considered promising targets for therapeutic approaches for AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Ratos , Humanos , Animais , Receptores de N-Metil-D-Aspartato/genética , Peptídeos beta-Amiloides/metabolismo , Neuroblastoma/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo
14.
Biology (Basel) ; 11(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35741330

RESUMO

Sphingosine 1-phosphate (S1P) is a product of membrane sphingolipid metabolism. S1P is secreted and acts via G-protein-coupled receptors, S1PR1-5, and is involved in diverse cellular functions, including cell proliferation, immune suppression, and cardiovascular functions. Recent studies have shown that the effects of S1P signaling are extended further by coupling the different S1P receptors and their respective downstream signaling pathways. Our group has recently reported that S1P inhibits cell proliferation and induces differentiation in human keratinocytes. There is a growing understanding of the connection between S1P signaling, skin barrier function, and skin diseases. For example, the activation of S1PR1 and S1PR2 during bacterial invasion regulates the synthesis of inflammatory cytokines in human keratinocytes. Moreover, S1P-S1PR2 signaling is involved in the production of inflammatory cytokines and can be triggered by epidermal mechanical stress and bacterial invasion. This review highlights how S1P affects human keratinocyte proliferation, differentiation, immunoreaction, and mast cell immune response, in addition to its effects on the skin barrier interface. Finally, studies targeting S1P-S1PR signaling involved in inflammatory skin diseases are also presented.

15.
Reprod Biomed Online ; 45(1): 15-18, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35562234

RESUMO

RESEARCH QUESTION: Is sphingosine 1-phosphate (S1P) pathway involved in the process of fibrosis in adenomyosis? DESIGN: RNA was extracted from paraffin-embedded slices collected from the ectopic endometrium of patients with nodular adenomyosis (n = 27) and eutopic endometrium of healthy controls women (n = 29). Expression of genes involved in the metabolism and signalling of S1P, and actin-alpha-2 smooth muscle, encoded by ACTA2 gene, a gene involved in fibrogenesis, was evaluated by real-time polymerase chain reaction analysis. RESULTS: In adenomyotic samples, the expression of sphingosine kinase 1 (SPHK1), the enzyme responsible for the synthesis of S1P, and of S1P phosphatase 2 (SGPP2), the enzyme responsible for the conversion of S1P back to sphingosine, was lower (P = 0.0006; P = 0.0015), whereas that of calcium and integrin-binding protein 1, responsible for membrane translocation of SPHK1, was higher (P = 0.0001) compared with healthy controls. In S1P signalling, a higher expression of S1P receptor S1P3 (P = 0.001), and a lower expression of S1P2 (P = 0.0019) mRNA levels, were found compared with healthy endometrium. In adenomyotic nodules, a higher expression of ACTA2 mRNA levels were observed (P = 0.0001), which correlated with S1P3 levels (P = 0.0138). CONCLUSION: Present data show a profound dysregulation of the S1P signalling axis in adenomyosis. This study also highlights that the bioactive sphingolipid might be involved in the fibrotic tract of the disease, correlated with the expression of ACTA2, suggesting its role as novel potential biomarker of adenomyosis.


Assuntos
Adenomiose , Esfingosina , Adenomiose/genética , Adenomiose/metabolismo , Feminino , Fibrose , Humanos , Lisofosfolipídeos/genética , Lisofosfolipídeos/metabolismo , RNA Mensageiro , Esfingosina/análogos & derivados , Esfingosina/genética , Esfingosina/metabolismo
17.
Biomedicines ; 10(5)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35625805

RESUMO

SARS-CoV-2 virus infection is the cause of the coronavirus disease 2019 (COVID-19), which is still spreading over the world. The manifestation of this disease can range from mild to severe and can be limited in time (weeks) or persist for months in about 30-50% of patients. COVID-19 is considered a multiple organ dysfunction syndrome and the musculoskeletal system manifestations are beginning to be considered of absolute importance in both COVID-19 patients and in patients recovering from the SARS-CoV-2 infection. Musculoskeletal manifestations of COVID-19 and other coronavirus infections include loss of muscle mass, muscle weakness, fatigue or myalgia, and muscle injury. The molecular mechanisms by which SARS-CoV-2 can cause damage to skeletal muscle (SkM) cells are not yet well understood. Sphingolipids (SLs) represent an important class of eukaryotic lipids with structural functions as well as bioactive molecules able to modulate crucial processes, including inflammation and viral infection. In the last two decades, several reports have highlighted the role of SLs in modulating SkM cell differentiation, regeneration, aging, response to insulin, and contraction. This review summarizes the consequences of SARS-CoV-2 infection on SkM and the potential involvement of SLs in the tissue responses to virus infection. In particular, we highlight the role of sphingosine 1-phosphate signaling in order to aid the prediction of novel targets for preventing and/or treating acute and long-term musculoskeletal manifestations of virus infection in COVID-19.

18.
Andrology ; 10(2): 404-418, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34674380

RESUMO

BACKGROUND: The population with diabetes mellitus-induced erectile dysfunction is increasing rapidly, but current drugs are not effective in treating erectile dysfunction. Studies of the traditional Chinese medicine extract berberine on diabetes and its complications provide us with new ideas. OBJECTIVES: To evaluate the therapeutic effect and potential mechanism of berberine on the erectile function of diabetic rats. MATERIALS AND METHODS: Fifty male Sprague-Dawley rats were randomly grouped, and 42 rats were injected intraperitoneally with streptozotocin to establish a diabetes model. Erectile dysfunction rats were screened out through the apomorphine test and randomly divided into the diabetes mellitus and berberine groups, and these animals were administered berberine (200 mg/kg/day) and normal saline by gavage for 4 weeks. Primary corpus cavernous smooth muscle cells from healthy rats were cultured and treated with berberine. RESULTS: Fasting blood glucose in the diabetes mellitus group was significantly increased, while berberine showed no significant effect on glucose. Erectile function was obviously impaired in the diabetes mellitus group, and berberine administration partially rescued this impairment. The expression of sphingosine kinase 1, S1PR2, and sphingosine-1-phosphate in the diabetes mellitus group was increased. Berberine partially inhibited the expression of sphingosine kinase 1 and S1PR2, but the decrease in sphingosine-1-phosphate was not significant. Moreover, mitogen-activated protein kinase pathway factor expression was upregulated and eNOS activity was decreased in the diabetes mellitus group. Berberine treatment could partially reverse these alterations. Severe fibrosis and apoptosis were detected in diabetic rats, accompanied by higher expression of TGFß1, collagen I/IV, Bax/Bcl-2, and caspase 3 than in the other groups. However, supplementation with berberine inhibited the expression of these proteins and attenuated fibrosis and apoptosis. CONCLUSIONS: Berberine ameliorated erectile dysfunction in rats with diabetes mellitus, possibly by improving endothelial function and inhibiting apoptosis and fibrosis by suppressing the sphingosine kinase 1/sphingosine-1-phosphate/S1PR2 and mitogen-activated protein kinase pathways.


Assuntos
Berberina/farmacologia , Diabetes Mellitus Experimental/complicações , Disfunção Erétil/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Disfunção Erétil/induzido quimicamente , Lisofosfolipídeos/metabolismo , Masculino , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ratos , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Estreptozocina
19.
Cells ; 10(11)2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34831439

RESUMO

Sphingosine 1-phosphate (S1P) is a signaling molecule with complex biological functions that are exerted through the activation of sphingosine 1-phosphate receptors 1-5 (S1PR1-5). S1PR expression is necessary for cell proliferation, angiogenesis, neurogenesis and, importantly, for the egress of lymphocytes from secondary lymphoid organs. Since the inflammatory process is a key element of immune-mediated diseases, including multiple sclerosis (MS), S1PR modulators are currently used to ameliorate systemic immune responses. The ubiquitous expression of S1PRs by immune, intestinal and neural cells has significant implications for the regulation of the gut-brain axis. The dysfunction of this bidirectional communication system may be a significant factor contributing to MS pathogenesis, since an impaired intestinal barrier could lead to interaction between immune cells and microbiota with a potential to initiate abnormal local and systemic immune responses towards the central nervous system (CNS). It appears that the secondary mechanisms of S1PR modulators affecting the gut immune system, the intestinal barrier and directly the CNS, are coordinated to promote therapeutic effects. The scope of this review is to focus on S1P-S1PR functions in the cells of the CNS, the gut and the immune system with particular emphasis on the immunologic effects of S1PR modulation and its implication in MS.


Assuntos
Sistema Nervoso Central/metabolismo , Sistema Imunitário/metabolismo , Lisofosfolipídeos/metabolismo , Esclerose Múltipla/etnologia , Esclerose Múltipla/terapia , Transdução de Sinais , Receptores de Esfingosina-1-Fosfato/metabolismo , Esfingosina/análogos & derivados , Animais , Eixo Encéfalo-Intestino , Humanos , Esclerose Múltipla/metabolismo , Esfingosina/metabolismo
20.
Prostaglandins Other Lipid Mediat ; 156: 106584, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34352381

RESUMO

Systemic lupus erythematosus (SLE) is a highly prevalent autoimmune disease characterized by the malfunction of the immune system and the persistent presence of an inflammatory environment. Multiple organs can be affected during SLE, leading to heterogeneous manifestations, which eventually result in the death of patients. Due to the lack of understanding regarding the pathogenesis of SLE, the currently available treatments remain suboptimal. Sphingosine-1-phosphate (S1P) is a central bioactive lipid of sphingolipid metabolism, which serves a pivotal role in regulating numerous physiological and pathological processes. As a well-recognized regulator of lymphocyte trafficking, S1P has been shown to be closely associated with autoimmune diseases, including SLE. Importantly, S1P levels have been found to be elevated in patients with SLE. In murine models of lupus, the increased levels of S1P also contribute to disease activity and organ impairment. Moreover, data from several studies also support the hypothesis that S1P receptors and its producer-sphingosine kinases (SPHK) may serve as the potential targets for the treatment of SLE and its co-morbidities. Given the significant success that intervening with S1P signaling has achieved in treating multiple sclerosis, further exploration of its role in SLE is necessary. Therefore, the aim of the present review is to summarize the recent advances in understanding the potential mechanism by which S1P influences SLE, with a primary focus on its role in immune regulation and inflammatory responses.


Assuntos
Lisofosfolipídeos , Esfingosina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA