Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Natl Sci Rev ; 11(2): nwad324, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38314400

RESUMO

Iron catalysts are ideal transition metal catalysts because of the Earths abundant, cheap, biocompatible features of iron salts. Iron catalysts often have unique open-shell structures that easily undergo spin crossover in chemical transformations, a feature rarely found in noble metal catalysts. Unfortunately, little is known currently about how the open-shell structure and spin crossover affect the reactivity and selectivity of iron catalysts, which makes the development of iron catalysts a low efficient trial-and-error program. In this paper, a combination of experiments and theoretical calculations revealed that the iron-catalyzed hydrosilylation of alkynes is typical spin-crossover catalysis. Deep insight into the electronic structures of a set of well-defined open-shell active formal Fe(0) catalysts revealed that the spin-delocalization between the iron center and the 1,10-phenanthroline ligand effectively regulates the iron center's spin and oxidation state to meet the opposite electrostatic requirements of oxidative addition and reductive elimination, respectively, and the spin crossover is essential for this electron transfer process. The triplet transition state was essential for achieving high regioselectivity through tuning the nonbonding interactions. These findings provide an important reference for understanding the effect of catalyst spin state on reaction. It is inspiring for the development of iron catalysts and other Earth-abundant metal catalysts, especially from the point of view of ligand development.

2.
Angew Chem Int Ed Engl ; 62(32): e202305925, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37264744

RESUMO

It is challenging to achieve stable and efficient radical emissions under ambient conditions. Herein, we present a rational design strategy to protect photoinduced carbonyl free radical emission through electrostatic interaction and spin delocalization effects. The host-guest system is constructed from tricarbonyl-substituted benzene molecules and a series of imidazolium ionic liquids as the guest and host, respectively, whereby the carbonyl anion radical emission can be in situ generated under the light irradiation and further stabilized by electrostatic interaction. More importantly, the anion species and the alkyl chain length of imidazolium ionic liquids show a noticeable effect on luminescence efficiency, with the highest radical emission efficiency is as high as 53.3 % after optimizing the imidazole ionic liquid's structure, which is about four times higher than the polymer-protected radical system. Theoretical calculations confirm the synergistic effect of strong electrostatic interactions and that the spin delocalization effect significantly stabilizes the radical emission. Moreover, such a radical emission system also could be integrated with a fluorescent dye to induce multi-color or even white light emission with reversible temperature-responsive characteristics. The radical emission system can also be used to detect different amine compounds on the basis of the emission changes and photoactivation time.

3.
Angew Chem Int Ed Engl ; 60(24): 13529-13535, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33635576

RESUMO

The first example of a neutral spin-delocalized carbon-nanoring radical was achieved by integration of the open-shell phenalenyl unit into cycloparaphenylene (CPP). Spin distribution in this hydrocarbon is localized primarily on the phenalenyl segment and partially on the CPP segment as a consequence of steric and electronic effects. The resulting geometry is reminiscent of a diamond ring, with pseudo-perpendicular arrangement of the radial and the planar π-surface. The phenylene rings attached directly to the phenalenyl unit give rise to a steric effect that governs a highly selective dimerization pathway, yielding a giant double nanohoop. Its π-framework made of 158 sp2 -carbon atoms was elucidated by single-crystal X-ray diffraction, which revealed a three-segment CPP-peropyrene-CPP structure. This nanocarbon shows a fluorescence profile characteristic of peropyrene, regardless of which segment gets excited. These results in conjunction with DFT suggest that adjusting the size of the CPP segments in this double nanohoop could deliver donor-acceptor systems.

4.
Chempluschem ; 84(6): 680-685, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31944024

RESUMO

A new diradical having two 4,8,10-trioxotriangulene (TOT) neutral radical units linked through an m-phenylene moiety was synthesized and characterized by ESR measurements. An electrochemical study showed that the diradical undergoes two one-electron reductions to generate corresponding dianion species, suggesting the electronic interaction between two TOT units through the π-conjugated spacer. A strong intramolecular interaction between the two TOT units gives rise to the spin-projected small hyperfine couplings in comparison with those of the monomer. Furthermore, the temperature dependent ESR measurement revealed that the dimer behaves as an S=1 species in the ground state with a ferromagnetic interaction of 2 J/kB =+7±3 K.

5.
Angew Chem Int Ed Engl ; 57(26): 7841-7845, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29714814

RESUMO

A dinuclear CoII complex, [Co2 (tphz)(tpy)2 ]n+ (n=4, 3 or 2; tphz: tetrapyridophenazine; tpy: terpyridine), has been assembled using the redox-active and strongly complexing tphz bridging ligand. The magnetic properties of this complex can be tuned from spin-crossover with T1/2 ≈470 K for the pristine compound (n=4) to single-molecule magnet with an ST =5/2 spin ground state when once reduced (n=3) to finally a diamagnetic species when twice reduced (n=2). The two successive and reversible reductions are concomitant with an increase of the spin delocalization within the complex, promoting remarkably large magnetic exchange couplings and high-spin species even at room temperature.

6.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 73(Pt 4): 565-583, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28762968

RESUMO

The Source Function (SF) tool was applied to the analysis of the theoretical spin density in azido CuII dinuclear complexes, where the azido group, acting as a coupler between the CuII cations, is linked to the metal centres either in an end-on or in an end-end fashion. Results for only the former structural arrangement are reported in the present paper. The SF highlights to which extent the magnetic centres contribute to determine the local spin delocalization and polarization at any point in the dimetallic complex and whether an atom or group of atoms of the ligands act in favour or against a given local spin delocalization/polarization. Ball-and-stick atomic SF percentage representations allow for a visualization of the magnetic pathways and of the specific role played by each atom along these paths, at given reference points. Decomposition of SF contributions in terms of a magnetic and of a relaxation component provides further insight. Reconstruction of partial spin densities by means of the Source Function has for the first time been introduced. At variance with the standard SF percentage representations, such reconstructions offer a simultaneous view of the sources originating from specific subsets of contributing atoms, in a selected molecular plane or in the whole space, and are therefore particularly informative. The SF tool is also used to evaluate the accuracy of the analysed spin densities. It is found that those obtained at the unrestricted B3LYP DFT level, relative to those computed at the CASSCF(6,6) level, greatly overestimate spin delocalization to the ligands, but comparatively underestimate magnetic connection (spin transmission) among atoms, along the magnetic pathways. As a consequence of its excessive spin delocalization, the UB3LYP method also overestimates spin polarization mechanisms between the paramagnetic centres and the ligands. Spin delocalization measures derived from the refinement of Polarized Neutron Diffraction data seem in general superior to those obtained through the DFT UB3LYP approach and closer to the far more accurate CASSCF results. It is also shown that a visual agreement on the spin-resolved electron densities ρα and ρß derived from different approaches does not warrant a corresponding agreement between their associated spin densities.

7.
J Phys Chem Lett ; 6(11): 2101-6, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26266509

RESUMO

We report on a spectroscopic multitechnique approach to study the metal/radical spinterface formed by a perchlorinated trityl radical derivative and either gold or silver. The spectroscopic fingerprint of their paramagnetic properties could be determined by comparison with their diamagnetic precursor and by DFT calculations. Thanks to the presented approach, we could gain unprecedented insight into the radical-metal interaction and how this latter perturbs the spin polarization and consequently the magnetoelectronic properties of the radical adlayer. Knowledge of the factors influencing the spinterface is an essential tool toward the tailoring of the properties of spin-based electronic devices.


Assuntos
Metais/química , Percloratos/química , Compostos de Tritil/química , Espectroscopia de Ressonância de Spin Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA