Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Angew Chem Int Ed Engl ; : e202413643, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294106

RESUMO

Polymer stereocomplex formation represents a promising research area as it can improve thermal and mechanical properties of co-crystallized polymer strands of opposite chirality. Polymers that form stereocomplexes commonly feature high stereoregularity and usually require sourcing from enantiopure monomer building blocks. Herein, we report the in situ polyether stereo-complex formation from racemic epoxide monomers, i.e., substituted methyl phenyl glycidyl ethers. The bio-renewable glycidyl ethers were explored in both enantio- and isoselective ring-opening polymerizations (ROPs), resulting in isotactic poly(phenyl glycidyl ether). While the enantio-selective ROP selectively resolves a single enantiomeric, isotactic polyether stereoisomer ([mm]P ≥ 78%), the isoselective ROP leads to the concurrent formation of both isotactic (R)- and (S)-poly(phenyl glycidyl ether) stereoisomers ([mm]P ≥ 92%) and thus results directly in a stereoisomer blend, which forms a stereocomplex. This is one of only a few polymer stereocomplexes generated directly during polymerization from a racemic monomer mixture. Stereo-complexes of the different poly(phenyl glycidyl ether)s show an increase in melting temperature of up to 76 °C, relative to the enantiopure parent polymers. The position of the methyl group at the phenyl ring determines both stereocomplex formation and the thermal properties of the resulting materials.

2.
Polymers (Basel) ; 16(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125155

RESUMO

The formation of polylactide stereocomplex (sc-PLA), involving the blending of poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA), enhances PLA materials by making them stronger and more heat-resistant. This study investigated the competitive crystallization behavior of homocrystals (HCs) and stereocomplex crystals (SCs) in a 50/50 PLLA/PDLA blend with added polyethylene glycol (PEG). PEG, with molecular weights of 400 g/mol and 35,000 g/mol, was incorporated at concentrations ranging from 5% to 20% by weight. Differential scanning calorimetry (DSC) analysis revealed that PEG increased the crystallization temperature, promoted SC formation, and inhibited HC formation. PEG also acted as a plasticizer, lowering both melting and crystallization temperatures. The second heating DSC curve showed that the pure PLLA/PDLA blend had a 57.1% fraction of SC while adding 5% PEG with a molecular weight of 400 g/mol resulted in complete SC formation. In contrast, PEG with a molecular weight of 35,000 g/mol was less effective, allowing some HC formation. Additionally, PEG consistently promoted SC formation across various cooling rates (2, 5, 10, or 20 °C/min), demonstrating a robust influence under different conditions.

3.
Int J Biol Macromol ; 274(Pt 2): 133470, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38942401

RESUMO

Passive daytime radiative cooling (PDRC) technology offers a green and sustainable strategy for cooling, eliminating the need for external energy sources through its exceptional efficiency in heat radiation and sunlight reflection. Despite its benefits, the widespread usage of non-biodegradable PDRC materials has unfortunately caused environmental pollution and resource wastage. Furthermore, the effectiveness of outdoor PDRC materials can be significantly diminished by rainfall. In this work, a superhydrophobic composite aerogel composed of stereocomplex-type polylactide and ultra-fine glass fiber has been successfully developed through simple physical blending and freeze-drying, which exhibits low thermal conductivity (36.26 mW m-1 K-1) and superhydrophobicity (water contact angle up to 150°). Additionally, its high solar reflectance (91.68 %) and strong infrared emissivity (93.95 %) enable it to effectively lower surface temperatures during daytime, resulting in a cooling effect of approximately 3.8 °C below the ambient temperature during the midday heat of summer, with a cooling power of 68 W/m2. This aerogel offers an environmentally friendly and sustainable approach for the utilization of radiative refrigeration materials, paving the way for environmental protection and sustainable development.


Assuntos
Géis , Vidro , Interações Hidrofóbicas e Hidrofílicas , Poliésteres , Vidro/química , Poliésteres/química , Géis/química , Condutividade Térmica , Temperatura Baixa , Temperatura
4.
Nanomaterials (Basel) ; 14(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38470771

RESUMO

Polymeric nanoparticles (PNPs) are frequently researched and used in drug delivery. The degradation of PNPs is highly dependent on various properties, such as polymer chemical structure, size, crystallinity, and melting temperature. Hence, a precise understanding of PNP degradation behavior is essential for optimizing the system. This study focused on enzymatic hydrolysis as a degradation mechanism by investigation of the degradation of PNP with various crystallinities. The aliphatic polyester polylactide ([C3H4O2]n, PLA) was used as two chiral forms, poly l-lactide (PlLA) and poly d-lactide (PdLA), and formed a unique crystalline stereocomplex (SC). PNPs were prepared via a nanoprecipitation method. In order to further control the crystallinity and melting temperatures of the SC, the polymer poly(3-ethylglycolide) [C6H8O4]n (PEtGly) was synthesized. Our investigation shows that the PNP degradation can be controlled by various chemical structures, crystallinity and stereocomplexation. The influence of proteinase K on PNP degradation was also discussed in this research. AFM did not reveal any changes within the first 24 h but indicated accelerated degradation after 7 days when higher EtGly content was present, implying that lower crystallinity renders the particles more susceptible to hydrolysis. QCM-D exhibited reduced enzyme adsorption and a slower degradation rate in SC-PNPs with lower EtGly contents and higher crystallinities. A more in-depth analysis of the degradation process unveiled that QCM-D detected rapid degradation from the outset, whereas AFM exhibited delayed changes of degradation. The knowledge gained in this work is useful for the design and creation of advanced PNPs with enhanced structures and properties.

5.
Int J Biol Macromol ; 265(Pt 1): 130902, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492697

RESUMO

The preparation of bio-based poly(lactic acid) (PLA) foams with high mechanical properties and heat resistance is of great significance for environmental protection and green sustainable development. In this paper, D-sorbitol (DS) containing six hydroxyl groups was introduced into poly(l-lactide) (PLLA)/poly(d-lactide) (PDLA) blends for first time to promote the formation of stereocomplex (SC) crystals, which could improve the foaming behavior and enhance mechanical properties and heat resistance of PLA foams. The results showed that DS could improve the formation efficiency and crystallinity of SC crystals by enhancing the hydrogen bonding between the enantiomeric molecular chains. Furthermore, the compression modulus and interactions Vicat softening temperature of the PLLA/PDLA/DS blend foam increased about 854% and 16% compared to the pure PLLA foam, respectively. Besides, when the annealing process was introduced, the compression and heat resistance of the PLA foams increased further. This study provided a feasible strategy for the preparation of bio-based and biodegradable PLA foams with outstanding compressive and heat resistance properties.


Assuntos
Temperatura Alta , Polímeros , Polímeros/química , Cristalização , Poliésteres/química
6.
Gels ; 10(2)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38391469

RESUMO

Biodegradable injectable polymer (IP) systems that form hydrogels in situ when injected into the body have considerable potential as medical materials. In this paper, we report a new two-solution mixed biodegradable IP system that utilizes the stereocomplex (SC) formation of poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA). We synthesized triblock copolymers of PLLA and poly(ethylene glycol), PLLA-b-PEG-b-PLLA (tri-L), and a graft copolymer of dextran (Dex) attached to a PDLA-b-PEG diblock copolymer, Dex-g-(PDLA-b-PEG) (gb-D). We found that a hydrogel can be obtained by mixing gb-D solution and tri-L solution via SC formation. Although it is already known that graft copolymers attached to enantiomeric PLLA and PDLA chains can form an SC hydrogel upon mixing, we revealed that hydrogels can also be formed by a combination of graft and triblock copolymers. In this system (graft vs. triblock), the gelation time was shorter, within 1 min, and the physical strength of the resulting hydrogel (G' > 100 Pa) was higher than when graft copolymers were mixed. Triblock copolymers form micelles (16 nm in diameter) in aqueous solutions and hydrophobic drugs can be easily encapsulated in micelles. In contrast, graft copolymers have the advantage that their molecular weight can be set high, contributing to improved mechanical strength of the obtained hydrogel. Various biologically active polymers can be used as the main chains of graft copolymers, and chemical modification using the remaining functional side chain groups is also easy. Therefore, the developed mixing system with a graft vs. triblock combination can be applied to medical materials as a highly convenient, physically cross-linked IP system.

7.
Int J Biol Macromol ; 261(Pt 2): 129834, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302029

RESUMO

The unique stere-complex crystal formed by poly(ʟ-lactide)/poly(ᴅ-lactide) (PLLA/PDLA) has a significant impact on properties of poly-lactide materials and is considered an effective means to improve the barrier properties of poly-lactide (PLA). In this work, poly-lactide films with different aggregate structures were prepared and the relationship of aggregate structure and barrier properties were explored. The results show that the crystal structure including crystallinity and crystal forms can be controlled by adjusting the isothermal crystallization time and crystallization temperature during the molding process. PLLA/PDLA composite films contain both homochiral crystallites and stereo-complex crystallites, and there is a synergistic crystallization effect between the two of them, which provides the composite films with high crystallinity and excellent barrier properties. Compared to the PLLA with homochiral crystallites, the PLLA/PDLA composite film with only stereo-complex crystallites exhibits higher barrier properties. The linear correlation between the crystallinity and the barrier properties is weak due to the changes in crystallization behavior and then the structure of poly-lactide caused by stereo-complexation. The linear correlation between the crystallinity and the barrier properties of the blend film is strong in the low crystallinity but weak at high crystallinity. Compared to homochiral crystallites, stereo-complex crystallites exhibits lower crystallinity dependence. It has been proven that different crystal forms have different design ideas for preparing high-barrier films, but the stereo-complexation resulting from the intermolecular forces between PLLA and PDLA having complementary chemical structure, is an effective method for enhancing the barrier performances of poly-lactide sustainably.


Assuntos
Dioxanos , Poliésteres , Cristalização , Poliésteres/química
8.
Int J Biol Macromol ; 260(Pt 1): 129459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232890

RESUMO

Although polymers tend not to mix, it remains challenging to characterize the immiscibility of enantiomeric poly(ʟ-lactide) (PLLA) and poly(ᴅ-lactide) (PDLA), particularly with equivalent and high molecular weight (high MW), which frustratingly disfavors the exclusive stereocomplexation. By introducing a random copolymer (PLC) of ʟ-lactide and caprolactone to form binary blends with PLLA and PDLA, the phase behavior of high-MW PLLA/PDLA blends was investigated mainly by using differential scanning calorimetry (DSC) and atomic force microscopy (AFM). DSC results showed that PLLA/PLC blends exhibited a single glass transition temperature (Tg), which depended on the blending ratio and precisely corresponded with the theoretical values calculated from the Fox equation. In comparison, PDLA/PLC blends showed composition-dependent heat-capacity increment at two unchanged Tg values of pure PLC and PDLA. AFM observation revealed that PLC is completely miscible with PLLA at high MW but is immiscible with PDLA, logically suggesting immiscibility of high-MW PLLA and PDLA. Moreover, AFM results demonstrated that high-MW PLLA/PDLA blends exhibited spherical droplets in asymmetric blends and bicontinuous interpenetrating worm-like patterns in symmetric counterparts, showing distinct and well-defined interfaces, confirming the microphase separation. Additionally, different MWs fundamentally led to significant differences in miscibility, which consequently affected the crystallization behaviors of PLLA/PDLA blends. This work provides evidence for (im)miscibility and its crucial impact on the crystallization of PLLA/PDLA blends and has important implications for understanding the stereocomplexation of polymers.


Assuntos
Dioxanos , Separação de Fases , Polímeros , Polímeros/química , Cristalização , Peso Molecular , Poliésteres/química
9.
J Biomed Mater Res B Appl Biomater ; 112(1): e35328, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37737070

RESUMO

The mechanical properties of polylactide stereocomplexes (PLA SC) have been primarily studied through tensile testing, with inconsistent results, and the compressive properties of PLA SC compared to homocrystalline or amorphous PLA remain poorly understood. In this study, we coated porous bioactive glass 13-93 scaffolds with amorphous, homocrystalline, or stereocomplex PLA to investigate their mechanical and degradation properties before and after immersion in simulated body fluid. The glass scaffolds had interconnected pores and an average porosity of 76%. The PLA coatings, which were 10-100 µm thick and approximately 3% of the glass scaffold mass, covered the glass to a large extent. The compressive strength and toughness of all PLA-coated scaffolds were significantly higher than those of uncoated scaffolds, with approximately a fourfold increase before immersion and a twofold increase after immersion. The compressive strength and toughness of PLA SC-coated scaffolds were similar to those of scaffolds with homocrystalline PLA coating, and significantly higher than for scaffolds with amorphous PLA coating. All PLA coatings moderated the initial pH increase caused by the glass, which could benefit surrounding cells and bone tissue in vivo after implantation.


Assuntos
Vidro , Alicerces Teciduais , Porosidade , Alicerces Teciduais/química , Vidro/química , Poliésteres/química , Regeneração Óssea , Engenharia Tecidual/métodos
10.
Int J Biol Macromol ; 254(Pt 3): 127924, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944727

RESUMO

Improving hydrophobicity through the regulation of surface microstructures has attracted significant interest in various applications. This research successfully prepared a surface with microsphere structures using the Non-solvent induced phase separation method (NIPS). Poly(D-Lactic acid)-block-poly(ethylene glycol)-block-poly(D-Lactic acid) (PDLA-PEG-PDLA) block polymers were synthesized by ring-opening polymerization of D-Lactic acid (D-LA) using polyethylene glycol (PEG) as initiator. PLLA/PDLA-PEG-PDLA membrane with microscale microsphere morphology was fabricated using a nonsolvent-induced self-assembly method by blending the triblock copolymer with a poly(L-lactic acid) (PLLA) solution. In phase separation processes, the amphiphilic block copolymers self-assemble into micellar structures to minimize the Gibbs free energy, and the hydrophilic segments (PEG) aggregate to form the core of the micelles, while the hydrophobic segments (PDLA) are exposed on the outer corona resulting in a core-shell structure. The Stereocomplex Crystalline (SC), formed by the hydrogen bonding between PLLA and PDLA, can facilitate the transition from liquid-liquid phase separation to solid-liquid phase separation, and the PEG chain segments can enhance the formation of SC. The membrane, prepared by adjusting the copolymer content and PEG chain length, exhibited adjustable microsphere quantity, diameter, and surface roughness, enabling excellent hydrophobicity and controlled release of oil-soluble substances.


Assuntos
Ácido Láctico , Polietilenoglicóis , Polietilenoglicóis/química , Ácido Láctico/química , Cristalização , Solventes , Microesferas , Polímeros/química , Poliésteres/química , Micelas
11.
Int J Biol Macromol ; 258(Pt 1): 128919, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134994

RESUMO

Stereocomplex (SC) crystallization can prominently improve the physico-chemical properties of poly(l-lactide)/poly(d-lactide) (PLLA/PDLA) blends, yielding a novel polylactide (PLA) material. However, the predominant formation of SC crystals in the melt-processing of high-molar-mass (high-MW, >100 kg/mol) enantiomeric PLA blends remains a huge challenge due to the competition between SC crystallization and homocrystallization. Herein, double-grafted copolymer having both PLLA and PDLA side chain has been designed and synthesized as an efficient crystallization promoter for the harvest of SC crystals in the high-MW PLLA/PDLA blends. The results show that, with the addition of such a copolymer, the blends can preferentially crystallize into SC crystals in both isothermal and non-isothermal conditions. Promisingly, the SC crystals can be exclusively formed by adding only small amounts (e.g., 0.5 wt%) of the copolymer, without the formation of any homocrystals. This interesting observation can be interpreted by the crucial role of the unique copolymer in suppressing the phase separation of the opposite PLA enantiomers upon melting as an efficient compatibilizer and then encouraging the generation of alternatingly arranged PLLA/PDLA chain clusters favored for SC nucleation and crystal growth. These findings provide new inspiration for the development of high-performance PLA with desirable SC crystallizability.


Assuntos
Poliésteres , Polímeros , Cristalização , Polímeros/química , Poliésteres/química , Estereoisomerismo
12.
Macromol Biosci ; : e2300497, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38029318

RESUMO

This report addresses the challenges of controlled drug delivery for peptide and protein therapeutics by introducing a novel approach of nano formulation fabricated in aqueous media applying stereo-interaction mechanism with poly(D-lactide)-polyethylene glycol (D-PLA-PEG). To overcome the inherent poor stability of peptide and protein therapeutics, stereocomplexation of the peptide, insulin, is applied, onto D-PLA-PEG in aqueous media. Nanoparticles of ≈400 nm are spontaneously formed when water-soluble D configured PLA-PEG diblock copolymer and L- configured insulin interlock into a stereocomplex, owing to their concave convex fitness. In vitro release of insulin from stereocomplex in phosphate buffer solution (PBS) pH 7.4 solution shows sustained release for 14 weeks. The therapeutic efficacy of the PLA-insulin stereocomplex nanoparticles are evaluated in diabetic Akita mice. Blood glucose levels and body weight are closely monitored for a period of 17 weeks, revealing a significant reduction in glucose levels of the Akita mice treated with insulin stereocomplex, as well as normal body weight gain. These findings suggest that the stereocomplex nanoparticles of insulin-D-PLA-PEG present a promising and effective sustained and extended release platform for insulin. Notably, the use of water-soluble D-PLA-PEG for stereocomplexation in water expands the applicability of this approach to fabricate controlled delivery systems for peptide and protein therapeutics.

13.
Angew Chem Int Ed Engl ; 62(49): e202314290, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37842911

RESUMO

Achieving predictable and programmable two-dimensional (2D) structures with specific functions from exclusively organic soft materials remains a scientific challenge. This article unravels stereocomplex crystallization-driven self-assembly as a facile method for producing thermally robust discrete 2D-platelets of diamond shape from biodegradable semicrystalline polylactide (PLA) scaffolds. The method involves co-assembling two PLA stereoisomers, namely, PY-PDLA and NMI-PLLA, which form stereocomplex (SC)-crystals in isopropanol. By conjugating a well-known Förster resonance energy transfer (FRET) donor and acceptor dye, namely, pyrene (PY) and naphthalene monoimide (NMI), respectively, to the chain termini of these two interacting stereoisomers, a thermally robust FRET process can be stimulated from the 2D array of the co-assembled dyes on the thermally resilient SC-PLA crystal surfaces. Uniquely, by decorating the surface of the SC-PLA crystals with an externally immobilized guest dye, Rhodamine-B, similar diamond-shaped structures could be produced that exhibit pure white-light emission through a surface-induced two-step cascade energy transfer process. The FRET response in these systems displays remarkable dependence on the intrinsic crystalline packing, which could be modulated by the chirality of the co-assembling PLA chains. This is supported by comparing the properties of similar 2D platelets generated from two homochiral PLLAs (PY-PLLA and NMI-PLLA) labeled with the same FRET pair.

14.
Int J Biol Macromol ; 253(Pt 5): 127230, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37797850

RESUMO

Selective formation of stereocomplex (sc) crystallization in enantiomeric poly(L-lactic acid)/poly(D-lactic acid) (PLLA/PDLA) blends is considered as one of the most effective and promising way to improve the mechanical and thermal properties of polylactide (PLA) materials. However, homocrystallization (hc) prevails over sc crystallization in high-molecular-weight (HMW) PLLA/PDLA blends. Herein, we propose a simple and straightforward approach for fabricating sc crystallization and suppress hc crystallization for HMW PLLA/PDLA blends through the addition of C70 as a nucleator. Non-isothermal crystallization and wide-angel X-ray diffraction studies demonstrate that, the incorporation of 1 wt% C70 overwhelmingly leads to the formation of sc crystallites, while preventing the formation of hc crystallites. Isothermal crystallization experiments at 140 °C reveal a significant reduction in the half-crystallization period of the PLLA/PDLA blend upon the addition of C70. Fourier-transformed infrared spectroscopy suggests that, the improved intermolecular interactions between PLLA and PDLA chains, as well as the inhibition of molecular chain diffusion and mobility, contribute to the accelerated formation of sc facilitated by C70. The enhanced sc crystallization results in a 15.5 °C higher thermal stability in the as-prepared PLLA/PDLA blend with 1 wt% C70 compared to the neat counterpart.


Assuntos
Fulerenos , Polímeros , Polímeros/química , Ácido Láctico/química , Poliésteres/química
15.
Int J Biol Macromol ; 253(Pt 5): 127123, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37774817

RESUMO

The formation of stereocomplex crystalline domains in the bicomponent fiber melt spinning of enantiomeric polylactic acids (PLAs) is systematically explored and enhanced. Here we report a polycrystalline morphology where distinctly different crystalline regions are formed and aligned along the longitudinal direction of the fiber. This approach employs side-by-side and sheath-core bicomponent melt spinning configurations where the two components are the enantiomeric pairs of poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA). We demonstrate the formation of the PLA stereocomplexes at the junction interphase through the melt spinning process which subsequently crystallize into a round fibers with stereocomplex and homogeneous crystal lamella morphologies. The fiber morphologies and crystallinities of the melt processed fiber are substantially different from the solution based bicomponent spinning system reported in the prior literature. Furthermore, the different molecular weight in the PLLA/PDLA pairing are found to be crucial to the structural development and properties of the PLA polycrystalline materials. The solid-state annealing does not change the crystal distribution of the crystalline domains and stereocomplex crystalline state, it just enhances the homo-crystallinity in the peripheral of the bicomponent fibers.


Assuntos
Ácido Láctico , Poliésteres , Poliésteres/química , Ácido Láctico/química , Estereoisomerismo , Peso Molecular
16.
ACS Biomater Sci Eng ; 9(7): 4431-4441, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37452570

RESUMO

Periodontitis is a worldwide bacterial infectious disease, resulting in the resorption of tooth-supporting structures. Biodegradable polymeric microspheres are emerging as an appealing local therapy candidate for periodontal defect regeneration but suffer from tedious procedures and low yields. Herein, we developed a facile yet scalable approach to prepare polylactide composite microspheres with outstanding drug-loading capability. It was realized by blending equimolar polylactide enantiomers at the temperature between the melting point of homocrystallites and stereocomplex (sc) crystallites, enabling the precipitation of sc crystallites in the form of microspheres. Meanwhile, epigallocatechin gallate (EGCG) and nano-hydroxyapatite were encapsulated in the microspheres in the designated amount. Such an assembly allowed the fast and sustained release of EGCG and Ca2+ ions. The resultant hybrid composite microspheres not only exhibited strong antimicrobial activity against typical oral pathogens (Porphyromonas gingivalis and Enterococcus faecalis), but also directly promoted osteogenic differentiation of periodontal ligament stem cells with good cytocompatibility. These dual-functional composite microspheres offer a desired drug delivery platform to address the practical needs for periodontitis treatment.


Assuntos
Osteogênese , Ligamento Periodontal , Microesferas , Células-Tronco , Diferenciação Celular
17.
Materials (Basel) ; 16(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37512361

RESUMO

Polylactides (PLAs) and lactide copolymers are biodegradable, compostable, and derived from renewable resources, offering a sustainable alternative to petroleum-based synthetic polymers owing to their advantages of comparable mechanical properties with commodity plastics and biodegradability. Their hydrolytic stability and thermal properties can affect their potential for long-lasting applications. However, stereocomplex crystallization is a robust method between isomer PLAs that allows significant amelioration in copolymer properties, such as thermal stability, mechanical properties, and biocompatibility, through substantial intermolecular interactions amid l-lactyl and d-lactyl sequences, which have been the key approach to initial degradation rate and further PLA applications. It was demonstrated that the essential parameters affecting stereocomplexation are the mixing ratio and the chain length of each unit sequence. This study deals with the molecular weight, one of the specific interactions between isomers of PLAs. A solution polymerization method was applied to control molecular weight and chain architecture. The stereocomplexation was monitored with DSC. It was confirmed that the lower molecular weight polymer showed a higher degradation rate, as a hydrolyzed fragment having a molecular weight below a certain length dissolves into the water. To systematically explore the critical contribution of molecular weights, the Langmuir system was used to observe the stereocomplexation effect and the overall degradation rate.

18.
Polymers (Basel) ; 15(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37376376

RESUMO

This review paper analyzes the development of advanced class polylactide (PLA) materials through a combination of stereocomplexation and nanocomposites approaches. The similarities in these approaches provide the opportunity to generate an advanced stereocomplex PLA nanocomposite (stereo-nano PLA) material with various beneficial properties. As a potential "green" polymer with tunable characteristics (e.g., modifiable molecular structure and organic-inorganic miscibility), stereo-nano PLA could be used for various advanced applications. The molecular structure modification of PLA homopolymers and nanoparticles in stereo-nano PLA materials enables us to encounter stereocomplexation and nanocomposites constraints. The hydrogen bonding of D- and L-lactide fragments aids in the formation of stereococomplex crystallites, while the hetero-nucleation capabilities of nanofillers result in a synergism that improves the physical, thermal, and mechanical properties of materials, including stereocomplex memory (melt stability) and nanoparticle dispersion. The special properties of selected nanoparticles also allow the production of stereo-nano PLA materials with distinctive characteristics, such as electrical conductivity, anti-inflammatory, and anti-bacterial properties. The D- and L-lactide chains in PLA copolymers provide self-assembly capabilities to form stable nanocarrier micelles for encapsulating nanoparticles. This development of advanced stereo-nano PLA with biodegradability, biocompatibility, and tunability properties shows potential for use in wider and advanced applications as a high-performance material, in engineering field, electronic, medical device, biomedical, diagnosis, and therapeutic applications.

19.
Int J Biol Macromol ; 246: 125543, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37355068

RESUMO

Blending poly(l-lactide) (PLLA) with elastic polymers is an efficient way to obtain highly ductile materials (> 300 %), but it is accompanied by a significant reduction in strength. In this work, a special alternating multilayered composites with alternating stereocomplex crystallite (SC) (PLLA/poly(d-lactide) (PDLA) layer) and highly oriented Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) ribbons (PLLA/PHBV layer) is in situ constructed during laminated structuring process. Experimental results show that in situ formed PHBV ribbons are limitedly distributed in the thickness direction and align parallel to the layer interfaces. More interestingly, not only highly oriented shish crystals but also sparse lamellae of PLLA, which are arrested by SC, shish crystals, and PHBV ribbons, are in situ formed. Compared with sea-island structured composites prepared by traditional compression molding, the alternating multilayered composites show an increase in elongation at break from 8.7 % to 345.1 % and an increase in yield strength from 61.4 MPa to 73.2 MPa. During the tensile testing, the PLLA/PHBV layers firstly form micro-fibrils and micro-voids, driving the molecular chains of the PLLA/PDLA layer to respond in time to external forces through stress transfer of rich continuous layer interfaces. Since shear yielding and plastic deformation can easily penetrate the entire matrix, the alternating multilayered composites go a brittle-ductile transformation and the ductility is improved significantly. The increased strength of the alternating multilayered material is ascribed to the stiff shish crystals and SC. This work provides important guidance for the durable application of strong and ductile PLLA-based materials.


Assuntos
Materiais Biocompatíveis , Poliésteres , Materiais Biocompatíveis/química , Poliésteres/química
20.
Polymers (Basel) ; 15(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37177201

RESUMO

The high cost, low heat resistance, and brittleness of poly(L-lactide) (PLLA) is a significant drawback that inhibits its diffusion into many industrial applications. These weaknesses were solved by forming a polylactide stereocomplex (ST) and blending it with thermoplastic starch (TPS). We blended poly (L-lactide)(PLLA), up to 30% thermoplastic starch, and a chain extender (2%) in an internal mixer, which was then hand-mixed with poly (D-lactide)(PDLA) and injection molded to form specimens, in order to study mechanical, thermal, and crystallization behavior. Differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (XRD) demonstrated that the stereocomplex structures were still formed despite the added TPS and showed melting points ~55 °C higher than neat PLLA. Furthermore, stereocomplex crystallinity decreased with the increased TPS content. Dynamic mechanical analysis revealed that ST improved PLLA heat resistance, and tensile testing suggested that the TPS improved the elongation-at-break of ST. Moreover, the chain extender reduced the degradation of ST/TPS blends and generally improved ST/TPS composites' mechanical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA