Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Materials (Basel) ; 17(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38998246

RESUMO

Steel slag is an industrial solid waste, which can provide a new calcium source for microbial mineralization as it contains abundant calcium elements. This study treated cemented backfill material with microorganisms and steel slag to enhance its performance. The influence of microbial treatment on the strength, microstructure, and pore characteristics of the backfill was assessed using a strength test, nuclear magnetic resonance, scanning electron microscopy, and X-ray diffraction. The results indicate that (1) the microbial mineralization and the hydration reaction take place at the same time; (2) when the proportion of bacterial solution exceeded 50%, microorganisms excessively consumed Ca2+, which hindered the following hydration reaction; (3) the additional amount of bacterial solution added into the steel-slag-based cemented backfill material should be less than 50%, which increases the strength by up to 22.10%; (4) the excessive bacterial solution sharply reduces the strength of the backfill even by 21.41%; and (5) the addition of bacterial solution affects the pore characteristics. A 50% bacterial solution can make backfill reach its lowest porosity. The strength has an inversely proportional relationship with porosity, diameter, and roundness (σ = ax + b, a < 0).

2.
Materials (Basel) ; 17(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38998361

RESUMO

Steel slag is the main by-product of the steel industry and can be used to produce steel slag fine aggregate (SSFA). SSFA can be used as a fine aggregate in mortar or concrete. However, SSFA contains f-CaO, which is the main reason for the expansion damage of mortar and concrete. In this study, the carbonation treatment of SSFA was adopted to reduce the f-CaO content; the influence of the carbonation time on the content of f-CaO in the SSFA was studied; and the effects of the carbonated SSFA replacement ratio on the expansion rate, mechanical properties and carbonation depth of mortar were investigated through tests. The results showed that as the carbonation time increased, the content of f-CaO in the SSFA gradually decreased. Compared to the mortar specimens with carbonated SSFA, the specimens with uncarbonated SSFA showed faster and more severe damage and a higher expansion rate. When the replacement ratio of carbonated SSFA was less than 45%, the carbonated SSFA had an inhibitory effect on the expansion development of the specimens. The compressive strengths of the specimens with a carbonated SSFA replacement ratio of 60% and 45% were 1.29% and 6.81% higher than those of the specimens with an uncarbonated SSFA replacement ratio of 60% and 45%, respectively. Carbonation treatment could improve the replacement ratio of SSFA while ensuring the compressive strength of specimens. Compared with mortar specimens with uncarbonated SSFA, the anti-carbonation performance of mortar specimens with carbonated SSFA was reduced.

3.
Materials (Basel) ; 17(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38998433

RESUMO

Pb-contaminated soil poses serious hazards to humans and ecosystems and is in urgent need of remediation. However, the extensive use of traditional curing materials such as ordinary Portland cement (OPC) has negatively impacted global ecology and the climate, so there is a need to explore low-carbon and efficient green cementitious materials for the immobilization of Pb-contaminated soils. A red mud/steel slag-based (RM/SS) geopolymer was designed and the potential use of solidifying/stabilizing heavy metal Pb pollution was studied. The Box-Behnken design (BBD) model was used to design the response surface, and the optimal preparation conditions of RM/SS geopolymer (RSGP) were predicted by software of Design-Expert 8.0.6.1. The microstructure and phase composition of RSGP were studied by X-ray diffractometer, Fourier transform infrared spectrometer, scanning electron microscopy and X-ray photoelectron spectroscopy, and the immobilization mechanism of RSGP to Pb was revealed. The results showed that when the liquid-solid ratio is 0.76, the mass fraction of RM is 79.82% and the modulus of alkali activator is 1.21, the maximum unconfined compressive strength (UCS) of the solidified soil sample is 3.42 MPa and the immobilization efficiency of Pb is 71.95%. The main hydration products of RSGP are calcium aluminum silicate hydrate, calcium silicate hydrate and nekoite, which can fill the cracks in the soil, form dense structures and enhance the UCS of the solidified soil. Pb is mainly removed by lattice immobilization, that is, Pb participates in geopolymerization by replacing Na and Ca to form Si-O-Pb or Al-O-Pb. The remaining part of Pb is physically wrapped in geopolymer and forms Pb(OH)2 precipitate in a high-alkali environment.

4.
Waste Manag ; 187: 252-261, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39079253

RESUMO

Desiccation-induced cracks in a compacted clay liner significantly deteriorate the hydraulic barrier performance of landfill covers. The present study explores the effects of polypropylene (PP) fiber reinforcement on the hydrological response and crack resistance of compacted steel slag (SS; 90 wt%) - bentonite (10 wt%) mixtures under drying and wetting cycles. Comprehensive tests were conducted to explore the impact of different fiber lengths (6-12 mm) and contents (0-0.4 % wt.%), including hydraulic conductivity tests for measuring the saturated hydraulic conductivity (ks), unconfined-penetration tests for measuring the tensile strength, small-sized plate tests for quantifying crack development, and large-sized bucket tests for studying the hydrological response and crack characteristics. Higher fiber contents and longer fiber lengths increased the ks-value of the specimens. For a 0.3 % fiber content, the tensile strength peaked for the 9-mm fiber. Consistently, the specimen reinforced with the 9-mm fibers exhibited significantly fewer cracks than those reinforced with the 6-mm and 12-mm fibers. It was because the 6-mm fibers had a shorter anchorage length, while the 12-mm fibers tended to agglomerate. The large-sized bucket tests showed that fiber reinforcement limited crack development significantly under wetting and drying cycles, reducing the rainfall infiltration by 40 % and enhancing the soil water retention capacity. Finally, a 0.3 wt% of 9-mm PP was recommended to reinforce the compacted SS-bentonite mixtures.


Assuntos
Bentonita , Polipropilenos , Aço , Polipropilenos/química , Bentonita/química , Aço/química , Resistência à Tração , Hidrologia , Dessecação/métodos , Eliminação de Resíduos/métodos
5.
J Environ Manage ; 366: 121874, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39025014

RESUMO

Anaerobic digestion for flexible biogas production can lead to digestion inhibition under high shock loads. While steel slag addition has shown promise in enhancing system buffering, its limitations necessitate innovation. This study synthesized the nitrogen-doped activated carbon composite from steel slag to mitigate intermediate product accumulation during flexible biogas production. Material characterization preceded experiments introducing the composite into anaerobic digestion systems, evaluating its impact on methane production efficiency under hydraulic and concentration sudden shocks. Mechanistic insights were derived from microbial community and metagenomic analyses, facilitating the construction of the modified Anaerobic Digestion Model No. 1 (ADM1) to quantitatively assess the material's effects. Results indicate superior resistance to concentration shocks with substantial increment of methane production rate up to 33.45% compared with control group, which is mediated by direct interspecies electron transfer, though diminishing with increasing shock intensity. This study contributes theoretical foundations for stable flexible biogas production and offers an effective predictive tool for conductor material reinforcement processes.


Assuntos
Biocombustíveis , Metano , Nitrogênio , Aço , Aço/química , Nitrogênio/química , Metano/química , Anaerobiose , Carvão Vegetal/química , Carbono/química
6.
Environ Technol ; : 1-16, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39038436

RESUMO

The reuse of by-products has become increasingly important as a means of minimising the consumption of natural resources and reducing waste disposal. This study examines the potential reuse of steel slag for soil stabilisation, with benefits such as conserving natural resources and mitigating the greenhouse gas emissions associated with the production of conventional stabilising agents. It focuses on evaluating the effect of pozzolanic reactions on the strength and stiffness of both loess silt and silt-bentonite mixtures. The experimental tests included the physical characterisation of granular materials, reactivity tests of the pozzolanicity of soil mixtures, compaction tests, unconfined compression tests, and hydraulic conductivity tests. The impact of the curing period was also analysed to quantify the effects of natural cementation and the development of hydrogels within soil pores on the compacted soil properties. The findings suggest that adding steel slag can significantly increase the strength and the stiffness of compacted loess silts by over 300% and 500%, respectively, after 56 days of curing, substantially reducing the hydraulic conductivity of granular materials, such as the tested silt, as hydrogels partially occupy the pores available for liquid flow. It should be noted that the chemical reactions during hydrogel formation may hinder the free expansion of clay mixtures and release Ca2+ ions, thereby counteracting the expected reduction in hydraulic conductivity when bentonite is added to compacted earthen barriers.

7.
Materials (Basel) ; 17(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063850

RESUMO

The physicochemical properties of steel slag were investigated using SEM and IR, and it was found that free calcium oxide and free magnesium oxide in steel slag produce calcium hydroxide when in contact with water, leading to volume expansion. Thus, the expansion rate of steel slag itself was first investigated, and it was found that the volume expansion of steel slag was more obvious in seven days after water immersion. Then, the cement dosages of 5% and 6% of the steel slag expansion rate and cement-stabilized gravel volume changes between the intrinsic link were further explored after the study found that the cement bonding effect can be partially inhibited due to the volume of expansion caused by the steel slag, so it can be seen that increasing the dosage of cement can reduce the volume expansion of steel slag cement-stabilized gravel with the same dosage of steel slag. Finally, a prediction model of the expansion rate of steel slag cement-stabilized gravel based on the BP (back propagation) neural network was established, which was verified to be a reliable basis for predicting the expansion rate of steel slag cement-stabilized aggregates and improving the accuracy of the proportioning design.

8.
Materials (Basel) ; 17(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39063909

RESUMO

Phosphogypsum (PG) occupies a large amount of land due to its large annual production and low utilization rate, and at the same time causes serious environmental problems due to toxic impurities. PG is used for mine backfill, and industrial solid waste is a curing agent for PG, which can save the filling cost and reduce environmental pollution. In this paper, PG was used as a raw material, combined with steel slag (SS) and ground granulated blast-furnace slag (GGBS) under the action of an alkali-activated agent (NaOH) to prepare all-solid waste phosphogypsum-based backfill material (PBM). The effect of the GGBS to SS ratio on the compressive strength and toxic leaching of PBM was investigated. The chemical composition of the raw materials was obtained by XRF analysis, and the mineral composition and morphology of PBM and its stabilization/curing mechanism against heavy metals were analyzed using XRD and SEM-EDS. The results showed that the best performance of PBM was achieved when the contents of PG, GGBS, and SS were 80%, 13%, and 7%, the liquid-to-solid ratio was 0.4, and the mass concentration of NaOH was 4%, with a strength of 2.8 MPa at 28 days. The leaching concentration of fluorine at 7 days met the standard of groundwater class IV (2 mg/L), and the leaching concentration of phosphorus was detected to be less than 0.001 mg/L, and the leaching concentration of heavy metals met the environmental standard at 14 d. The hydration concentration in PBM met the environmental standard. The hydration products in PBM are mainly ettringite and C-(A)-S-H gel, which can effectively stabilize the heavy metals in PG through chemical precipitation, physical adsorption, and encapsulation.

9.
Materials (Basel) ; 17(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38930337

RESUMO

Steel slag as an alkaline industrial solid waste, possesses the inherent capacity to engage in carbonation reactions with carbon dioxide (CO2). Capitalizing on this property, the current research undertakes a systematic investigation into the fabrication of high-carbonation precast concrete (HCPC). This is achieved by substituting a portion of the cementitious materials with steel slag during the carbonation curing process. The study examines the influence of varying water-binder ratios, silica fume dosages, steel slag dosages, and sand content on the compressive strength of HCPC. Findings indicate that adjusting the water-binder ratio to 0.18, adding 8% silica fume, and a sand volume ratio of 40% can significantly enhance the compressive strength of HCPC, which can reach up to 104.9 MPa. Additionally, the robust frost resistance of HCPC is substantiated by appearance damage analysis, mass loss rate, and compressive strength loss rate, after 50 freeze-thaw cycles the mass loss, and the compressive strength loss rate can meet the specification requirements. The study also corroborates the high-temperature stability of HCPC. This study optimized the preparation of HCPC and provided a feasibility for its application in precast concrete.

10.
Waste Manag ; 186: 249-258, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38941735

RESUMO

The iron and steel-making industries have garnered significant attention in research related to low-carbon transitions and the reuse of steel slag. This industry is known for its high carbon emissions and the substantial amount of steel slag it generates. To address these challenges, a waste heat recovery process route has been developed for molten steel slag, which integrates CO2 capture and fixation as well as efficient utilization of steel slag. This process involves the use of lime kiln flue gas from the steel plant as the gas quenching agent, thereby mitigating carbon emissions and facilitating carbonation conversion of steel slag while simultaneously recovering waste heat. The established carbonation model of steel slag reveals that the insufficient diffusion of CO2 gas molecules within the product layer is the underlying mechanism hindering the carbonation performance of steel slag. This finding forms the basis for enhancing the carbonation performance of steel slag. The results of Aspen Plus simulation indicate that 1 t of steel slag (with a carbonation conversion rate of 15.169 %) can fix 55.19 kg of CO2, process 6.08 kmol of flue gas (with a carbon capture rate of 92.733 %), and recover 2.04 GJ of heat, 0.43 GJ of exergy, and 0.68 MWh of operating cost. These findings contribute to the development of sustainable and efficient solutions for steel slag management, with potential applications in the steel production industry and other relevant fields.


Assuntos
Temperatura Alta , Resíduos Industriais , Aço , Aço/química , Resíduos Industriais/análise , Dióxido de Carbono/análise , Dióxido de Carbono/química , Carbono/química , Gerenciamento de Resíduos/métodos , Metalurgia/métodos , Óxidos/química , Reciclagem/métodos , Gases
11.
J Environ Manage ; 365: 121563, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909575

RESUMO

Steel slag (SS) is a byproduct that comes from the production of crude steel in alkaline oxidation furnaces. Resource utilization of steel slag, a calcium-silicon solid waste, is an urgent problem. This paper investigates a solid waste disposal method that applies different steel slag contents to modify dispersive soil. The engineering properties and modification mechanisms of dispersive soil specimens are studied and revealed by performing microstructure, mineral evolution, unconfined compressive strength (UCS), and tensile strength analysis. The pinhole test, mud ball crumb test (BCT), and mud cube crumb test (CCT) were carried out to determine the dispersivity of the soil specimens. Results show that when the steel slag content increases from 1% to 10%, the unconfined compressive strength and tensile strength increase by 176.05% and 75.40%, respectively. For soil specimens without curing time under 50 mm water head, the weight loss of the specimen with 10% steel slag content decreases by 72.03% compared to specimens with 1% steel slag content. Microstructural and mineralogical analyses indicate that the hydration reaction of steel slag changes the ionic composition of the soil and generates reaction products with effects such as filling and connection. To sum up, steel slag effectively improves water stability and mechanical properties of dispersive soil.


Assuntos
Compostos de Cálcio , Silicatos , Solo , Aço , Solo/química , Silicatos/química , Compostos de Cálcio/química , Resistência à Tração , Força Compressiva
12.
Environ Sci Pollut Res Int ; 31(29): 42428-42444, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877192

RESUMO

Iron and steel slags have a long history of both disposal and beneficial use in the coastal zone. Despite the large volumes of slag deposited, comprehensive assessments of potential risks associated with metal(loid) leaching from iron and steel by-products are rare for coastal systems. This study provides a national-scale overview of the 14 known slag deposits in the coastal environment of Great Britain (those within 100 m of the mean high-water mark), comprising geochemical characterisation and leaching test data (using both low and high ionic strength waters) to assess potential leaching risks. The seaward facing length of slag deposits totalled at least 76 km, and are predominantly composed of blast furnace (iron-making) slags from the early to mid-20th Century. Some of these form tidal barriers and formal coastal defence structures, but larger deposits are associated with historical coastal disposal in many former areas of iron and steel production, notably the Cumbrian coast of England. Slag deposits are dominated by melilite phases (e.g. gehlenite), with evidence of secondary mineral formation (e.g. gypsum, calcite) indicative of weathering. Leaching tests typically show lower element (e.g. Ba, V, Cr, Fe) release under seawater leaching scenarios compared to deionised water, largely ascribable to the pH buffering provided by the former. Only Mn and Mo showed elevated leaching concentrations in seawater treatments, though at modest levels (<3 mg/L and 0.01 mg/L, respectively). No significant leaching of potentially ecotoxic elements such as Cr and V (mean leachate concentrations <0.006 mg/L for both) were apparent in seawater, which micro-X-Ray Absorption Near Edge Structure (µXANES) analysis show are both present in slags in low valence (and low toxicity) forms. Although there may be physical hazards posed by extensive erosion of deposits in high-energy coastlines, the data suggest seawater leaching of coastal iron and steel slags in the UK is likely to pose minimal environmental risk.


Assuntos
Monitoramento Ambiental , Ferro , Aço , Ferro/química , Ferro/análise , Poluentes Químicos da Água/análise , Água do Mar/química
13.
Materials (Basel) ; 17(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38893759

RESUMO

Slag and fly ash (FA) are mostly used as precursors for the production of alkali-activated materials (AAMs). FA is the waste discharged by power plants, while slag and steel slag (SS) both belong to the iron and steel industry. The effects of SS and FA on the strength, microstructure, and volume stability of alkali-activated slag (AAS) materials with different water glass modulus (Ms) values were comparatively investigated. The results show that adding SS or FA decreases the compressive strength of AAS mortar, and the reduction effect of SS is more obvious at high Ms. SS or FA reduce the non-evaporable water content (Wn) of AAS paste. However, SS increases the long-term Wn of AAS paste at low Ms. The cumulative pore volume and porosity increase after adding SS or FA, especially after adding FA. The hydration products are mainly reticular C-(A)-S-H gels. Adding SS increases the Ca/Si ratio of C-(A)-S-H gel but decreases the Al/Si ratio. However, by mixing FA, the Ca/Si ratio is reduced and the Al/Si ratio is almost unchanged. The incorporation of SS or FA reduces the drying shrinkage of AAS mortar, especially when SS is added. Increasing Ms increases the compressive strength and improves the pore structure, and it significantly increases the drying shrinkage of all samples. This study provides theoretical guidance for the application of steel slag in the alkali-activated slag material.

14.
Materials (Basel) ; 17(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38893839

RESUMO

This paper presents a study on the mechanical properties of cement-stabilized steel-slag-based materials under freeze-thaw cycles for a highway project in Xinjiang. Using 3D scanning technology the specimen model conforming to the real steel slag shape was established. The objectives of the study are as follows: to explore the sensitivity between the macro- and micro-parameters of the specimen and to establish a non-linear regression equation; and to study the changes in mechanical properties of materials under freeze-thaw cycles, fatigue loading, and coupled freeze-thaw cycle-fatigue loading. The results show that there are three stages of compression damage of the specimen, namely, linear elasticity, peak plasticity, and post-peak decline. Maximum contact forces between cracks and particles occur mainly in the shear zone region within the specimen. The compression damage of the specimen is a mixed tensile-shear damage dominated by shear damage. When freeze-thaw cycles or fatigue loads are applied alone, the flexural strength and fatigue life of the specimens show a linear relationship of decline. The decrease in flexural modulus at low stress is divided into the following: a period of rapid decline, a relatively smooth period, and a period of fracture, with a tendency to change towards linear decay with increasing stress. In the case of freeze-thaw-fatigue coupling, the flexural modulus of the specimen decreases drastically by about 50% in the first 2 years, and then enters a period of steady decrease in flexural modulus in the 3rd-5th years.

15.
Sci Rep ; 14(1): 12745, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830968

RESUMO

This paper investigates the performance of concrete incorporating high-volume fly ash (HVFA) and steel slag aggregates against the detrimental effects of combined cycles of environmental thermal fatigue and exposure to leaked aircraft fluids. A total of 128 cubes and 90 prisms were cast for five mixes and exposed to 60, 120, 180, 240 and 300 combined cycles. The results demonstrate the positive effect of utilization of HVFA which reduces the total amount of portlandite available in the system. The SS aggregates demonstrate a strong interlocking with the surrounding matrix and supply the necessary portlandite for continued pozzolanic reaction. However, their reaction with aircraft fluids causes significant degradation to flexural strength initially, which is redeemed by pozzolanic reaction at a later stage. Hybrid basalt and polypropylene fibres were successful in enhancing the flexural strength and reducing the cracking. The mercury intrusion porosimetry revealed a reduction in pore volume because of HVFA. Scanning electron microscopy and differential scanning calorimetry were also employed to uncover the underlying mechanisms of damage and assess the performance of the cementitious composite.

16.
Sci Total Environ ; 946: 174082, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38906305

RESUMO

This research compared Portland cement and Phosphogypsum-Steel Slag-Based (PSSB) cement in terms of their capabilities to stabilize heavy metals (specifically lead and nickel) in Oil-Based Drill Cuttings (OBDC). In the experimental section, the qualitative analysis of heavy metal constituents in OBDC was captured by X-ray Photoelectron Spectroscopy (XPS). Additionally, an acetic acid leaching test was implemented for the heavy metal leaching concentration to evaluate the ceramsite stabilization effect on OBDC. In the simulation phase, cement models, heavy metal ion models, and stabilization models were constructed to explore the stabilization mechanism of heavy metals. Results demonstrated that PSSB cement exhibits superior stabilization effects on OBDC compared to Portland cement. Flame Atomic Absorption Spectrophotometry (FAAS) tests showed that PSSB cement reduced Ni and Pb leaching by 21.87 % and 47.32 %, respectively, compared to Portland cement. In PSSB cement, the diffusion coefficients for Ni and Pb ions were observed to decrease by 42.92 % and 79.63 %, respectively, as revealed through Mean Square Displacement (MSD) analysis. The cohesive energy of PSSB cement was 76.73 % lower than that of Portland cement, and its interaction energies for stabilizing Ni and Pb ions were 59.43 % and 76.22 % lower, respectively, demonstrating greater stability and efficiency in metal stabilization. PSSB cement exhibited lower heavy metal concentration and better structural stability than Portland cement.

17.
Materials (Basel) ; 17(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38793294

RESUMO

The production of flue gas desulfurization gypsum poses a serious threat to the environment. Thus, utilizing gypsum-based self-leveling mortar (GSLM) stands out as a promising and effective approach to address the issue. ß-hemihydrate gypsum, cement, polycarboxylate superplasticizer, hydroxypropyl methyl cellulose ether (HPMC), retarder, and defoamer were used to prepare GSLM. The impact of mineral admixtures (steel slag (SS), silica fume (SF), and fly ash (FA)) on the physical, mechanical, and microstructural properties of GSLM was examined through hydration heat, X-ray diffractometry (XRD), Raman spectroscopy, and scanning electron microscopy (SEM) analyses. The GSLM benchmark mix ratio was determined as follows: 94% of desulfurization building gypsum, 6% of cement, 0.638% each of water reducer and retarder, 0.085% each of HPMC and defoamer (calculated additive ratio relative to gypsum), and 0.54 water-to-cement ratio. Although the initial fluidity decreased in the GSLM slurry with silica fume, there was minimal change in 30 min fluidity. Notably, at an SS content of 16%, the GSLM exhibited optimal flexural strength (6.6 MPa) and compressive strength (20.4 MPa). Hydration heat, XRD, and Raman analyses revealed that a small portion of SS actively participated in the hydration reaction, while the remaining SS served as a filler.

18.
Materials (Basel) ; 17(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38793325

RESUMO

The effects of steel slag (SS) and fly ash (FA) on hydration heat, fluidity, setting time and rheological properties of alkali-activated slag (AAS) pastes with different silicate modulus (Ms) values were comparatively investigated. The results show that the incorporation of SS shortens the induction period, increases the cumulative hydration heat, improves the initial fluidity and decreases the setting time at low Ms, but the opposite trend is found at high Ms. FA significantly retards the reaction, reduces the hydration heat, increases the fluidity and prolongs the setting time. The addition of SS or FA reduces the yield stress and plastic viscosity of AAS paste. SS improves the rheological properties of AAS paste more significantly than that of FA at high Ms. The yield stress and plastic viscosity of AAS paste with SS or FA rise with the increasing Ms and decline with the increasing water/binder (w/b) ratio.

19.
Materials (Basel) ; 17(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38793372

RESUMO

In order to increase the utilization rate of stainless steel slag, reduce storage needs, and mitigate environmental impacts, this study replaces a portion of limestone with varying amounts of stainless steel slag in the calcination of Portland cement clinker. The study primarily examines the influence of stainless steel slag on the phase composition, microstructure, compressive strength, and free calcium oxide (ƒ-CaO) content of Portland cement clinker. The results show the following: (1) Using stainless steel slag to calcine Portland cement clinker can lower the calcination temperature, reducing industrial production costs and energy consumption. (2) With an increase in the amount of stainless steel slag, the dicalcium silicate (C2S) and tricalcium silicate (C3S) phases in Portland cement clinker initially increase and then decrease; the C3S crystals gradually transform into continuous hexagonal plate-shaped distributions, while the tricalcium aluminate (C3A) and tetracalcium aluminoferrite (C4AF) crystal structures become denser. When the stainless steel slag content is 15%, the dicalcium silicate and tricalcium silicate phases are at their peak; the C3S crystals are continuously distributed with a relatively dense structure, and C3A and C4AF crystals melt and sinter together, becoming distributed around C3S. (3) As stainless steel slag content increases, the compressive strength of Portland cement clinker at 3 days, 7 days, and 28 days increases and then decreases, while ƒ-CaO content decreases and then increases. When the stainless steel slag content is 15%, the compressive strength at 28 days is at its highest, 64.4 MPa, with the lowest ƒ-CaO content, 0.78%. The test results provide a basis for the utilization of stainless steel slag in the calcination of Portland cement clinker.

20.
Materials (Basel) ; 17(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38730808

RESUMO

Aiming to enhance the comprehensive utilization of steel slag (SS), a solid waste-based binder consisting of SS, granulated blast furnace slag (BFS), and desulfurization gypsum (DG) was designed and prepared. This study investigated the reaction kinetics, phase assemblages, and microstructures of the prepared solid waste-based cementitious materials with various contents of SS through hydration heat, XRD, FT-IR, SEM, TG-DSC, and MIP methods. The synergistic reaction mechanism between SS and the other two wastes (BFS and DG) is revealed. The results show that increasing SS content in the solid waste-based binder raises the pH value of the freshly prepared pastes, advances the main hydration reaction, and shortens the setting time. With the optimal SS content of 20%, the best mechanical properties are achieved, with compressive strengths of 19.2 MPa at 3 d and 58.4 MPa at 28 d, respectively. However, as the SS content continues to increase beyond 20%, the hydration process of the prepared binder is delayed. The synergistic activation effects between SS and BFS with DG enable a large amount of ettringite (AFt) formation, guaranteeing early strength development. As the reaction progresses, more reaction products CSH and Aft are precipitated. They are interlacing and overlapping, jointly refining and densifying the material's microstructure and contributing to the long-term strength gain. This study provides a reference for designing and developing solid waste-based binders and deepens the insightful understanding of the hydration mechanism of the solid waste-based binder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA