Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nucleic Acid Ther ; 34(3): 125-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800942

RESUMO

The ABCA4 gene, involved in Stargardt disease, has a high percentage of splice-altering pathogenic variants, some of which cause complex RNA defects. Although antisense oligonucleotides (AONs) have shown promising results in splicing modulation, they have not yet been used to target complex splicing defects. Here, we performed AON-based rescue studies on ABCA4 complex splicing defects. Intron 13 variants c.1938-724A>G, c.1938-621G>A, c.1938-619A>G, and c.1938-514A>G all lead to the inclusion of different pseudo-exons (PEs) with and without an upstream PE (PE1). Intron 44 variant c.6148-84A>T results in multiple PE inclusions and/or exon skipping events. Five novel AONs were designed to target these defects. AON efficacy was assessed by in vitro splice assays using midigenes containing the variants of interest. All screened complex splicing defects were effectively rescued by the AONs. Although varying levels of efficacy were observed between AONs targeting the same PEs, for all variants at least one AON restored splicing to levels comparable or better than wildtype. In conclusion, AONs are a promising approach to target complex splicing defects in ABCA4.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Éxons , Íntrons , Oligonucleotídeos Antissenso , Splicing de RNA , Doença de Stargardt , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Oligonucleotídeos Antissenso/farmacologia , Transportadores de Cassetes de Ligação de ATP/genética , Humanos , Íntrons/genética , Splicing de RNA/genética , Éxons/genética , Doença de Stargardt/genética , Doença de Stargardt/patologia , Mutação
2.
Cells ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38607040

RESUMO

Precision medicine is rapidly gaining recognition in the field of (ultra)rare conditions, where only a few individuals in the world are affected. Clinical trial design for a small number of patients is extremely challenging, and for this reason, the development of N-of-1 strategies is explored to accelerate customized therapy design for rare cases. A strong candidate for this approach is Stargardt disease (STGD1), an autosomal recessive macular degeneration characterized by high genetic and phenotypic heterogeneity. STGD1 is caused by pathogenic variants in ABCA4, and amongst them, several deep-intronic variants alter the pre-mRNA splicing process, generally resulting in the insertion of pseudoexons (PEs) into the final transcript. In this study, we describe a 10-year-old girl harboring the unique deep-intronic ABCA4 variant c.6817-713A>G. Clinically, she presents with typical early-onset STGD1 with a high disease symmetry between her two eyes. Molecularly, we designed antisense oligonucleotides (AONs) to block the produced PE insertion. Splicing rescue was assessed in three different in vitro models: HEK293T cells, fibroblasts, and photoreceptor precursor cells, the last two being derived from the patient. Overall, our research is intended to serve as the basis for a personalized N-of-1 AON-based treatment to stop early vision loss in this patient.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Oligonucleotídeos Antissenso , Humanos , Feminino , Criança , Doença de Stargardt/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Células HEK293 , Íntrons , Transportadores de Cassetes de Ligação de ATP/genética
3.
Mol Ther ; 32(3): 837-851, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38243599

RESUMO

The high allelic heterogeneity in Stargardt disease (STGD1) complicates the design of intervention strategies. A significant proportion of pathogenic intronic ABCA4 variants alters the pre-mRNA splicing process. Antisense oligonucleotides (AONs) are an attractive yet mutation-specific therapeutic strategy to restore these splicing defects. In this study, we experimentally assessed the potential of a splicing modulation therapy to target multiple intronic ABCA4 variants. AONs were inserted into U7snRNA gene cassettes and tested in midigene-based splice assays. Five potent antisense sequences were selected to generate a multiple U7snRNA cassette construct, and this combination vector showed substantial rescue of all of the splicing defects. Therefore, the combination cassette was used for viral synthesis and assessment in patient-derived photoreceptor precursor cells (PPCs). Simultaneous delivery of several modified U7snRNAs through a single AAV, however, did not show substantial splicing correction, probably due to suboptimal transduction efficiency in PPCs and/or a heterogeneous viral population containing incomplete AAV genomes. Overall, these data demonstrate the potential of the U7snRNA system to rescue multiple splicing defects, but also suggest that AAV-associated challenges are still a limiting step, underscoring the need for further optimization before implementing this strategy as a potential treatment for STGD1.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Splicing de RNA , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Doença de Stargardt/genética , Mutação , Células Fotorreceptoras
4.
Int J Mol Sci ; 25(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255836

RESUMO

Antisense oligonucleotides (ASOs) represent an emerging therapeutic platform for targeting genetic diseases by influencing various aspects of (pre-)mRNA biology, such as splicing, stability, and translation. In this study, we investigated the potential of modulating the splicing pattern in recessive dystrophic epidermolysis bullosa (RDEB) patient cells carrying a frequent genomic variant (c.425A > G) that disrupts splicing in the COL7A1 gene by using short 2'-O-(2-Methoxyethyl) oligoribo-nucleotides (2'-MOE ASOs). COL7A1-encoded type VII collagen (C7) forms the anchoring fibrils within the skin that are essential for the attachment of the epidermis to the underlying dermis. As such, gene variants of COL7A1 leading to functionally impaired or absent C7 manifest in the form of extensive blistering and wounding. The severity of the disease pattern warrants the development of novel therapies for patients. The c.425A > G variant at the COL7A1 exon 3/intron 3 junction lowers the efficiency of splicing at this junction, resulting in non-functional C7 transcripts. However, we found that correct splicing still occurs, albeit at a very low level, highlighting an opportunity for intervention by modulating the splicing reaction. We therefore screened 2'-MOE ASOs that bind along the COL7A1 target region ranging from exon 3 to the intron 3/exon 4 junction for their ability to modulate splicing. We identified ASOs capable of increasing the relative levels of correctly spliced COL7A1 transcripts by RT-PCR, sqRT-PCR, and ddPCR. Furthermore, RDEB-derived skin equivalents treated with one of the most promising ASOs exhibited an increase in full-length C7 expression and its accurate deposition along the basement membrane zone (BMZ).


Assuntos
Epidermólise Bolhosa Distrófica , Humanos , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/terapia , Splicing de RNA , Pele , Íntrons , Precursores de RNA , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Colágeno Tipo VII/genética
5.
J Exp Clin Cancer Res ; 42(1): 282, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37880792

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal cancers worldwide, mainly due to its late diagnosis and lack of effective therapies, translating into a low 5-year 12% survival rate, despite extensive clinical efforts to improve outcomes. International cooperative studies have provided informative multiomic landscapes of PDAC, but translation of these discoveries into clinical advances are lagging. Likewise, early diagnosis biomarkers and new therapeutic tools are sorely needed to tackle this cancer. The study of poorly explored molecular processes, such as splicing, can provide new tools in this regard. Alternative splicing of pre-RNA allows the generation of multiple RNA variants from a single gene and thereby contributes to fundamental biological processes by finely tuning gene expression. However, alterations in alternative splicing are linked to many diseases, and particularly to cancer, where it can contribute to tumor initiation, progression, metastasis and drug resistance. Splicing defects are increasingly being associated with PDAC, including both mutations or dysregulation of components of the splicing machinery and associated factors, and altered expression of specific relevant gene variants. Such disruptions can be a key element enhancing pancreatic tumor progression or metastasis, while they can also provide suitable tools to identify potential candidate biomarkers and discover new actionable targets. In this review, we aimed to summarize the current information about dysregulation of splicing-related elements and aberrant splicing isoforms in PDAC, and to describe their relationship with the development, progression and/or aggressiveness of this dismal cancer, as well as their potential as therapeutic tools and targets.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Biomarcadores , RNA , Neoplasias Pancreáticas
6.
J Neuromuscul Dis ; 10(4): 473-482, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37182892

RESUMO

Three decades since the Human Genome Project began, scientists have now identified more then 25,000 protein coding genes in the human genome. The vast majority of the protein coding genes (> 90%) are multi-exonic, with the coding DNA being interrupted by intronic sequences, which are removed from the pre-mRNA transcripts before being translated into proteins, a process called splicing maturation. Variations in this process, i.e. by exon skipping, intron retention, alternative 5' splice site (5'ss), 3' splice site (3'ss), or polyadenylation usage, lead to remarkable transcriptome and proteome diversity in human tissues. Given its critical biological importance, alternative splicing is tightly regulated in a tissue- and developmental stage-specific manner. The central nervous system and skeletal muscle are amongst the tissues with the highest number of differentially expressed alternative exons, revealing a remarkable degree of transcriptome complexity. It is therefore not surprising that splicing mis-regulation is causally associated with a myriad of neuromuscular diseases, including but not limited to amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), Duchenne muscular dystrophy (DMD), and myotonic dystrophy type 1 and 2 (DM1, DM2). A gene's transcript diversity has since become an integral and an important consideration for drug design, development and therapy. In this review, we will discuss transcript diversity in the context of neuromuscular diseases and current approaches to address splicing mis-regulation.


Assuntos
Processamento Alternativo , Sítios de Splice de RNA , Humanos , Splicing de RNA/genética , Éxons , Íntrons
7.
Cell Rep Med ; 4(3): 100962, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36889320

RESUMO

Pediatric acute myeloid leukemia (pAML) is typified by high relapse rates and a relative paucity of somatic DNA mutations. Although seminal studies show that splicing factor mutations and mis-splicing fuel therapy-resistant leukemia stem cell (LSC) generation in adults, splicing deregulation has not been extensively studied in pAML. Herein, we describe single-cell proteogenomics analyses, transcriptome-wide analyses of FACS-purified hematopoietic stem and progenitor cells followed by differential splicing analyses, dual-fluorescence lentiviral splicing reporter assays, and the potential of a selective splicing modulator, Rebecsinib, in pAML. Using these methods, we discover transcriptomic splicing deregulation typified by differential exon usage. In addition, we discover downregulation of splicing regulator RBFOX2 and CD47 splice isoform upregulation. Importantly, splicing deregulation in pAML induces a therapeutic vulnerability to Rebecsinib in survival, self-renewal, and lentiviral splicing reporter assays. Taken together, the detection and targeting of splicing deregulation represent a potentially clinically tractable strategy for pAML therapy.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco , Adulto , Criança , Humanos , Splicing de RNA/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Isoformas de Proteínas/genética , Mutação , Fatores de Processamento de RNA/genética , Proteínas Repressoras/genética
8.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768733

RESUMO

Several molecular subtypes of cancer are highly dependent on splicing for cell survival. There is a general interest in the therapeutic targeting of splicing by small molecules. E7107, a first-in-class spliceosome inhibitor, showed strong growth inhibitory activities against a large variety of human cancer xenografts. Chronic lymphocytic leukaemia (CLL) is a clinically heterogeneous hematologic malignancy, with approximately 90% of cases being TP53 wild-type at diagnosis. An increasing number of studies are evaluating alternative targeted agents in CLL, including MDM2-p53 binding antagonists. In this study, we report the effect of splicing modulation on key proteins in the p53 signalling pathway, an important cell death pathway in B cells. Splicing modulation by E7107 treatment reduced full-length MDM2 production due to exon skipping, generating a consequent reciprocal p53 increase in TP53WT cells. It was especially noteworthy that a novel p21WAF1 isoform with compromised cyclin-dependent kinase inhibitory activity was produced due to intron retention. E7107 synergized with the MDM2 inhibitor RG7388, via dual MDM2 inhibition; by E7107 at the transcript level and by RG7388 at the protein level, producing greater p53 stabilisation and apoptosis. This study provides evidence for a synergistic MDM2 and spliceosome inhibitor combination as a novel approach to treat CLL and potentially other haematological malignancies.


Assuntos
Antineoplásicos , Linfócitos B , Leucemia Linfocítica Crônica de Células B , Humanos , Antineoplásicos/farmacologia , Apoptose/genética , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Pirrolidinas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Linfócitos B/metabolismo
9.
Cells ; 11(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36552712

RESUMO

Stargardt disease is an inherited retinal disease caused by biallelic mutations in the ABCA4 gene, many of which affect ABCA4 splicing. In this study, nine antisense oligonucleotides (AONs) were designed to correct pseudoexon (PE) inclusion caused by a recurrent deep-intronic variant in ABCA4 (c.769-784C>T). First, the ability of AONs to skip the PE from the final ABCA4 mRNA transcript was assessed in two cellular models carrying the c.769-784C>T variant: a midigene assay using HEK293T cells and patient-derived fibroblasts. Based on the splicing-correcting ability of each individual AON, the three most efficacious AONs targeting independent regions of the PE were selected for a final assessment in photoreceptor precursor cells (PPCs). The final analysis in the PPC model confirmed high efficacy of AON2, -5, and -7 in promoting PE exclusion. Among the three AONs, AON2 is chosen as the lead candidate for further optimization, hereby showcasing the high potential of AONs to correct aberrant splicing events driven by deep-intronic variants.

10.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893733

RESUMO

Nucleic acids play a central role in human biology, making them suitable and attractive tools for therapeutic applications. While conventional drugs generally target proteins and induce transient therapeutic effects, nucleic acid medicines can achieve long-lasting or curative effects by targeting the genetic bases of diseases. However, native oligonucleotides are characterized by low in vivo stability due to nuclease sensitivity and unfavourable physicochemical properties due to their polyanionic nature, which are obstacles to their therapeutic use. A myriad of synthetic oligonucleotides have been prepared in the last few decades and it has been shown that proper chemical modifications to either the nucleobase, the ribofuranose unit or the phosphate backbone can protect the nucleic acids from degradation, enable efficient cellular uptake and target localization ensuring the efficiency of the oligonucleotide-based therapy. In this review, we present a summary of structure and properties of artificial nucleic acids containing nucleobase, sugar or backbone modifications, and provide an overview of the structure and mechanism of action of approved oligonucleotide drugs including gene silencing agents, aptamers and mRNA vaccines.

11.
Chembiochem ; 23(9): e202200012, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35235240

RESUMO

Small-molecule splicing modulators exemplified by an FDA-approved drug, risdiplam, are a new pharmacological modality for regulating the expression and stability of splice isoforms. We report a CRISPR-mediated enzyme fragment complementation (EFC) assay to quantify the splice isoform stability. The EFC assay harnessed a 42 amino acid split of a ß-galactosidase (designate α-tag), which could be fused at the termini of the target genes using CRISPR/cas9. The α-tagged splice isoform would be quantified by measuring the enzymatic activity upon complementation with the rest of ß-galactosidase. This EFC assay retained all the sequences of introns and exons of the target gene in the native genomic environment that recapitulates the cell biology of the diseases of interest. For a proof-of-concept, we developed a CRISPR-mediated EFC assay targeting the exon 7 of the survival of motor neuron 2 (SMN2) gene. The EFC assay is compatible with 384-well plates and robustly quantified the splicing modulation activity of small molecules. In this study, we also discovered that a coumarin derivative, compound 4, potently modulated SMN2 exon 7 splicing at as low as 1.1 nM.


Assuntos
Ensaios Enzimáticos , Éxons/genética , Mutação , Isoformas de Proteínas , beta-Galactosidase
12.
Methods Mol Biol ; 2434: 89-102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213011

RESUMO

Mutations affecting constitutive splice donor sites (5'ss) are among the most frequent genetic defects that disrupt the normal splicing process. Pre-mRNA splicing requires the correct identification of a number of cis-acting elements in an ordered fashion. By disrupting the complementarity of the 5'ss with the endogenous small nuclear RNA U1 (U1 snRNA), the key component of the spliceosomal U1 ribonucleoprotein, 5'ss mutations may result in exon skipping, intron retention or activation of cryptic splice sites. Engineered modification of the U1 snRNA seemed to be a logical method to overcome the effect of those mutations. In fact, over the last years, a number of in vitro studies on the use of those modified U1 snRNAs to correct a variety of splicing defects have demonstrated the feasibility of this approach. Furthermore, recent reports on its applicability in vivo are adding up to the principle that engineered modification of U1 snRNAs represents a valuable approach and prompting further studies to demonstrate the clinical translatability of this strategy.Here, we outline the design and generation of U1 snRNAs with different degrees of complementarity to mutated 5'ss. Using the HGSNAT gene as an example, we describe the methods for a proper evaluation of their efficacy in vitro, taking advantage of our experience to share a number of tips on how to design U1 snRNA molecules for splicing rescue.


Assuntos
Splicing de RNA , RNA Nuclear Pequeno , Processamento Alternativo , Éxons , Mutação , Sítios de Splice de RNA/genética , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo
13.
Methods Mol Biol ; 2434: 145-165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213015

RESUMO

A significant proportion of mutations underlying genetic disorders affect pre-mRNA splicing, generally causing partial or total skipping of exons, and/or inclusion of pseudoexons. These changes often lead to the formation of aberrant transcripts that can induce nonsense-mediated decay, and a subsequent lack of functional protein. For some genetic disorders, including inherited retinal diseases (IRDs), reproducing splicing dynamics in vitro is a challenge due to the specific environment provided by, e.g. the retinal tissue, cells of which cannot be easily obtained and/or cultured. Here, we describe how to engineer splicing vectors, validate the reliability and reproducibility of alternative cellular systems, assess pre-mRNA splicing defects involved in IRD, and finally correct those by using antisense oligonucleotide-based strategies.


Assuntos
Oligonucleotídeos Antissenso , Splicing de RNA , Processamento Alternativo , Éxons/genética , Mutação , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Reprodutibilidade dos Testes
14.
Epigenetics ; 17(4): 381-404, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34057028

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers because of diagnosis at late stage and inherent/acquired chemoresistance. Recent advances in genomic profiling and biology of this disease have not yet been translated to a relevant improvement in terms of disease management and patient's survival. However, new possibilities for treatment may emerge from studies on key epigenetic factors. Deregulation of microRNA (miRNA) dependent gene expression and mRNA splicing are epigenetic processes that modulate the protein repertoire at the transcriptional level. These processes affect all aspects of PDAC pathogenesis and have great potential to unravel new therapeutic targets and/or biomarkers. Remarkably, several studies showed that they actually interact with each other in influencing PDAC progression. Some splicing factors directly interact with specific miRNAs and either facilitate or inhibit their expression, such as Rbfox2, which cleaves the well-known oncogenic miRNA miR-21. Conversely, miR-15a-5p and miR-25-3p significantly downregulate the splicing factor hnRNPA1 which acts also as a tumour suppressor gene and is involved in processing of miR-18a, which in turn, is a negative regulator of KRAS expression. Therefore, this review describes the interaction between splicing and miRNA, as well as bioinformatic tools to explore the effect of splicing modulation towards miRNA profiles, in order to exploit this interplay for the development of innovative treatments. Targeting aberrant splicing and deregulated miRNA, alone or in combination, may hopefully provide novel therapeutic approaches to fight the complex biology and the common treatment recalcitrance of PDAC.


Assuntos
Carcinoma Ductal Pancreático , MicroRNAs , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/uso terapêutico , Proteínas Repressoras/genética
15.
Trends Mol Med ; 27(10): 990-999, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34257007

RESUMO

Myelodysplastic syndrome (MDS) is a group of hematopoietic disorders with limited treatment options. Anemia is a common symptom in MDS, and although erythropoiesis-stimulating agents such as erythropoietin, lenalidomide, and luspatercept are available to treat anemia, many MDS patients do not respond to these first-line therapies. Therefore, alternative drug development strategies are needed to improve therapeutic efficacy. Splicing modulators to correct splicing-related defects have shown promising results in clinical trials. Targeting differentiation of early erythroid progenitors to increase the erythroid output in MDS is another novel approach, which has shown encouraging results at the pre-clinical stage. Together, these therapeutic strategies provide new avenues to target MDS symptoms untreatable previously.


Assuntos
Anemia , Síndromes Mielodisplásicas , Anemia/tratamento farmacológico , Anemia/etiologia , Humanos , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/tratamento farmacológico
16.
J Cyst Fibros ; 20(5): 865-875, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34226157

RESUMO

BACKGROUND: Antisense oligonucleotide (ASO)-based drugs for splicing modulation were recently approved for various genetic diseases with unmet need. Here we aimed to develop an ASO-based splicing modulation therapy for Cystic Fibrosis (CF) patients carrying the 3849+10 kb C-to-T splicing mutation in the CFTR gene. METHODS: We have screened, in FRT cells expressing the 3849+10 kb C-to-T splicing mutation, ~30 2'-O-Methyl-modified phosphorothioate ASOs, targeted to prevent the recognition and inclusion of a cryptic exon generated due to the mutation. The effect of highly potent ASO candidates on the splicing pattern, protein maturation and CFTR function was further analyzed in well differentiated primary human nasal and bronchial epithelial cells, derived from patients carrying at least one 3849+10 kb C-to-T allele. RESULTS: A highly potent lead ASO, efficiently delivered by free uptake, was able to significantly increase the level of correctly spliced mRNA and completely restore the CFTR function to wild type levels in cells from a homozygote patient. This ASO led to CFTR function with an average of 43% of wild type levels in cells from various heterozygote patients. Optimized efficiency of the lead ASO was further obtained with 2'-Methoxy Ethyl modification (2'MOE). CONCLUSION: The highly efficient splicing modulation and functional correction, achieved by free uptake of the selected lead ASO in various patients, demonstrate the ASO therapeutic potential benefit for CF patients carrying splicing mutations and is aimed to serve as the basis for our current clinical development.


Assuntos
Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Desenvolvimento de Medicamentos , Oligonucleotídeos Antissenso , Células Cultivadas , Humanos , Mutação , Splicing de RNA
17.
Hum Gene Ther ; 32(21-22): 1317-1329, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34139889

RESUMO

The uridine-rich 7 (U7) small nuclear RNA (snRNA) is a component of a small nuclear ribonucleoprotein (snRNP) complex. U7 snRNA naturally contains an antisense sequence that identifies histone premessenger RNAs (pre-mRNAs) and is involved in their 3' end processing. By altering this antisense sequence, researchers have turned U7 snRNA into a versatile tool for targeting pre-mRNAs and modifying splicing. Encapsulating a modified U7 snRNA into a viral vector such as adeno-associated virus (also referred as vectorized exon skipping/inclusion, or VES/VEI) enables the delivery of this highly efficacious splicing modulator into a range of cell lines, primary cells, and tissues. In addition, and in contrast to antisense oligonucleotides, viral delivery of U7 snRNA enables long-term expression of antisense sequences in the nucleus as part of a stable snRNP complex. As a result, VES/VEI has emerged as a promising therapeutic platform for treating a large variety of human diseases caused by errors in pre-mRNA splicing or its regulation. Here we provide an overview of U7 snRNA's natural function and its applications in gene therapy.


Assuntos
RNA Nuclear Pequeno , RNA , Terapia Genética , Vetores Genéticos , Humanos , Precursores de RNA , RNA Nuclear Pequeno/genética
18.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924840

RESUMO

The discovery of novel intronic variants in the ABCA4 locus has contributed significantly to solving the missing heritability in Stargardt disease (STGD1). The increasing number of variants affecting pre-mRNA splicing makes ABCA4 a suitable candidate for antisense oligonucleotide (AON)-based splicing modulation therapies. In this study, AON-based splicing modulation was assessed for 15 recently described intronic variants (three near-exon and 12 deep-intronic variants). In total, 26 AONs were designed and tested in vitro using a midigene-based splice system. Overall, partial or complete splicing correction was observed for two variants causing exon elongation and all variants causing pseudoexon inclusion. Together, our results confirm the high potential of AONs for the development of future RNA therapies to correct splicing defects causing STGD1.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Oligonucleotídeos Antissenso/uso terapêutico , Splicing de RNA/efeitos dos fármacos , Doença de Stargardt/genética , Humanos , Íntrons , Oligonucleotídeos Antissenso/farmacologia , Doença de Stargardt/tratamento farmacológico
19.
J Inherit Metab Dis ; 44(1): 72-87, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32391605

RESUMO

Antisense oligonucleotide (AON) therapies involve short strands of modified nucleotides that target RNA in a sequence-specific manner, inducing targeted protein knockdown or restoration. Currently, 10 AON therapies have been approved in the United States and Europe. Nucleotides are chemically modified to protect AONs from degradation, enhance bioavailability and increase RNA affinity. Whereas single stranded AONs can efficiently be delivered systemically, delivery of double stranded AONs requires capsulation in lipid nanoparticles or binding to a conjugate as the uptake enhancing backbone is hidden in this conformation. With improved chemistry, delivery vehicles and conjugates, doses can be lowered, thereby reducing the risk and occurrence of side effects. AONs can be used to knockdown or restore levels of protein. Knockdown can be achieved by single stranded or double stranded AONs binding the RNA transcript and activating RNaseH-mediated and RISC-mediated degradation respectively. Transcript binding by AONs can also prevent translation, hence reducing protein levels. For protein restoration, single stranded AONs are used to modulate pre-mRNA splicing and either include or skip an exon to restore protein production. Intervening at a genetic level, AONs provide therapeutic options for inherited metabolic diseases as well. This review provides an overview of the different AON approaches, with a focus on AONs developed for inborn errors of metabolism.


Assuntos
Éxons , Oligonucleotídeos Antissenso/farmacologia , Splicing de RNA/genética , RNA Mensageiro/química , Animais , Técnicas de Silenciamento de Genes , Humanos , Conformação de Ácido Nucleico
20.
Drug Resist Updat ; 53: 100728, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33070093

RESUMO

Alternative splicing is a tightly regulated process whereby non-coding sequences of pre-mRNA are removed and protein-coding segments are assembled in diverse combinations, ultimately giving rise to proteins with distinct or even opposing functions. In the past decade, whole genome/transcriptome sequencing studies revealed the high complexity of splicing regulation, which occurs co-transcriptionally and is influenced by chromatin status and mRNA modifications. Consequently, splicing profiles of both healthy and malignant cells display high diversity and alternative splicing was shown to be widely deregulated in multiple cancer types. In particular, mutations in pre-mRNA regulatory sequences, splicing regulators and chromatin modifiers, as well as differential expression of splicing factors are important contributors to cancer pathogenesis. It has become clear that these aberrations contribute to many facets of cancer, including oncogenic transformation, cancer progression, response to anticancer drug treatment as well as resistance to therapy. In this respect, alternative splicing was shown to perturb the expression a broad spectrum of relevant genes involved in drug uptake/metabolism (i.e. SLC29A1, dCK, FPGS, and TP), activation of nuclear receptor pathways (i.e. GR, AR), regulation of apoptosis (i.e. MCL1, BCL-X, and FAS) and modulation of response to immunotherapy (CD19). Furthermore, aberrant splicing constitutes an important source of novel cancer biomarkers and the spliceosome machinery represents an attractive target for a novel and rapidly expanding class of therapeutic agents. Small molecule inhibitors targeting SF3B1 or splice factor kinases were highly cytotoxic against a wide range of cancer models, including drug-resistant cells. Importantly, these effects are enhanced in specific cancer subsets, such as splicing factor-mutated and c-MYC-driven tumors. Furthermore, pre-clinical studies report synergistic effects of spliceosome modulators in combination with conventional antitumor agents. These strategies based on the use of low dose splicing modulators could shift the therapeutic window towards decreased toxicity in healthy tissues. Here we provide an extensive overview of the latest findings in the field of regulation of splicing in cancer, including molecular mechanisms by which cancer cells harness alternative splicing to drive oncogenesis and evade anticancer drug treatment as well as splicing-based vulnerabilities that can provide novel treatment opportunities. Furthermore, we discuss current challenges arising from genome-wide detection and prediction methods of aberrant splicing, as well as unravelling functional relevance of the plethora of cancer-related splicing alterations.


Assuntos
Processamento Alternativo/genética , Antineoplásicos/farmacologia , Carcinogênese/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Processamento Alternativo/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Neoplasias/genética , Fatores de Processamento de RNA/antagonistas & inibidores , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA