Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Phys Condens Matter ; 36(41)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38959901

RESUMO

While the recent prediction and observation of magnetic skyrmions bears inspiring promise for next-generation spintronic devices, how to detect and track their position becomes an important issue. In this work, we investigate the spin transport in a two-dimensional magnetic nanoribbon with the Hall-bar geometry in the presence of Rashba spin-orbit coupling and magnetic skyrmions. We employ the Kwant tight-binding code to compute the Hall conductance and local spin-polarized current density. We consider two versions of the model: One with single skyrmion and one with two separate skyrmions. It is found that the size and position of the skyrmions strongly modulate the Hall conductance near the Hall-bar position. The geometry of the Hall bar also has a strong influence on the Hall conductance of the system. With the decreasing of the width of Hall leads, the peak of Hall conductance becomes sharper. We also show the spatial distribution of the spin-polarized current density around a skyrmion located at different positions. We extend this study toward two separate skyrmions, where the Hall conductance also reveals a sizable dependence on the position of the skyrmions and their distance. Our numerical analysis offers the possibility of electrically detecting the skyrmion position, which could have potential applications in ultrahigh-density storage design.

2.
J Mol Model ; 30(7): 218, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890154

RESUMO

CONTEXT: The coherent electron/spin transport in azurin, a species of copper protein, was calculated based on the Landauer model. The research is motivated by the fast electron transport and spin selectivity/polarization in azurin, which have been reported in relation to the chiral-induced spin selectivity of the peptide structure. The calculated spin polarization of copper proteins was large. This phenomenon was strongly influenced by the spin density of the atoms in the ligand group, whereas the contribution of copper was negligible. The results suggest that spin polarization in copper proteins is enhanced by that of the ligand groups. The predicted spin polarization aligns primarily with the scanning tunneling microscope-based break-junction technique to study the electronic properties of single-molecule junctions. METHODS: Computational techniques employed in this study are nonequilibrium Green's functions (NEGF) and density functional theory (DFT) based on the Landauer model, implemented using the QuantumATK software (Synopsys Inc.). The Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional was adopted for spin-polarized generalized gradient approximation (SGGA). The valence atomic orbitals were constructed using the wavefunctions of the SIESTA package, which was based on the norm-conserving Troullier-Martins relativistic pseudopotentials for describing core electrons. The mesh used for real-space integration was 150 Ha.


Assuntos
Azurina , Cobre , Modelos Moleculares , Azurina/química , Azurina/metabolismo , Cobre/química , Transporte de Elétrons , Teoria da Densidade Funcional
3.
ACS Nano ; 18(26): 16914-16922, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38905311

RESUMO

Femtosecond laser-induced ultrafast magnetization dynamics are all-optically probed for different remanent magnetic domain states of a [Co/Pt]22 multilayer sample, thus revealing the tunability of the direct transport of spin angular momentum across domain walls. A variety of different magnetic domain configurations (domain wall origami) at remanence achieved by applying different magnetic field histories are investigated by time-resolved magneto-optical Kerr effect magnetometry to probe the ultrafast magnetization dynamics. Depending on the underlying domain landscape, the spin-transport-driven magnetization dynamics show a transition from typical ultrafast demagnetization to being fully dominated by an anomalous transient magnetization enhancement (TME) via a state in which both TME and demagnetization coexist in the system. Thereby, the study reveals an extrinsic channel for the modulation of spin transport, which introduces a route for the development of magnetic spin-texture-driven ultrafast spintronic devices.

4.
Adv Mater ; : e2406347, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926947

RESUMO

Electrical generation and transduction of polarized electron spins in semiconductors (SCs) are of central interest in spintronics and quantum information science. While spin generation in SCs is frequently realized via electrical injection from a ferromagnet (FM), there are significant advantages in nonmagnetic pathways of creating spin polarization. One such pathway exploits the interplay of electron spin with chirality in electronic structures or real space. Here, utilizing chirality-induced spin selectivity (CISS), the efficient creation of spin accumulation in n-doped GaAs via electric current injection from a normal metal (Au) electrode through a self-assembled monolayer (SAM) of chiral molecules (α-helix l-polyalanine, AHPA-L), is demonstrated. The resulting spin polarization is detected as a Hanle effect in the n-GaAs, which is found to obey a distinct universal scaling with temperature and bias current consistent with chirality-induced spin accumulation. The experiment constitutes a definitive observation of CISS in a fully nonmagnetic device structure and demonstration of its ability to generate spin accumulation in a conventional SC. The results thus place key constraints on the physical mechanism of CISS and present a new scheme for magnet-free SC spintronics.

5.
Adv Mater ; 36(26): e2402001, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38597787

RESUMO

Molecular semiconductor (MSC) is a promising candidate for spintronic applications benefiting from its long spin lifetime caused by light elemental-composition essence and thus weak spin-orbit coupling (SOC). According to current knowledge, the SOC effect, normally dominated by the elemental composition, is the main spin-relaxation causation in MSCs, and thus the molecular structure-induced SOC change is one of the most concerned issues. In theoretical study, molecular isomerism, a most prototype phenomenon, has long been considered to possess little difference on spin transport previously, since elemental compositions of isomers are totally the same. However, here in this study, quite different spin-transport performances are demonstrated in ITIC and its structural isomers BDTIC experimentally, for the first time, though the charge transport and molecular stacking of the two films are very similar. By further experiments of electron-paramagnetic resonance and density-functional-theory calculations, it is revealed that noncovalent-conformational locks (NCLs) formed in BDTIC can lead to enhancement of SOC and thus decrease the spin lifetime. Hence, this study suggests the influences from the structural-isomeric effect must be considered for developing highly efficient spin-transport MSCs, which also provides a reliable theoretical basis for solving the great challenge of quantificational measurement of NCLs in films in the future.

6.
ACS Nano ; 18(8): 6028-6037, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38353652

RESUMO

Significant attention has been drawn to electronic transport in chiral materials coupled to ferromagnets in the chirality-induced spin selectivity (CISS) effect. A large magnetoresistance (MR) is usually observed, which is widely interpreted to originate from spin (dependent) transport. However, there are severe discrepancies between the experimental results and the theoretical interpretations, most notably the apparent failure of the Onsager reciprocity relations in the linear response regime. We provide an alternative mechanism for the two terminal MR in chiral systems coupled to a ferromagnet. For this, we point out that it was observed experimentally that the electrostatic contact potential of chiral materials on a ferromagnet depends on the magnetization direction and chirality. The mechanism that we provide causes the transport barrier to be modified by the magnetization direction, already in equilibrium, in the absence of a bias current. This strongly alters the charge transport through and over the barrier, not requiring spin transport. This provides a mechanism that allows the linear response resistance to be sensitive to the magnetization direction and also explains the failure of the Onsager reciprocity relations. We propose experimental configurations to confirm our alternative mechanism for MR.

7.
Nano Lett ; 23(24): 11608-11613, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38096400

RESUMO

The coherent transport of charge and spin is a key requirement of future devices for quantum computing and communication. Scattering at defects or impurities may significantly reduce the coherence of quantum-mechanical states, thereby affecting the device functionality. While numerous methods exist to experimentally assess charge transport, the real-space detection of a material's ballistic spin transport properties with nanometer resolution remains a challenge. Here we report on a novel approach that utilizes a combination of spin-polarized scanning tunneling microscopy (SP-STM) and the recently introduced molecular nanoprobe (MONA) technique. It relies on the local injection of spin-polarized charge carriers from a magnetic STM tip and their detection by a single surface-deposited phthalocyanine molecule via reversible electron-induced tautomerization events. Based on the particular electronic structure of the Rashba alloy BiAg2, which is governed by a spin-momentum-locked surface state, we prove that the current direction inverses upon tip magnetization reversal.

8.
Nano Lett ; 23(23): 10719-10724, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37988562

RESUMO

Organic materials are promising candidates for thermoelectric cooling and energy harvesting at room temperature. However, their electrical conductance (G) and Seebeck coefficient (S) need to be improved to make them technologically competitive. Therefore, radically new strategies need to be developed to tune their thermoelectric properties. Here, we demonstrate that G and S can be tuned mechanically in paramagnetic metallocenes, and their thermoelectric properties can be significantly enhanced by the application of mechanical forces. With a 2% junction compression, the full thermoelectric figure of merit is enhanced by more than 200 times. We demonstrate that this is because spin transport resonances in paramagnetic metallocenes are strongly sensitive to the interaction between organic ligands and the metal center, which is not the case in their diamagnetic analogue. These results open a new avenue for the development of organic thermoelectric materials for cooling future quantum computers and generating electricity from low-grade energy sources.

9.
ACS Nano ; 17(20): 20424-20433, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37668559

RESUMO

Chiral graphene hybrid materials have attracted significant attention in recent years due to their various applications in the areas of chiral catalysis, chiral separation and recognition, enantioselective sensing, etc. On the other hand, chiral materials are also known to exhibit chirality-dependent spin transmission, commonly dubbed "chirality induced spin selectivity" or CISS. However, CISS properties of chiral graphene materials are largely unexplored. As such, it is not clear whether graphene is even a promising material for the CISS effect given its weak spin-orbit interaction. Here, we report the CISS effect in chiral graphene sheets, in which a graphene derivative (reduced graphene oxide or rGO) is noncovalently functionalized with chiral Fmoc-FF (Fmoc-diphenylalanine) supramolecular fibers. The graphene flakes acquire a "conformational chirality" postfunctionalization, which, combined with other factors, is presumably responsible for the CISS signal. The CISS signal correlates with the supramolecular chirality of the medium, which depends on the thickness of graphene used. Quite interestingly, the noncovalent supramolecular chiral functionalization of conductive materials offers a simple and straightforward methodology to induce chirality and CISS properties in a multitude of easily accessible advanced conductive materials.

10.
Proc Natl Acad Sci U S A ; 120(21): e2220589120, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186856

RESUMO

The propagation of spin waves in magnetically ordered systems has emerged as a potential means to shuttle quantum information over large distances. Conventionally, the arrival time of a spin wavepacket at a distance, d, is assumed to be determined by its group velocity, vg. Here, we report time-resolved optical measurements of wavepacket propagation in the Kagome ferromagnet Fe3Sn2 that demonstrate the arrival of spin information at times significantly less than d/vg. We show that this spin wave "precursor" originates from the interaction of light with the unusual spectrum of magnetostatic modes in Fe3Sn2. Related effects may have far-reaching consequences toward realizing long-range, ultrafast spin wave transport in both ferromagnetic and antiferromagnetic systems.

11.
Angew Chem Int Ed Engl ; 62(41): e202305408, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37258996

RESUMO

The intrinsic properties of predesignable topologies and tunable electronic structures, coupled with the increase of electrical conductivity, make two-dimensional metal-organic frameworks (2D MOFs) highly prospective candidates for next-generation electronic/spintronic devices. In this Minireview, we present an outline of the design principles of 2D MOF-based spintronics materials. Then, we highlight the spin-transport properties of 2D MOF-based organic spin valves (OSVs) as a notable achievement in the progress of 2D MOFs for spintronics devices. After that, we discuss the potential for spin manipulation in 2D MOFs with bipolar magnetic semiconductor (BMS) properties as a promising field for future research. Finally, we provide a brief summary and outlook to encourage the development of novel 2D MOFs for spintronics applications.

12.
Chemistry ; 29(32): e202300481, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-36914569

RESUMO

Organic spintronics has caused a huge revolution in creating highly efficient low-power circuits. Spin manipulation in organic cocrystals has become a promising strategy to uncover more chemicophysical properties for diverse applications. In this Minireview, we summarize the recent advancements of spin properties in organic charge-transfer cocrystals, and briefly describe the possible mechanisms behind them. Beside the known spin properties (spin multiplicity, mechanoresponsive spin, chiral orbit and spin-crossover) in binary/ternary cocrystals, other spin phenomena in radical cocrystals and spin transport are also summarized and discussed. Hopefully, deep understanding of current achievements, challenges and perspectives will offer the clear direction for the introduction of spin in organic cocrystals.

13.
Artigo em Inglês | MEDLINE | ID: mdl-36753695

RESUMO

With recent advances in two-dimensional (2D) ferromagnets with enhanced Curie temperatures, it is possible to develop all-2D spintronic devices with high-quality interfaces using 2D ferromagnets. In this study, we have successfully fabricated nonlocal spin valves with Fe3GeTe2 (FGT) as the spin source and detector and multilayer graphene as the spin transport channel. The nonlocal spin transport signal was found to strongly depend on temperature and disappear at a temperature below the Curie temperature of the FGT flakes, which stemmed from the temperature-dependent ferromagnetism of FGT. The spin injection efficiency was estimated to be about 1%, close to that of conventional nonlocal spin valves with transparent contacts between ferromagnetic electrodes and the graphene channel. In addition, the spin transport signal was found to depend on the direction of the magnetic field and the magnitude of the current, which was due to the strong perpendicular magnetic anisotropy of FGT and the thermal effect, respectively. Our results provide opportunities to extend the applications of van der Waals heterostructures in spintronic devices.

14.
Chem Asian J ; 18(3): e202201125, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36510771

RESUMO

Spintronics, a new discipline focusing on the spin-dependent transport process of electrons, has been developing rapidly. Spin valves are the most significant carriers of spintronics utilizing the spin freedom of electrons. It is expected to pierce "Moore's Law" and become the core component in processors of the next generation. Organic semiconductors advance in their adjustable band gap, weak spin-orbit coupling and hyperfine interaction, excellent film-forming property, having enormous promise for spin valves. Here, the principle of spin valves is introduced, and the history and progress in organic spin injection and transport materials are summarized. Then we analyze the influence of spinterface on device performance and introduce reliable methods of constructing organic spin valves. Finally, the challenges for spin valves are discussed, and the future is proposed. We aim to draw the attention of researchers to organic spin valves and promote further research in spintronics through this paper.

15.
J Phys Condens Matter ; 35(3)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36368045

RESUMO

A 'toy model'-aimed at capturing the essential physics-is presented that jointly describes spin-polarized hot electron transport and spin pumping driven by local heating. These two processes both contribute to spin-current generation in laser-excited magnetic heterostructures. The model is used to compare the two contributions directly. The spin-polarized hot electron current is modeled as one generation of hot electrons with a spin-dependent excitation and relaxation scheme. Upon decay, the excess energy of the hot electrons is transferred to a thermalized electron bath. The elevated electron temperature leads to an increased rate of electron-magnon scattering processes and yields a local accumulation of spin. This process is dubbed as spin pumping by local heating. The built-up spin accumulation is effectively driven out of the ferromagnetic system by (interfacial) electron transport. Within our model, the injected spin current is dominated by the contribution resulting from spin pumping, while the hot electron spin current remains relatively small. We derive that this observation is related to the ratio between the Fermi temperature and Curie temperature, and we show what other fundamental parameters play a role.

16.
ACS Nano ; 16(10): 16941-16953, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36219724

RESUMO

Supramolecular short-peptide assemblies have been widely used for the development of biomaterials with potential biomedical applications. These peptides can self-assemble in a multitude of chiral hierarchical structures triggered by the application of different stimuli, such as changes in temperature, pH, solvent, etc. The self-assembly process is sensitive to the chemical composition of the peptides, being affected by specific amino acid sequence, type, and chirality. The resulting supramolecular chirality of these materials has been explored to modulate protein and cell interactions. Recently, significant attention has been focused on the development of chiral materials with potential spintronic applications, as it has been shown that transport of charge carriers through a chiral environment polarizes the carrier spins. This effect, named chirality-induced spin selectivity or CISS, has been studied in different chiral organic molecules and materials, as well as carbon nanotubes functionalized with chiral molecules. Nevertheless, this effect has been primarily explored in homochiral systems in which the chirality of the medium, and hence the resulting spin polarization, is defined by the chirality of the molecule, with limited options for tunability. Herein, we have developed heterochiral carbon-nanotube-short-peptide materials made by the combination of two different chiral sources: that is, homochiral peptides (l/d) + glucono-δ-lactone. We show that the presence of a small amount of glucono-δ-lactone with fixed chirality can alter the supramolecular chirality of the medium, thereby modulating the sign of the spin signal from "up" to "down" and vice versa. In addition, small amounts of glucono-δ-lactone can even induce nonzero spin polarization in an otherwise achiral and spin-inactive peptide-nanotube composite. Such "chiral doping" strategies could allow the development of complementary CISS-based spintronic devices and circuits on a single material platform.


Assuntos
Nanotubos de Carbono , Nanotubos de Peptídeos , Peptídeos , Solventes/química , Materiais Biocompatíveis
17.
Front Chem ; 10: 996344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36092680

RESUMO

In the past decade, two-dimensional (2D) materials and spintronic materials have been rapidly developing in recent years. 2D spin-gapless semiconductors (SGSs) are a novel class of ferromagnetic 2D spintronic materials with possible high Curie temperature, 100% spin-polarization, possible one-dimensional or zero-dimensional topological signatures, and other exciting spin transport properties. In this mini-review, we summarize a series of ideal 2D SGSs in the last 3 years, including 2D oxalate-based metal-organic frameworks, 2D single-layer Fe2I2, 2D Cr2X3 (X = S, Se, and Te) monolayer with the honeycomb kagome (HK) lattice, 2D CrGa2Se4 monolayer, 2D HK Mn-cyanogen lattice, 2D MnNF monolayer, and 2D Fe4N2 pentagon crystal. The mini-review also discusses the unique magnetic, electronic, topological, and spin-transport properties and the possible application of these 2D SGSs. The mini-review can be regarded as an improved understanding of the current state of 2D SGSs in recent 3 years.

18.
Proc Natl Acad Sci U S A ; 119(34): e2202823119, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969776

RESUMO

We address spin transport in the easy-axis Heisenberg spin chain subject to different integrability-breaking perturbations. We find subdiffusive spin transport characterized by dynamical exponent z = 4 up to a timescale parametrically long in the anisotropy. In the limit of infinite anisotropy, transport is subdiffusive at all times; for finite anisotropy, one eventually recovers diffusion at late times but with a diffusion constant independent of the strength of the perturbation and solely fixed by the value of the anisotropy. We provide numerical evidence for these findings, and we show how they can be understood in terms of the dynamical screening of the relevant quasiparticle excitations and effective dynamical constraints. Our results show that the diffusion constant of near-integrable diffusive spin chains is generically not perturbative in the integrability-breaking strength.

19.
Artigo em Inglês | MEDLINE | ID: mdl-35820066

RESUMO

Current-generated spin arising from spin-momentum locking in topological insulator (TI) surface states has been shown to switch the magnetization of an adjacent ferromagnet (FM) via spin-orbit torque (SOT) with a much higher efficiency than heavy metals. However, in such FM/TI heterostructures, most of the current is shunted through the FM metal due to its lower resistance, and recent calculations have also shown that topological surface states can be significantly impacted when interfaced with an FM metal such as Ni and Co. Hence, placing an insulating layer between the TI and FM will not only prevent current shunting, therefore minimizing overall power consumption, but may also help preserve the topological surface states at the interface. Here, we report the van der Waals epitaxial growth of ß-phase In2Se3 on Bi2Se3 by molecular beam epitaxy and demonstrate its spin sensitivity by the electrical detection of current-generated spin in Bi2Se3 surface states using a Fe/In2Se3 detector contact. Our density functional calculations further confirm that the linear dispersion and spin texture of the Bi2Se3 surface states are indeed preserved at the In2Se3/Bi2Se3 interface. This demonstration of an epitaxial crystalline spin-sensitive barrier that can be grown directly on Bi2Se3, and verification that it preserves the topological surface state, is electrically insulating and spin-sensitive, is an important step toward minimizing overall power consumption in SOT switching in TI/FM heterostructures in fully epitaxial topological spintronic devices.

20.
J Phys Condens Matter ; 34(29)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35523156

RESUMO

Electrically injected and detected nonlocal magnon transport has emerged as a versatile method for transporting spin as well as probing the spin excitations in a magnetic insulator. We examine the role of drift currents in this phenomenon as a method for controlling the magnon propagation length. Formulating a phenomenological description, we identify the essential requirements for existence of magnon drift. Guided by this insight, we examine magnetic field gradient, asymmetric contribution to dispersion, and temperature gradient as three representative mechanisms underlying a finite magnon drift velocity, finding temperature gradient to be particularly effective.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA