Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Res Sq ; 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37333330

RESUMO

The Ebola virus (EBOV) transcriptional regulation involves host protein phosphatases PP1 and PP2A, which dephosphorylate the transcriptional cofactor of EBOV polymerase VP30. The 1E7-03 compound, which targets PP1, induces VP30 phosphorylation and inhibits EBOV infection. This study aimed to investigate the role of PP1 in EBOV replication. When EBOV-infected cells were continuously treated with 1E7-03, the NP E619K mutation was selected. This mutation moderately reduced EBOV minigenome transcription, which was restored by the treatment with 1E7-03. Formation of EBOV capsids, when NP was co-expressed with VP24 and VP35, was impaired with NPE 619K. Treatment with 1E7-03 restored capsid formation by NP E619K mutation, but inhibited capsids formed by WT NP. The dimerization of NP E619K, tested in a split NanoBiT assay, was significantly decreased (~ 15-fold) compared to WT NP. NP E619K bound more efficiently to PP1 (~ 3-fold) but not B56 subunit of PP2A or VP30. Cross-linking and co-immunoprecipitation experiments showed fewer monomers and dimers for NP E619K which were increased with 1E7-03 treatment. NP E619K showed increased co-localization with PP1α compared to WT NP. Mutations of potential PP1 binding sites and NP deletions disrupted its interaction with PP1. Collectively, our findings suggest that PP1 binding to the NP regulates NP dimerization and capsid formation, and that NP E619K mutation, which has the enhanced PP1 binding, disrupts these processes. Our results point to a new role for PP1 in EBOV replication in which NP binding to PP1 may facilitate viral transcription by delaying capsid formation and EBOV replication.

2.
Front Microbiol ; 10: 2145, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572348

RESUMO

Ebola virus (EBOV) is a non-segmented negative-sense RNA virus that causes a severe human disease. The ongoing EBOV outbreak in the Eastern part of Democratic Republic of the Congo has resulted to date in over 2500 confirmed cases including over 1500 deaths. Difficulties with vaccine administration indicate the necessity for development of new general drugs and therapeutic strategies against EBOV. Host Ser/Thr protein phosphatases, particularly PP1 and PP2A, facilitate EBOV transcription by dephosphorylating the EBOV VP30 protein and switching activity of the polymerase complex toward replication. Previously, we developed small molecule 1E7-03 that targeted host protein phosphatase-1 (PP1) and induces phosphorylation of EBOV VP30 protein thus shifting transcription-replication balance and inhibiting EBOV replication. Here, we developed a new EBOV inhibitor, 1E7-07, that potently inhibits EBOV replication and displays significantly improved metabolic stability when compared to previously described 1E7-03. Proteome analysis of VP30 shows that 1E7-07 increases its phosphorylation on Thr-119 and Ser-124 over 3-fold with p < 0.001, which likely contributes to EBOV inhibition. We analyzed 1E7-07 binding to PP1 using a mass spectrometry-based protein painting approach. Combined with computational docking, protein painting shows that 1E7-07 binds to several PP1 sites including the RVxF site, C-terminal groove and NIPP1-helix binding pocket. Further analysis using surface plasmon resonance and a split NanoBiT system demonstrates that 1E7-07 binds primarily to the RVxF site. Together, detailed analysis of 1E7-07 binding to PP1 and identification of the RVxF site as the main binding site opens up an opportunity for future development of PP1-targeting EBOV inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA