Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39013007

RESUMO

In this study, we investigate the spin-momentum locking phenomenon on Rashba states of antimony (Sb) films. Utilizing spin pumping in conjunction with an external charge current, we uncover the topological properties of Sb surface states. Our key finding is the precise manipulation of the direction and magnitude of the charge current generated by the inverse Rashba-Edelstein effect. This control is achieved through the dynamic interaction between out-of-equilibrium pumped spins and spin-momentum-locked flowing spins, which are perpendicular to the charge current. Our results highlight Sb as a promising material for both fundamental and applied spintronics research. The studied Sb nanostructures demonstrate potential for the development of low-power logic gates operating with currents in the microampere range, paving the way for advanced spintronic applications.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38656108

RESUMO

Topological insulators (TIs) with spin-momentum-locked surface states and considerable spin-to-charge conversion (SCC) efficiency are ideal substitutes for the nonmagnetic layer in the traditional ferromagnetic/nonmagnetic (FM/NM) spintronic terahertz (THz) emitters. Here, the TI/ferrimagnetic structure as an effective polarization tunable THz source is verified by terahertz emission spectroscopy. The emitted THz electric field can be separated into two THz components utilizing their opposite symmetry on pump polarization and the magnetic field. TI not only emits a THz electric field via the linear photogalvanic effect (LPGE) but also serves as the medium of SCC via the inverse Edelstein effect (IEE) in the heterostructure. In addition, the amplitude and polarity of the SCC component can be efficiently manipulated by temperature in our ferrimagnetic TbFeCo layer compared with Co or Fe. Once these two THz components are delicately set orthogonally, an elliptical THz wave is generated by the intrinsic phase difference at the THz frequency range. The feasible control of its polarization and chirality is demonstrated by three means: pump polarization, magnetic field, and temperature. These appealing observations may pave the way for the development of elliptical THz wave emitters and polarization-sensitive THz spectroscopy.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38670928

RESUMO

Spin-to-charge conversion at the interface between magnetic materials and transition metal dichalcogenides has drawn great interest in the research efforts to develop fast and ultralow power consumption devices for spintronic applications. Here, we report room temperature observations of spin-to-charge conversion arising from the interface of Ni80Fe20 (Py) and molybdenum disulfide (MoS2). This phenomenon can be characterized by the inverse Edelstein effect length (λIEE), which is enhanced with decreasing MoS2 thicknesses, demonstrating the dominant role of spin-orbital coupling (SOC) in MoS2. The spin-to-charge conversion can be significantly improved by inserting a Cu interlayer between Py and MoS2, suggesting that the Cu interlayer can prevent magnetic proximity effect from the Py layer and protect the SOC on the MoS2 surface from exchange interactions with Py. Furthermore, the Cu-MoS2 interface can enhance the spin current and improve electronic transport. Our results suggest that tailoring the interface of magnetic heterostructures provides an alternative strategy for the development of spintronic devices to achieve higher spin-to-charge conversion efficiencies.

4.
ACS Appl Mater Interfaces ; 15(32): 38592-38602, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37550946

RESUMO

Disordered topological insulator (TI) films have gained intense interest by benefiting from both the TI's exotic transport properties and the advantage of mass production by sputtering. Here, we report on the clear evidence of spin-charge conversion (SCC) in amorphous Gd-alloyed BixSe1-x (BSG)/CoFeB bilayers fabricated by sputtering, which could be related to the amorphous TI surface states. Two methods have been employed to study SCC in BSG (tBSG = 6-16 nm)/CoFeB(5 nm) bilayers with different BSG thicknesses. First, spin pumping is used to generate a spin current in CoFeB and detect SCC by the inverse Edelstein effect (IEE). The maximum SCC efficiency (SCE) is measured to be as large as 0.035 nm (IEE length λIEE) in a 6 nm thick BSG sample, which shows a strong decay when tBSG increases due to the increase of BSG surface roughness. The second method is THz time-domain spectroscopy, which reveals a small tBSG dependence of SCE, validating the occurrence of a pure interface state-related SCC. Furthermore, our angle-resolved photoemission spectroscopy data show dispersive two-dimensional surface states that cross the bulk gap until the Fermi level, strengthening the possibility of SCC due to the amorphous TI states. Our studies provide a new experimental direction toward the search for topological systems in amorphous solids.

5.
Nano Lett ; 23(10): 4406-4414, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37140909

RESUMO

Graphene is a light material for long-distance spin transport due to its low spin-orbit coupling, which at the same time is the main drawback for exhibiting a sizable spin Hall effect. Decoration by light atoms has been predicted to enhance the spin Hall angle in graphene while retaining a long spin diffusion length. Here, we combine a light metal oxide (oxidized Cu) with graphene to induce the spin Hall effect. Its efficiency, given by the product of the spin Hall angle and the spin diffusion length, can be tuned with the Fermi level position, exhibiting a maximum (1.8 ± 0.6 nm at 100 K) around the charge neutrality point. This all-light-element heterostructure shows a larger efficiency than conventional spin Hall materials. The gate-tunable spin Hall effect is observed up to room temperature. Our experimental demonstration provides an efficient spin-to-charge conversion system free from heavy metals and compatible with large-scale fabrication.

6.
Nanotechnology ; 34(13)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36584386

RESUMO

We report on the spin-to-charge conversion (SCC) in Mo0.25W0.75Te2-x(MWT)/Y3Fe5O12(YIG) heterostructures at room temperature. The centimeter-scale amorphous MWT films are deposited on liquid-phase-epitaxial YIG by pulsed laser deposition technique. The significant SCC voltage is measured in the MWT layer with a sizable spin Hall angle of ∼0.021 by spin pumping experiments. The control experiments by inserting MgO or Ag layer between MWT and YIG show that the SCC is mainly attributed to the inverse spin Hall effect rather than the thermal or interfacial Rashba effect. Our work provides a novel spin-source material for energy-efficient topological spintronic devices.

7.
ACS Appl Mater Interfaces ; 14(51): 57321-57327, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36525266

RESUMO

For the spin-to-charge conversion (SCC) in heavy metal/ferromagnet (HM/FM) heterostructure, the contribution of interfacial spin-orbit coupling (SOC) remains controversial. Here, we investigate the SCC process of the Pt/NiFe heterostructure by the spin pumping in YIG/Pt/NiFe/IrMn multilayers. Due to the exchange bias of NiFe/IrMn structure, the NiFe magnetization can be switched between magnetically unsaturated and saturated states by opposite resonance fields of YIG layer. The spin-pumping signal is found to decrease significantly when the NiFe magnetization is changed from the saturated state to the unsaturated state. Theoretical analysis indicates that the interfacial spin absorption is enhanced for the above-mentioned NiFe magnetic state change, which results in the increased and decreased spin flow in the Pt layer and across the Pt/NiFe interface, respectively. These results demonstrate that in our case the interfacial SOC effect at the Pt/NiFe interface is dominant over the bulk inverse spin Hall effect in the Pt layer. Our work reveals a significant role of interfacial SOC in the SCC in HM/FM heterostructure, which can promote the development of high-efficiency spintronic devices through interfacial engineering.

8.
Nanomaterials (Basel) ; 12(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36296876

RESUMO

The spin-to-charge conversion in Permalloy (Py)/Cu/Bi2Se3 is tunable by changing the Cu layer thickness. The conversion rate was studied using the spin pumping technique. The inverse Edelstein effect (IEE) length λIEE is found to increase up to ~2.7 nm when a 7 nm Cu layer is introduced. Interestingly, the maximized λIEE is obtained when the effective spin-mixing conductance (and thus Js) is decreased due to Cu insertion. The monotonic increase in λIEE with decreasing Js suggests that the IEE relaxation time (τ) is enhanced due to the additional tunnelling barrier (Cu layer) that limits the interfacial transmission rate. The results demonstrate the importance of interface engineering in the magnetic heterostructure of Py/topological insulators (TIs), the key factor in optimizing spin-to-charge conversion efficiency.

9.
Nano Lett ; 22(19): 7992-7999, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36162104

RESUMO

One of the major obstacles to realizing spintronic devices such as MESO logic devices is the small signal magnitude used for magnetization readout, making it important to find materials with high spin-to-charge conversion efficiency. Although intermixing at the junction of two materials is a widely occurring phenomenon, its influence on material characterization and the estimation of spin-to-charge conversion efficiencies are easily neglected or underestimated. Here, we demonstrate all-electrical spin-to-charge conversion in BixSe1-x nanodevices and show how the conversion efficiency can be overestimated by tens of times depending on the adjacent metal used as a contact. We attribute this to the intermixing-induced compositional change and the properties of a polycrystal that lead to drastic changes in resistivity and spin Hall angle. Strategies to improve the spin-to-charge conversion signal in similar structures for functional devices are discussed.

10.
ACS Appl Mater Interfaces ; 14(36): 41598-41604, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36052925

RESUMO

Spin-to-charge conversion is an essential requirement for the implementation of spintronic devices. Recently, monolayers (MLs) of semiconducting transition-metal dichalcogenides (TMDs) have attracted considerable interest for spin-to-charge conversion due to their high spin-orbit coupling and lack of inversion symmetry in their crystal structure. However, reports of direct measurement of spin-to-charge conversion at TMD-based interfaces are very much limited. Here, we report on the room-temperature observation of a large spin-to-charge conversion arising from the interface of Ni80Fe20 (Py) and four distinct large-area (∼5 × 2 mm2) ML TMDs, namely, MoS2, MoSe2, WS2, and WSe2. We show that both spin mixing conductance and the Rashba efficiency parameter (λIREE) scale with the spin-orbit coupling strength of the ML TMD layers. The λIREE parameter is found to range between -0.54 and -0.76 nm for the four ML TMDs, demonstrating a large spin-to-charge conversion. Our findings reveal that the TMD/ferromagnet interface can be used for efficient generation and detection of spin current, opening new opportunities for novel spintronic devices.

11.
J Phys Condens Matter ; 34(32)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35609618

RESUMO

A net circulating current may appear within a quantum ring under finite bias. We study the characteristic features of the circular current in the presence of Rashba spin-orbit interaction (RSOI). Both charge and spin currents appear within the ring. Whereas when the ring is symmetrically connected to the external leads, we can get a pure spin current at non-zero Fermi-energy. On the other hand, for asymmetric ring-to-leads configuration, at zero Fermi-energy, the spin current vanishes but a pure charge current flows within the ring. Tuning RSOI, we demonstrate a way to control the pure spin current externally. This new perspective of the generation of the pure spin circular current can open a new basis for the highly efficient, low energy cost spintronic devices.

12.
ACS Nano ; 15(10): 16819-16827, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34597020

RESUMO

Nonequilibrium studies of two-dimensional (2D) superconductors (SCs) with Ising spin-orbit coupling are prerequisite for their successful application to equilibrium spin-triplet Cooper pairs and, potentially, Majorana Fermions. By taking advantage of the recent discoveries of 2D SCs and their compatibility with any other materials, we fabricate here nonlocal magnon devices to examine how such 2D Ising superconductivity affects the conversion efficiency of magnon spin to quasiparticle charge in superconducting flakes of 2H-NbSe2 transferred onto ferrimagnetic insulating Y3Fe5O12. Comparison with a reference device based on a conventionally paired superconductor shows that the Y3Fe5O12-induced in-plane (IP) exchange spin-splitting in the NbSe2 flake is hindered by its inherent out-of-plane (OOP) spin-orbit field, which, in turn, limits the transition-state enhancement of the spin-to-charge conversion efficiency. Our out-of-equilibrium study highlights the significance of symmetry matching between underlying Cooper pairs and exchange-induced spin-splitting for the giant transition-state spin-to-charge conversion and may have implications toward proximity-engineered spin-polarized triplet pairing via tuning the relative strength of IP exchange and OOP spin-orbit fields in ferromagnetic insulator/2D Ising SC bilayers.

13.
Nanomaterials (Basel) ; 11(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199571

RESUMO

Spin-to-charge conversion is a central process in the emerging field of spintronics. One of its main applications is the electrical detection of spin currents, and for this, the inverse spin Hall effect (ISHE) has become one of the preferred methods. We studied the thickness dependence of the ISHE in iridium oxide (IrO2) thin films, producing spin currents by means of the spin Seebeck effect in γ-Fe2O3/IrO2 bilayers prepared by pulsed laser deposition (PLD). The observed ISHE charge current density, which features a maximum as a consequence of the spin diffusion length scale, follows the typical behaviour of spin-Hall-related phenomena. By fitting to the theory developed by Castel et al., we find that the spin Hall angle θSH scales proportionally to the thin film resistivity, θSH∝ρc, and obtains a value for the spin diffusion length λIrO2 of λIrO2=3.3(7) nm. In addition, we observe a negative θSH for every studied thickness and temperature, unlike previously reported works, which brings the possibility of tuning the desired functionality of high-resistance spin-Hall-based devices. We attribute this behaviour to the textured growth of the sample in the context of a highly anisotropic value of the spin Hall conductivity in this material.

14.
Adv Mater ; 33(9): e2006281, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33506577

RESUMO

The efficient conversion of spin to charge transport and vice versa is of major relevance for the detection and generation of spin currents in spin-based electronics. Interfaces of heterostructures are known to have a marked impact on this process. Here, terahertz (THz) emission spectroscopy is used to study ultrafast spin-to-charge-current conversion (S2C) in about 50 prototypical F|N bilayers consisting of a ferromagnetic layer F (e.g., Ni81 Fe19 , Co, or Fe) and a nonmagnetic layer N with strong (Pt) or weak (Cu and Al) spin-orbit coupling. Varying the structure of the F/N interface leads to a drastic change in the amplitude and even inversion of the polarity of the THz charge current. Remarkably, when N is a material with small spin Hall angle, a dominant interface contribution to the ultrafast charge current is found. Its magnitude amounts to as much as about 20% of that found in the F|Pt reference sample. Symmetry arguments and first-principles calculations strongly suggest that the interfacial S2C arises from skew scattering of spin-polarized electrons at interface imperfections. The results highlight the potential of skew scattering for interfacial S2C and propose a promising route to enhanced S2C by tailored interfaces at all frequencies from DC to terahertz.

15.
Nano Lett ; 21(1): 189-196, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33274946

RESUMO

We first observed the spin-to-charge conversion due to both the inverse Rashba-Edelstein effect (IREE) and inverse spin-Hall effect in a holey multilayer molybdenum disulfide (MoS2) intermediate layer in a Pt/YIG structure via LSSE measurements under nonequilibrium magnetization. We found an enhancement of approximately 238%, 307%, and 290% in the longitudinal spin Seebeck effect (LSSE) voltage, spin-to-charge current, and thermoelectric (TE) power factor, respectively, compared with the monolayer MoS2 interlayer in a Pt/YIG structure. Such an enhancement in the LSSE performance of Pt/holey MoS2/YIG can be explained by the improvement of spin accumulation in the Pt layer by induced spin fluctuation as well as increased additional spin-to-charge conversion due to in-plane IREE. Our findings represent a significant achievement in the understanding of spin transport in atomically thin MoS2 interlayers and pave the way toward large-area TE energy-harvesting devices in two-dimensional transition metal dichalcogenide materials.

16.
Adv Mater ; 32(49): e2005315, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33145825

RESUMO

Emergent topological insulators (TIs) and their design are in high demand for manipulating and transmitting spin information toward ultralow-power-consumption spintronic applications. Here, distinct topological states with tailored spin properties can be achieved in a single reduced-dimensional TI-superlattice, (Bi2 /Bi2 Se3 )-(Bi2 /Bi2 Se3 )N or (□/Bi2 Se3 )-(Bi2 /Bi2 Se3 )N (N is the repeating unit, □ represents an empty layer) by controlling the termination via molecular beam epitaxy. The Bi2 -terminated superlattice exhibits a single Dirac cone with a spin momentum splitting ≈0.5 Å-1 , producing a pronounced inverse Edelstein effect with a coherence length up to 1.26 nm. In contrast, the Bi2 Se3 -terminated superlattice is identified as a dual TI protected by coexisting time reversal and mirror symmetries, showing an unexpectedly long spin lifetime up to 1 ns. The work elucidates the key role of dimensionality and dual topological phases in selecting desired spin properties, suggesting a promise route for engineering topological superlattices for high-performance TI-spintronic devices.

17.
Nano Lett ; 19(8): 4836-4844, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31283247

RESUMO

We investigated spin-to-charge conversion in sputtered Bi43Se57/Co20Fe60B20 heterostructures with in-plane magnetization at room temperature. High spin-to-charge conversion voltage signals have been observed at room temperature. The transmission electron microscope images show that the sputtered bismuth selenide thin films are nanogranular in structure. The spin-pumping voltage decreases with an increase in the size of the grains. The inverse Edelstein effect length (λIEE) is estimated to be as large as 0.32 nm. The large λIEE is due to the spin-momentum locking and is further enhanced by quantum confinement in the nanosized grains of the sputtered bismuth selenide films. We also investigated the effect on spin-pumping voltage due to the insertion of layers of MgO and Ag. The MgO insertion layer has almost completely suppressed the spin-pumping voltage, whereas the Ag insertion layer has enhanced the λIEE by 43%.

18.
Adv Mater ; 30(52): e1802356, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30370615

RESUMO

Strong spin-orbit coupling, resulting in the formation of spin-momentum-locked surface states, endows topological insulators with superior spin-to-charge conversion characteristics, though the dynamics that govern it have remained elusive. Here, an all-optical method is presented, which enables unprecedented tracking of the ultrafast dynamics of spin-to-charge conversion in a prototypical topological insulator Bi2 Se3 /ferromagnetic Co heterostructure, down to the sub-picosecond timescale. Compared to pure Bi2 Se3 or Co, a giant terahertz emission is observed in the heterostructure that originates from spin-to-charge conversion, in which the topological surface states play a crucial role. A 0.12 ps timescale is identified that sets a technological speed limit of spin-to-charge conversion processes in topological insulators. In addition, it is shown that the spin-to-charge conversion efficiency is temperature independent in Bi2 Se3 as expected from the nature of the surface states, paving the way for designing next-generation high-speed optospintronic devices based on topological insulators at room temperature.

19.
Sci Bull (Beijing) ; 62(10): 712-716, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659443

RESUMO

We investigate a spin-to-charge conversion mechanism which maps the spin singlet and triplet states to two charge states differing by one electron mediated by an intermediate metastable charge state. This mechanism allows us to observe fringes in the spin-unblocked region beyond the triplet transition line in the measurement of the exchange oscillations between singlet and triplet states in a four-electron double quantum dot. Moreover, these fringes are amplified and π-phase shifted, compared with those in the spin blockade region. Unlike the signal enhancement mechanism reported before which produces similar effects, this mechanism only requires one dot coupling to the lead, which is a commonly encountered case especially in imperfect devices. Besides, the crucial tunnel rate asymmetry is provided by the dependence on spin state, not by the asymmetric couplings to the leads. We also design a scheme to control the amplification process, which enables us to extract the relevant time parameters. This mechanism will have potential applications in future investigations of spin qubits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA