Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37190345

RESUMO

In this work, we address the beneficial role of noise in two different contexts, the human brain and financial markets. In particular, the similitude between the ability of financial markets to maintain in equilibrium asset prices is compared with the ability of the human nervous system to balance a stick on a fingertip. Numerical simulations of the human stick balancing phenomenon show that after the introduction of a small quantity of noise and a proper calibration of the main control parameters, intermittent changes in the angular velocity of the stick are able to reproduce the most basilar stylized facts involving price returns in financial markets. These results could also shed light on the relevance of the idea of the "planetary nervous system", already introduced elsewhere, in the financial context.

2.
J R Soc Interface ; 13(119)2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27278361

RESUMO

Stick balancing on the fingertip is a complex voluntary motor task that requires the stabilization of an unstable system. For seated expert stick balancers, the time delay is 0.23 s, the shortest stick that can be balanced for 240 s is 0.32 m and there is a [Formula: see text]° dead zone for the estimation of the vertical displacement angle in the saggital plane. These observations motivate a switching-type, pendulum-cart model for balance control which uses an internal model to compensate for the time delay by predicting the sensory consequences of the stick's movements. Numerical simulations using the semi-discretization method suggest that the feedback gains are tuned near the edge of stability. For these choices of the feedback gains, the cost function which takes into account the position of the fingertip and the corrective forces is minimized. Thus, expert stick balancers optimize control with a combination of quick manoeuvrability and minimum energy expenditures.


Assuntos
Metabolismo Energético , Dedos , Modelos Biológicos , Adolescente , Adulto , Feminino , Humanos , Masculino
3.
Front Comput Neurosci ; 10: 34, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148031

RESUMO

The stabilization of an inverted pendulum on a manually controlled cart (cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a stick on a fingertip, is considered in order to investigate how the human central nervous system (CNS) stabilizes unstable dynamics due to mechanical instability and time delays in neural feedback control. We explore the possibility that a type of intermittent time-delayed feedback control, which has been proposed for human postural control during quiet standing, is also a promising strategy for the CIP task and stick balancing on a fingertip. Such a strategy hypothesizes that the CNS exploits transient contracting dynamics along a stable manifold of a saddle-type unstable upright equilibrium of the inverted pendulum in the absence of control by inactivating neural feedback control intermittently for compensating delay-induced instability. To this end, the motions of a CIP stabilized by human subjects were experimentally acquired, and computational models of the system were employed to characterize the experimental behaviors. We first confirmed fat-tailed non-Gaussian temporal fluctuation in the acceleration distribution of the pendulum, as well as the power-law distributions of corrective cart movements for skilled subjects, which was previously reported for stick balancing. We then showed that the experimental behaviors could be better described by the models with an intermittent delayed feedback controller than by those with the conventional continuous delayed feedback controller, suggesting that the human CNS stabilizes the upright posture of the pendulum by utilizing the intermittent delayed feedback-control strategy.

4.
Cogn Process ; 16(4): 351-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25925132

RESUMO

When facing a task of balancing a dynamic system near an unstable equilibrium, humans often adopt intermittent control strategy: Instead of continuously controlling the system, they repeatedly switch the control on and off. Paradigmatic example of such a task is stick balancing. Despite the simplicity of the task itself, the complexity of human intermittent control dynamics in stick balancing still puzzles researchers in motor control. Here we attempt to model one of the key mechanisms of human intermittent control, control activation, using as an example the task of overdamped stick balancing. In doing so, we focus on the concept of noise-driven activation, a more general alternative to the conventional threshold-driven activation. We describe control activation as a random walk in an energy potential, which changes in response to the state of the controlled system. By way of numerical simulations, we show that the developed model captures the core properties of human control activation observed previously in the experiments on overdamped stick balancing. Our results demonstrate that the double-well potential model provides tractable mathematical description of human control activation at least in the considered task and suggest that the adopted approach can potentially aid in understanding human intermittent control in more complex processes.


Assuntos
Modelos Teóricos , Movimento/fisiologia , Dinâmica não Linear , Equilíbrio Postural/fisiologia , Desempenho Psicomotor/fisiologia , Feminino , Humanos , Masculino
5.
J R Soc Interface ; 11(99)2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25056217

RESUMO

Understanding how humans control unstable systems is central to many research problems, with applications ranging from quiet standing to aircraft landing. Increasingly, much evidence appears in favour of event-driven control hypothesis: human operators only start actively controlling the system when the discrepancy between the current and desired system states becomes large enough. The event-driven models based on the concept of threshold can explain many features of the experimentally observed dynamics. However, much still remains unclear about the dynamics of human-controlled systems, which likely indicates that humans use more intricate control mechanisms. This paper argues that control activation in humans may be not threshold-driven, but instead intrinsically stochastic, noise-driven. Specifically, we suggest that control activation stems from stochastic interplay between the operator's need to keep the controlled system near the goal state, on the one hand, and the tendency to postpone interrupting the system dynamics, on the other hand. We propose a model capturing this interplay and show that it matches the experimental data on human balancing of virtual overdamped stick. Our results illuminate that the noise-driven activation mechanism plays a crucial role at least in the considered task, and, hypothetically, in a broad range of human-controlled processes.


Assuntos
Modelos Biológicos , Equilíbrio Postural/fisiologia , Desempenho Psicomotor/fisiologia , Fenômenos Biomecânicos , Feminino , Jogos Experimentais , Humanos , Masculino , Limiar Sensorial/fisiologia , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA