Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Per Med ; 21(3): 139-144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38634413

RESUMO

We report the clinical presentation and genetic screening of a 31-year-old man with dilatation of the aortic root and ascending aorta and a positive family history for aortic dissection and sudden death. A novel heterozygous variant in a splice acceptor site (c.1600-1G>T) of TGFßR2 gene was identified by using a targeted multi-gene panel analysis. Bioinformatics tools predicted that the c.1600-1G>T variant is pathogenic by altering acceptor splice site at - 1 position affecting pre-mRNA splicing. These data confirm that the diverging splicing in the TGF-ß pathway genes may be an important process in aneurismal disease and emphasize the utility of genetic sequencing in the identification of high-risk patients for a more patient's management able to improve outcomes and minimize costs for the care of patients with heritable thoracic aortic aneurysm and dissection.


[Box: see text].


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Receptor do Fator de Crescimento Transformador beta Tipo II , Humanos , Masculino , Adulto , Dissecção Aórtica/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Aneurisma da Aorta Torácica/genética , Linhagem , Aneurisma Aórtico/genética , Splicing de RNA/genética , Sítios de Splice de RNA/genética , Predisposição Genética para Doença/genética , Mutação/genética
2.
Heliyon ; 10(1): e23688, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192829

RESUMO

Brachyolmia is a heterogeneous group of developmental disorders characterized by a short trunk, short stature, scoliosis, and generalized platyspondyly without significant deformities in the long bones. DASS (Dental Abnormalities and Short Stature), caused by alterations in the LTBP3 gene, was previously considered as a subtype of brachyolmia. The present study investigated three unrelated consanguineous families (A, B, C) with Brachyolmia and DASS from Egypt and Pakistan. In our Egyptian patients, we also observed hearing impairment. Exome sequencing was performed to determine the genetic causes of the diverse clinical conditions in the patients. Exome sequencing identified a novel homozygous splice acceptor site variant (LTBP3:c.3629-1G > T; p. ?) responsible for DASS phenotypes and a known homozygous missense variant (CABP2: c.590T > C; p.Ile197Thr) causing hearing impairment in the Egyptian patients. In addition, two previously reported homozygous frameshift variants (LTBP3:c.132delG; p.Pro45Argfs*25) and (LTBP3:c.2216delG; p.Gly739Alafs*7) were identified in Pakistani patients. This study emphasizes the vital role of LTBP3 in the axial skeleton and tooth morphogenesis and expands the mutational spectrum of LTBP3. We are reporting LTBP3 variants in seven patients of three families, majorly causing brachyolmia with dental and cardiac anomalies. Skeletal assessment documented short webbed neck, broad chest, evidences of mild long bones involvement, short distal phalanges, pes planus and osteopenic bone texture as additional associated findings expanding the clinical phenotype of DASS. The current study reveals that the hearing impairment phenotype in Egyptian patients of family A has a separate transmission mechanism independent of LTBP3.

3.
Biochem Biophys Res Commun ; 657: 50-58, 2023 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-36977368

RESUMO

Actin-related protein 5 (ARP5) inhibits the differentiation of skeletal, smooth, and cardiac muscle tissues, and ARP5 expression increases or decreases according to physiological and pathological changes in the muscle differentiation status. However, the regulatory mechanisms of ARP5 expression are largely unknown. Here, we identified a novel Arp5 mRNA isoform that contains premature termination codons in alternative exon 7b and is thus targeted by nonsense-mediated mRNA decay (NMD). In mouse skeletal muscle cells, switching from the canonical Arp5 isoform, i.e., Arp5(7a), to the NMD-targeted isoform Arp5(7b) occurred during differentiation, suggesting that Arp5 expression is regulated by alternative splicing coupled to NMD (AS-NMD). We developed an original method to accurately quantify the proportion of both Arp5 isoforms and measured higher levels of Arp5(7b) in muscle and brain tissues, where ARP5 is less expressed. The 3' splice site in Arp5 exon 7 has an unusual acceptor sequence that often leads to the skip of the authentic splice site and the use of the cryptic splice site localized 16 bases downstream. When the unusual acceptor sequence was mutated to the usual one, the Arp5(7b) isoform was barely detectable. The expression of several splicing factors involved in 3' splice site recognition was reduced after muscle differentiation. Additionally, knockdown of splicing factors increased the levels of Arp5(7b) and decreased the expression of Arp5(7a). Furthermore, strong positive correlations were found between Arp5 expression and the levels of these splicing factors in human skeletal and cardiac muscle tissues. Thus, Arp5 expression in muscle tissues is most likely regulated by the AS-NMD pathway.


Assuntos
Processamento Alternativo , Proteínas Semelhantes a Angiopoietina , Degradação do RNAm Mediada por Códon sem Sentido , Animais , Humanos , Camundongos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sítios de Splice de RNA , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo
4.
Microorganisms ; 9(7)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34361910

RESUMO

Marek's disease virus (MDV) is a highly cell-associated oncogenic alphaherpesvirus that causes lymphomas in various organs in chickens. Like other herpesviruses, MDV has a large and complex double-stranded DNA genome. A number of viral transcripts are generated by alternative splicing, a process that drastically extends the coding capacity of the MDV genome. One of the spliced genes encoded by MDV is the viral interleukin 8 (vIL-8), a CXC chemokine that facilitates the recruitment of MDV target cells and thereby plays an important role in MDV pathogenesis and tumorigenesis. We recently identified a novel vIL-8 exon (vIL-8-E3') by RNA-seq; however, it remained elusive whether the protein containing the vIL-8-E3' is expressed and what role it may play in MDV replication and/or pathogenesis. To address these questions, we first generated recombinant MDV harboring a tag that allows identification of the spliced vIL-8-E3' protein, revealing that it is indeed expressed. We subsequently generated knockout viruses and could demonstrate that the vIL-8-E3' protein is dispensable for MDV replication as well as secretion of the functional vIL-8 chemokine. Finally, infection of chickens with this vIL-8-E3' knockout virus revealed that the protein is not important for MDV replication and pathogenesis in vivo. Taken together, our study provides novel insights into the splice forms of the CXC chemokine of this highly oncogenic alphaherpesvirus.

5.
Front Genet ; 12: 701076, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349788

RESUMO

Prediction of the effect of a single-nucleotide variant (SNV) in an intronic region on aberrant pre-mRNA splicing is challenging except for an SNV affecting the canonical GU/AG splice sites (ss). To predict pathogenicity of SNVs at intronic positions -50 (Int-50) to -3 (Int-3) close to the 3' ss, we developed light gradient boosting machine (LightGBM)-based IntSplice2 models using pathogenic SNVs in the human gene mutation database (HGMD) and ClinVar and common SNVs in dbSNP with 0.01 ≤ minor allelic frequency (MAF) < 0.50. The LightGBM models were generated using features representing splicing cis-elements. The average recall/sensitivity and specificity of IntSplice2 by fivefold cross-validation (CV) of the training dataset were 0.764 and 0.884, respectively. The recall/sensitivity of IntSplice2 was lower than the average recall/sensitivity of 0.800 of IntSplice that we previously made with support vector machine (SVM) modeling for the same intronic positions. In contrast, the specificity of IntSplice2 was higher than the average specificity of 0.849 of IntSplice. For benchmarking (BM) of IntSplice2 with IntSplice, we made a test dataset that was not used to train IntSplice. After excluding the test dataset from the training dataset, we generated IntSplice2-BM and compared it with IntSplice using the test dataset. IntSplice2-BM was superior to IntSplice in all of the seven statistical measures of accuracy, precision, recall/sensitivity, specificity, F1 score, negative predictive value (NPV), and matthews correlation coefficient (MCC). We made the IntSplice2 web service at https://www.med.nagoya-u.ac.jp/neurogenetics/IntSplice2.

6.
BMC Med Genomics ; 14(1): 2, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397372

RESUMO

BACKGROUND: Hearing loss/deafness is a common otological disorder found in the Pakistani population due to the high prevalence of consanguineous unions, but the full range of genetic causes is still unknown. METHODS: A large consanguineous Pakistani kindred with hearing loss was studied. Whole-exome sequencing and Sanger sequencing were performed to search for the candidate gene underlying the disease phenotype. A minigene assay and reverse transcription polymerase chain reaction was used to assess the effect of splicing variants. RESULTS: The splicing variants of OTOF (NM_194248, c.3289-1G>T) cosegregated with the disease phenotype in this Pakistani family. The substitution of a single base pair causes the deletion of 10 bp (splicing variant 1) or 13 bp (splicing variant 2) from exon 27, which results in truncated proteins of 1141 and 1140 amino acids, respectively. CONCLUSION: Our findings reveal an OTOF splice-site variant as pathogenic for profound hearing loss in this family.


Assuntos
Perda Auditiva , Perda Auditiva/genética , Humanos , Mutação , Paquistão , Linhagem , Sítios de Splice de RNA
7.
Gynecol Endocrinol ; 37(1): 97-100, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32945709

RESUMO

Mutations of the CYP17A1 gene could cause complete or partial and combined or isolated 17α-hydroxylase/17,20-lyase deficiency (17OHD), which is characterized by hypertension, hypokalemia, and abnormal development of the genitalia. Most of the mutations are located in the coding sequence, and very few are located in the intronic region. The aim of this study is to investigate the novel intronic CYP17A1 mutation and its possible influence on phenotype. A 30-year-old Chinese female patient (46, XY) was referred to our Urology Department for severe hypertension, hypokalemia and a right adrenal mass. Physical examination revealed a hypertrophic clitoris and blind-ending vagina. Hormone analysis exhibited increased concentrations of ACTH and low levels of cortisol and sexual steroids. Mutation analysis revealed compound heterozygous CYP17A1 mutations, with c.1072C > T (p.Arg358*) in one allele and a novel intronic splicing mutation (c.970-1G > A) in another allele. Bioinformatics software predicted that the novel mutation may activate a cryptic splice site, shifting the reading frame and introducing a premature stop codon. In conclusion, we discovered a novel splicing mutation of the CYP17A1 gene in a Chinese patient with 17OHD. Our study extended the CYP17A1 mutation spectrum and provided valuable information for patient management and genetic counseling.


Assuntos
Hiperplasia Suprarrenal Congênita/genética , Sistema Enzimático do Citocromo P-450/deficiência , Sítios de Splice de RNA/genética , Esteroide 17-alfa-Hidroxilase/genética , Adulto , Códon sem Sentido , Sistema Enzimático do Citocromo P-450/genética , Feminino , Humanos , Íntrons
8.
Clin Genet ; 98(6): 555-561, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32869858

RESUMO

In recent years, several genes have been implicated in the variable disease presentation of global developmental delay (GDD) and intellectual disability (ID). The endoplasmic reticulum membrane protein complex (EMC) family is known to be involved in GDD and ID. Homozygous variants of EMC1 are associated with GDD, scoliosis, and cerebellar atrophy, indicating the relevance of this pathway for neurogenetic disorders. EMC10 is a bone marrow-derived angiogenic growth factor that plays an important role in infarct vascularization and promoting tissue repair. However, this gene has not been previously associated with human disease. Herein, we describe a Saudi family with two individuals segregating a recessive neurodevelopmental disorder. Both of the affected individuals showed mild ID, speech delay, and GDD. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify candidate genes. Further, to elucidate the functional effects of the variant, quantitative real-time PCR (RT-qPCR)-based expression analysis was performed. WES revealed a homozygous splice acceptor site variant (c.679-1G>A) in EMC10 (chromosome 19q13.33) that segregated perfectly within the family. RT-qPCR showed a substantial decrease in the relative EMC10 gene expression in the patients, indicating the pathogenicity of the identified variant. For the first time in the literature, the EMC10 gene variant was associated with mild ID, speech delay, and GDD. Thus, this gene plays a key role in developmental milestones, with the potential to cause neurodevelopmental disorders in humans.


Assuntos
Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Proteínas de Membrana/genética , Adolescente , Criança , Consanguinidade , Deficiências do Desenvolvimento/fisiopatologia , Predisposição Genética para Doença , Homozigoto , Humanos , Deficiência Intelectual/fisiopatologia , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Masculino , Mutação/genética , Linhagem , Sítios de Splice de RNA/genética , Arábia Saudita/epidemiologia , Sequenciamento do Exoma
9.
Jpn J Clin Oncol ; 49(5): 477-480, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30882153

RESUMO

The proband was a 62-year-old man with ureter cancer. He had a history of metachronous colorectal and gastric cancer. Immunohistochemical staining showed the absence of both MSH2 and MSH6 proteins in the ureter cancer and other available cancer tissue specimens. Genetic testing was conducted to identify the causative genes of hereditary gastrointestinal cancer syndromes including mismatch repair genes. We detected a germline variant, c.2635-3delC, within the splice acceptor site of exon 16, in the MSH2 gene. To investigate whether this variant affected splicing of the gene, RNA sequencing was performed using blood samples. We observed a substantial amount of the transcripts that lacked proper splicing of intron 15 in the indexed case, whereas, a very low amount of such aberrant transcripts was detected in the controls, strongly indicating an association between the variant and splicing defect. These results indicate that MSH2 c.2635-3delC affects normal splicing and might be a cause of Lynch syndrome.


Assuntos
Pareamento de Bases/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Predisposição Genética para Doença , Íntrons/genética , Proteína 2 Homóloga a MutS/genética , Splicing de RNA/genética , Deleção de Sequência , Adulto , Sequência de Bases , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Am J Med Genet A ; 176(12): 2768-2776, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30548380

RESUMO

We describe two unrelated children with de novo variants in the non-erythrocytic alpha-II-spectrin (SPTAN1) gene who have hypoplastic brain structures, intellectual disability, and both fine and gross motor impairments. Using agnostic exome sequencing, we identified a nonsense variant creating a premature stop codon in exon 21 of SPTAN1, and in a second patient we identified an intronic substitution in SPTAN1 prior to exon 50 creating a new donor acceptor site. Neither of these variants has been described previously. Although some of these patients' features are consistent with the known SPTAN1 encephalopathy phenotype, these two children do not have epilepsy, in contrast to reports about nearly every other patient with heterozygous SPTAN1 variants and in all patients with a variant near the C-terminal coding region. Moreover, both children have abnormal thyroid function, which has not been previously reported in association with SPTAN1 variant. We present a detailed discussion of the clinical manifestations of these two unique SPTAN1 variants and provide evidence that both variants result in reduced mRNA expression despite different locations within the gene and clinical phenotypes. These findings expand the motor, cognitive, and behavioral spectrum of the SPTAN1-associated phenotype and invite speculation about underlying pathophysiologies.


Assuntos
Proteínas de Transporte/genética , Epilepsia/diagnóstico , Epilepsia/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Proteínas dos Microfilamentos/genética , Fenótipo , Biomarcadores , Criança , Hibridização Genômica Comparativa , Eletroencefalografia , Fácies , Fibroblastos , Humanos , Imuno-Histoquímica , Leucócitos/metabolismo , Masculino , Imagem Multimodal , Neuroimagem , Testes Neuropsicológicos , Polimorfismo de Nucleotídeo Único , Sequenciamento do Exoma
11.
Steroids ; 137: 64-69, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29859233

RESUMO

Androgen insensitivity syndrome (AIS) is the most common cause of 46,XY disorders of sex development (46,XY DSD). This syndrome is an X-linked recessive genetic disease characterized by resistance to the actions of androgens in an individual with a male karyotype and it is caused by mutations in the androgen receptor (AR) gene. We evaluated two siblings with primary amenorrhea, normal secondary sex characteristics, absence of uterus and ovaries, intra-abdominal testis, and elevated testosterone levels. Sequence analysis of the AR gene revealed a splice acceptor site mutation in intron 2 (c.1769-1G > C). The analysis of mRNA showed that this mutation resulted in the activation of a cryptic splice acceptor site located in intron 2 and in the synthesis of an aberrant mRNA transcript with 69 nucleotides insertion between exon 2 and exon 3, leading to an insertion of 23 amino acids in the AR protein instead of generating a premature termination codon. The additional 23 amino acids insertion affects AR intracellular trafficking by impairing its translocation from the cytoplasm to the nucleus after hormone stimulation. The c.1769-1G > C mutation provides new insights into the molecular mechanism involved in splicing defects and expands the spectrum of mutations associated with the androgen insensitivity syndrome.


Assuntos
Síndrome de Resistência a Andrógenos/genética , Mutação , Sítios de Splice de RNA , Receptores Androgênicos/genética , Adulto , Animais , Células COS , Chlorocebus aethiops , Feminino , Humanos , Masculino , Linhagem , Transporte Proteico
12.
Eur J Med Genet ; 61(5): 294-299, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29292210

RESUMO

Germline mutations in the WT1 gene have been identified in some families with Wilms tumor. Recently, the CTR9 gene was found to be mutated in three families with Wilms tumor, thus representing a novel predisposition gene for this disease. We identified a family with a history of Wilms tumor characterized by three affected siblings, one of them presenting an aggressive bilateral tumor. Here we investigated the involvement of WT1 and CTR9 genes in this family with Wilms tumor. The involvement of WT1 was first evaluated by Next generation sequencing in leukocytes DNA from one affected family member. Subsequently, the CTR9 gene was analyzed by Sanger sequencing in DNA and RNA from patients' leukocytes and/or tumor. No mutations were detected in WT1. However, we identified a novel CTR9 germline variant, located in a consensus splice acceptor site, which was found to segregate with Wilms tumor in this family. We found that this variant leads to the skipping of the entire exon 9 in the mRNA, which is predicted to encode a truncated CTR9 protein, strongly suggesting that it is pathogenic. Additionally, we also detected loss of heterozygosity in the index case tumor, which is consistent with CTR9 being a tumor suppressor gene, confirming also its contribution to familial Wilms tumor etiology. The identification of a novel CTR9 germline mutation will improve the present knowledge on the molecular basis of familial Wilms tumor. Importantly, it will help in the genetic counselling and may also lead to earlier diagnosis in other family members and future generations.


Assuntos
Mutação em Linhagem Germinativa , Proteínas Nucleares/genética , Fosfoproteínas/genética , Tumor de Wilms/genética , Pré-Escolar , Feminino , Humanos , Lactente , Perda de Heterozigosidade , Masculino , Linhagem , Sítios de Splice de RNA , Fatores de Transcrição , Tumor de Wilms/patologia
13.
Oncotarget ; 8(13): 21327-21335, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28423518

RESUMO

Familial adenomatous polyposis (FAP) is an autosomal dominant precancerous condition, clinically characterized by the presence of multiple colorectal adenomas or polyps. Patients with FAP has a high risk of developing colorectal cancer (CRC) from these colorectal adenomatous polyps by the mean age of diagnosis at 40 years. Germline mutations of the APC gene cause familial adenomatous polyposis (FAP). Colectomy has recommended for the FAP patients with significant polyposis. Here, we present a clinical molecular study of a four generation Chinese family with FAP. Clinical diagnosis of FAP has been done according to the phenotype, family history and medical records. Patient's blood samples were collected and genomic DNA was extracted. In order to identify the pathogenic mutation underlying the disease phenotype targeted next-generation sequencing and confirmatory sanger sequencing has undertaken. Targeted next generation sequencing identified a novel heterozygous splice-acceptor site mutation [c.1744-1G>A] in intron 14 of APC gene, which is co-segregated with the FAP phenotypes in the proband and amongst all the affected family members. This mutation is not present in unaffected family members and in normal healthy controls of same ethnic origin. According to the LOVD database for Chinese colorectal cancer patients, in Chinese population, 60% of the previously reported APC gene mutations causes FAP, are missense mutations. This novel splice-acceptor site mutation causing FAP in this Chinese family expands the germline mutation spectrum of the APC gene in the Chinese population.


Assuntos
Polipose Adenomatosa do Colo/genética , Genes APC , Proteína da Polipose Adenomatosa do Colo/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Povo Asiático/genética , Pré-Escolar , Análise Mutacional de DNA , Feminino , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Íntrons , Masculino , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
14.
Mol Genet Genomic Med ; 5(2): 177-184, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28361105

RESUMO

BACKGROUND: ß-ketothiolase (T2, gene symbol ACAT1) deficiency is an autosomal recessive disorder, affecting isoleucine and ketone body metabolism. We encountered a patient (GK03) with T2 deficiency whose T2 mRNA level was <10% of the control, but in whom a previous routine cDNA analysis had failed to find any mutations. Genomic PCR-direct sequencing showed homozygosity for c.941-9T>A in the polypyrimidine stretch at the splice acceptor site of intron 9 of ACAT1. Initially, we regarded this variant as not being disease-causing by a method of predicting the effect of splicing using in silico tools. However, based on other findings of exon 10 splicing, we eventually hypothesized that this mutation causes exon 10 skipping. METHODS: cDNA analysis was performed using GK03's fibroblasts treated with/without cycloheximide (CHX), since exon 10 skipping caused a frameshift and nonsense-mediated mRNA decay (NMD). Minigene splicing experiment was done to confirm aberrant splicing. RESULTS: cDNA analysis using fibroblasts cultured with cycloheximide indeed showed the occurrence of exon 10 skipping. A minigene splicing experiment clearly showed that the c.941-9T>A mutant resulted in transcripts with exon 10 skipping. There are few reports describing that single-nucleotide substitutions in polypyrimidine stretches of splice acceptor sites cause aberrant splicing. CONCLUSION: We showed that c.941-9T>A induces aberrant splicing in the ACAT1 gene. Our ability to predict the effects of mutations on splicing using in silico tools is still limited. cDNA analysis and minigene splicing experiments remain useful alternatives to reveal splice defects.

15.
Cell J ; 18(3): 397-404, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27602322

RESUMO

OBJECTIVE: Methylmalonic acidura (MMA) is a rare autosomal recessive inborn error of metabolism. In this study we present a novel nucleotide change in the mutase (MUT) gene of two unrelated Iranian pedigrees and introduce the methods used for its functional analysis. MATERIALS AND METHODS: Two probands with definite diagnosis of MMA and a common novel variant in the MUT were included in a descriptive study. Bioinformatic prediction of the splicing variant was done with different prediction servers. Reverse transcriptionpolymerase chain reaction (RT-PCR) was done for splicing analysis and the products were analyzed by sequencing. RESULTS: The included index patients showed elevated levels of propionylcarnitine (C3). Urine organic acid analysis confirmed the diagnosis of MMA, and screening for mutations in the MUT revealed a novel C to G variation at the 3´ splice acceptor site in intron 12. In silico analysis suggested the change as a mutation in a conserved sequence. The splicing analysis showed that the C to G nucleotide change at position -3 in the acceptor splice site can lead to retention of the intron 12 sequence. CONCLUSION: This is the first report of a mutation at the position -3 in the MUT intron 12 (c.2125-3C>G). The results suggest that the identified variation can be associated with the typical clinical manifestations of MMA.

16.
Hemoglobin ; 39(4): 290-1, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26182339

RESUMO

We present the first description of a Chinese patient with a rare ß-thalassemia (ß-thal) mutation IVS-I-130 (HBB: c.93-1G > C). This mutation is a splice donor site mutation, and is associated with a ß(0)-thal phenotype.


Assuntos
Mutação , Sítios de Splice de RNA , Globinas beta/genética , Talassemia beta/genética , Povo Asiático/genética , China , Análise Mutacional de DNA , Genótipo , Humanos , Íntrons , Masculino , Fenótipo , Adulto Jovem , Talassemia beta/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA