Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
1.
Heliyon ; 10(14): e34310, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39113959

RESUMO

Sulfur dioxide (SO2) is one of the most used additives in wine industry for its antioxidant and antimicrobial activity. However, due to health concerns, consumers' demand of wines with either reduced or totally replaced SO2 has increased. This study aimed to assess the effect of partial and total replacement of SO2 with a vine-shoots extract rich in stilbenes in rosé (cv. Sangiovese) and red (cv. Negramaro) wines respectively. Color as well as phenolic, volatile, and sensory profiles of wines were evaluated at bottling and during storage. The results showed that the vine-shoots extract increased the levels of trans-resveratrol, catechin, and gallic acid in wines. Moreover, the positive correlation of procyanidin dimers in red wine suggested an increase of the polymerization reactions. The amount of added extract probably provided lower antimicrobial protection compared to SO2, as indicated by the higher levels of ethyl phenol. The decrease of individual anthocyanins and oxidation aldehydes observed in wines with SO2 replacement and the higher levels of caftaric acid in the rosé wine with the extract suggested a shift of the oxidative protection, with a lower protection towards anthocyanin degradation and higher protection towards carbonyl formation and oxidation of readily oxidizable phenolic acids.

2.
Int J Biol Macromol ; 279(Pt 1): 135020, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39208895

RESUMO

Starch-polyphenol V-type inclusion complex has become a hot topic due to its anti-digestibility and nutritional function. This paper aimed to explore the molecular motion behavior of starch affects starch-polyphenol inclusion complex and digestibility among different stilbene polyphenol structures (resveratrol (RA), pterostilbene (PB) and polydatin (PD) via the high-pressure homogenization (HPH) and heat moisture treatment (HMT) processes), which represented the fully extended and limited molecular motion behavior of starch, respectively. These results revealed distinct trends in complex formation among different stilbenes polyphenol structures, highlighting RA as particularly conducive to increasing single helix and V-type crystalline structures with the highest resistant starch (RS) content of 28.11 % due to its smaller steric hindrance. Novelty, in HPH environments with extended molecular motion behavior, the steric hindrance and hydrophobicity/CH-π interactions of polyphenols influence complex formation in the order of RA > PB > PD. Conversely, in HMT systems with limited molecular motion behavior, the limited movement of molecules emphasized the importance of hydrogen bond interactions between polyphenols and starch. Thus, the glucoside in PD enhanced its interaction with starch compared to methoxy-modified PB, leading to increased formation of inclusion complex with RS content of 18.61 %. Overall, these findings deepen the understanding of starch-polyphenol interactions.

3.
Molecules ; 29(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39065005

RESUMO

Phenolic compounds are the main special metabolites of Cyperaceae species from phytochemical, pharmacological, and chemotaxonomical points of view. The present study focused on the isolation, structure determination, and pharmacological investigation of constituents from Carex praecox. Twenty-six compounds, including lignans, stilbenes, flavonoids, megastigmanes, chromenes, and phenylpropanoids, were identified from the methanol extract of the plant. Five of these compounds, namely, carexines A-E, are previously undescribed natural products. All compounds were isolated for the first time from C. praecox. The ACE-inhibitory activity of seven stilbenoid compounds was tested, and (-)-hopeaphenol proved to be the most active (IC50 7.7 ± 0.9 µM). The enzyme-kinetic studies revealed a mixed-type inhibition; therefore, domain-specific studies were also conducted. The in silico docking of (-)-hopeaphenol to the ACE affirmed some favorable interactions. In addition, the antiproliferative and antibacterial effects of some compounds were also evaluated.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Carex (Planta) , Simulação de Acoplamento Molecular , Compostos Fitoquímicos , Extratos Vegetais , Estilbenos , Estilbenos/química , Estilbenos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Carex (Planta)/química , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Humanos , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Fenóis
4.
Fitoterapia ; 177: 106135, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39047845

RESUMO

A naturally occurring stilbene, resveratrol, shows promising effects in the treatment of malignant pleural mesothelioma (MPM) both as a single agent and in combination with chemotherapeutic drugs. To discover new anticancer agents targeting MPM, stilbene-targeted isolation was performed on the roots of Polygonum multiflorum Thunb., an herbal medicine rich in stilbene compounds. In this study, seven stilbene glycosides (1-7) were isolated, along with four non-stilbenes (8-11), of which compounds 4 and 9-11 have not previously been isolated from this species. Stiquinoside A (1) is a previously undescribed stilbene glycoside, and its structure was elucidated as (E)-2,3,5,4'-tetrahydroxystilbene 2-O-ß-d-quinovopyranoside based on 1D and 2D-NMR, HR-ESI-MS, and acid hydrolysis experiments. Compounds 1, 4, 6, and 8 significantly inhibit the growth of MPM cancer cells H2452. These results demonstrate the potential utility of stilbenes in new strategies for the treatment of MPM.


Assuntos
Antineoplásicos Fitogênicos , Fallopia multiflora , Mesotelioma Maligno , Raízes de Plantas , Estilbenos , Humanos , Estilbenos/farmacologia , Estilbenos/isolamento & purificação , Raízes de Plantas/química , Estrutura Molecular , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Mesotelioma Maligno/tratamento farmacológico , Fallopia multiflora/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Glicosídeos/farmacologia , Glicosídeos/isolamento & purificação , Mesotelioma/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , China
5.
Arch Iran Med ; 27(7): 379-384, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39072386

RESUMO

BACKGROUND: This study was conducted to assess the prospective association between dietary polyphenols intakes and risk of metabolic syndrome (MetS) and its components. METHODS: Participants in this study (n=4559) were selected from among the adults of the Tehran Lipid and Glucose Study (TLGS) with an average follow-up of 5.9+2.5 years. Biochemical and anthropometric variables were measured at baseline and follow-up examinations. A reliable and valid semi-quantitative food frequency questionnaire was used to evaluate dietary intakes. The incidence of MetS and its components in relation to polyphenols and its subclasses (phenolic acids, flavonoids, lignans, and stilbenes) was evaluated using multivariable Cox proportional hazard regression models. RESULTS: Of the 4559 subjects who enrolled in the present study, 1765 were male aged 38.6+14.2 y and 2794 were female aged 35.9+11.7 y. The hazard ratios of MetS were 25% lower in Q2 (HR, 95% CI: 0.75, 0.64‒0.88), 22% lower in Q3 (HR, 95% CI: 0.78, 0.65‒0.94) and 24% lower in Q4 (HR, 95% CI: 0.76, 0.61‒0.95) in comparison to Q1, whereas the results for subclasses of polyphenol were non-significant. The risk of high blood pressure (BP) reduced from quartiles 1 to 4 for phenolic acid (HR: 1.00, 0.88, 0.79, 0.80, Ptrend=0.03). The risk of low high-density lipoprotein cholesterol (HDL-C) increased across quartiles of phenolic acid (HR: 1.00, 1.22, 1.07, 1.30, Ptrend=0.02). CONCLUSION: This study highlights the potential protective role of total dietary polyphenols in the prevention of MetS. These findings could be the starting point of upcoming trials to illuminate the optimal level of polyphenols deriving from the intake of polyphenol-rich diets to prevent MetS.


Assuntos
Síndrome Metabólica , Polifenóis , Modelos de Riscos Proporcionais , Humanos , Síndrome Metabólica/epidemiologia , Feminino , Irã (Geográfico)/epidemiologia , Masculino , Polifenóis/administração & dosagem , Adulto , Pessoa de Meia-Idade , Estudos Prospectivos , Dieta , Incidência , Fatores de Risco , Glicemia/análise
6.
Front Pharmacol ; 15: 1364460, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746013

RESUMO

Introduction: Rhubarb is a traditional Chinese medicine (TCM) used to release heat and has cathartic effects. Official rhubarb in Taiwan Herbal Pharmacopeias 4th edition (THP 4th) and China Pharmacopeia 2020 (CP 2020) are the roots and rhizomes of Rheum palmatum L., Rheum tanguticum Maxim. ex Balf., and Rheum officinale Baill. However, the Rheum genus is a large genus with many different species, and owing to the similarity in appearance and taste with official rhubarb, there needs to be more clarity in the distinction between the species of rhubarb and their applications. Given the time-consuming and complicated extraction and chromatography methods outlined in pharmacopeias, we improved the qualitative analysis and quantitative analysis methods for rhubarb in the market. Hence, we applied our method to identify the species and quality of official and unofficial rhubarb. Method: We analyzed 21 rhubarb samples from the Taiwanese market using a proposed HPLC-based extraction and qualitative analysis employing eight markers: aloe-emodin, rhein, emodin, chrysophanol, physcion, rhapontigenin, rhaponticin, and resveratrol. Additionally, we developed a TLC method for the analysis of rhubarb. KEGG pathway analysis was used to clarify the phytochemical and pharmacological knowledge of official and unofficial rhubarb. Results: Rhein and rhapontigenin emerged as key markers to differentiate official and unofficial rhubarb. Rhapontigenin is abundant in unofficial rhubarb; however, rhein content was low. In contrast, their contents in official rhubarb were opposite to their contents in unofficial rhubarb. The TLC analysis used rhein and rhapontigenin to identify rhubarb in Taiwan's markets, whereas the KEGG pathway analysis revealed that anthraquinones and stilbenes affected different pathways. Discussion: Eight reference standards were used in this study to propose a quality control method for rhubarb in Taiwanese markets. We propose a rapid extraction method and quantitative analysis of rhubarb to differentiate between official and unofficial rhubarb.

7.
J Agric Food Chem ; 72(17): 9621-9636, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648422

RESUMO

This study focuses on countering Fusarium graminearum, a harmful fungal pathogen impacting cereal crops and human health through mycotoxin production. These mycotoxins, categorized as type B trichothecenes, pose significant health risks. Research explores natural alternatives to synthetic fungicides, particularly investigating phenolics in grapevine byproducts. Thirteen eco-extracts from five French grape varieties (Merlot, Cabernet Sauvignon, Sauvignon blanc, Tannat, and Artaban) exhibited substantial antifungal properties, with ten extracts displaying remarkable effects. Extracts from grapevine stems and roots notably reduced fungal growth by over 91% after five days. Through UHPLC-HRMS/MS analysis and metabolomics, the study identified potent antifungal compounds such as ampelopsin A and cyphostemmin B, among other oligomeric stilbenes. Interestingly, this approach showed that flavan-3-ols have been identified as markers for extracts that induce fungal growth. Root extracts from rootstocks, rich in oligostilbenes, demonstrated the highest antifungal activity. This research underscores grapevine byproducts' potential both as a sustainable approach to control F. graminearum and mycotoxin contamination in cereal crops and the presence of different metabolites from the cultivars of grapevine, suggesting different activities.


Assuntos
Fusarium , Extratos Vegetais , Espectrometria de Massas em Tandem , Vitis , Vitis/química , Vitis/microbiologia , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Doenças das Plantas/microbiologia , Resíduos/análise
8.
Arch Microbiol ; 206(5): 229, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647675

RESUMO

In modern times, medicine is predominantly based on evidence-based practices, whereas in ancient times, indigenous people relied on plant-based medicines with factual evidence documented in ancient books or folklore that demonstrated their effectiveness against specific infections. Plants and microbes account for 70% of drugs approved by the USFDA (U.S. Food and Drug Administration). Stilbenes, polyphenolic compounds synthesized by plants under stress conditions, have garnered significant attention for their therapeutic potential, bridging ancient wisdom with modern healthcare. Resveratrol, the most studied stilbene, initially discovered in grapes, red wine, peanuts, and blueberries, exhibits diverse pharmacological properties, including cardiovascular protection, antioxidant effects, anticancer activity, and neuroprotection. Traditional remedies, documented in ancient texts like the Ayurvedic Charak Samhita, foreshadowed the medicinal properties of stilbenes long before their modern scientific validation. Today, stilbenes are integral to the booming wellness and health supplement market, with resveratrol alone projected to reach a market value of 90 million US$ by 2025. However, challenges in stilbene production persist due to limited natural sources and costly extraction methods. Bioprospecting efforts reveal promising candidates for stilbene production, particularly endophytic fungi, which demonstrate high-yield capabilities and genetic modifiability. However, the identification of optimal strains and fermentation processes remains a critical consideration. The current review emphasizes the knowledge of the medicinal properties of Stilbenes (i.e., cardiovascular, antioxidant, anticancer, anti-inflammatory, etc.) isolated from plant and microbial sources, while also discussing strategies for their commercial production and future research directions. This also includes examples of novel stilbenes compounds reported from plant and endophytic fungi.


Assuntos
Resveratrol , Estilbenos , Estilbenos/química , Estilbenos/farmacologia , Humanos , Resveratrol/farmacologia , Resveratrol/química , Fungos/efeitos dos fármacos , Endófitos/química , Endófitos/metabolismo , Endófitos/isolamento & purificação , Antioxidantes/química , Antioxidantes/farmacologia , Medicina Tradicional , Plantas/química
9.
J Agric Food Chem ; 72(14): 7655-7671, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38536950

RESUMO

Stilbenes belong to the naturally synthesized plant phytoalexins, produced de novo in response to various biotic and abiotic stressors. The importance of stilbenes in plant resistance to stress and disease is of increasing interest. However, the defense mechanisms and potential of stilbenes to improve plant stress tolerance have not been thoroughly reviewed. This work overviewed the pentose phosphate pathway, glycolysis pathway, shikimate pathway, and phenylalanine pathway occurred in the synthesis of stilbenes when plants are subjected to biotic and abiotic stresses. The positive implications and underlying mechanisms regarding defensive properties of stilbenes were demonstrated. Ten biomimetic chemosynthesis methods can underpin the potential of stilbenes to improve plant stress tolerance. The prospects for the application of stilbenes in agriculture, food, cosmetics, and pharmaceuticals industries are anticipated. It is hoped that some of the detailed ideas and practices may contribute to the development of stilbene-related products and improvement of plant resistance breeding.


Assuntos
Estilbenos , Estilbenos/metabolismo , Melhoramento Vegetal , Plantas/genética , Plantas/metabolismo , Estresse Fisiológico , Mecanismos de Defesa
10.
J Sci Food Agric ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441534

RESUMO

BACKGROUND: trans-Resveratrol (TR) is a well-known phytochemical compound with important biological properties. It can be recovered from agri-food by-products or wastes, such as vine shoots. Once recovered, its concentration should be measured, possibly in a green, non-destructive, and efficient manner. With these premises, this work aimed to explore the feasibility of excitation-emission fluorescence spectroscopy combined with chemometrics for the analysis of TR in raw extracts obtained from vine shoots. A total of 75 extracts were produced and analyzed by ultra-performance liquid chromatography method with diode array detection (UPLC-DAD) and spectrofluorimetry. Then, the feasibility of two calibration strategies for TR quantitation was assessed - a parallel factor analysis (PARAFAC)-based calibration and the N-way partial least squares (NPLS) regression. RESULTS: The extracts showed variable TR content, the excitation/emission maxima of which were at around 305/390 nm, respectively. The best PARAFAC-based calibration allowed a root mean square error of prediction (RMSEP) of 22.57 mg L-1 , and a relative prediction deviation (RPD) of 2.91 to be obtained but a large number of PARAFAC components should be considered to improve the predictions. The results of the NPLS regression were slightly better, with a RMSEP of 19.47 mg L-1 , and an RPD of 3.33 in the best case. CONCLUSION: Fluorescence could be an alternative analytical technique to measure TR in complex samples. Chemometric tools allowed the identification of the TR signal in the fluorescence landscapes, which could be further used for its non-destructive quantitation. The need for a more accurate criterion for optimal PARAFAC complexity emerged. © 2024 Society of Chemical Industry.

11.
Nat Prod Res ; : 1-9, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225899

RESUMO

In this study we evaluated the effect of prenylated peanut stilbenoids on the growth, biofilm accumulation and acid production of the dental caries pathogen Streptococcus mutans. Prior research with the non-prenylated stilbenes, resveratrol and piceatannol, has shown that these molecules are active against S. mutans. Here we sought to determine if the addition of a prenyl group to the stilbene backbone increased anti-S. mutans activities. Two prenylated stilbenes, arachidin-1 and arachidin-3, were produced using a peanut hairy root production system. Compared to resveratrol and piceatannol, both arachidin-1 and arachidin-3 led to greater inhibition of S. mutans planktonic growth. This effect also led to reduced biofilm formation, by inhibiting growth, instead of a specific action against biofilm cells. Lastly, sub-MIC concentrations of arachidin-3 reduced the acid production of S. mutans above the 'critical pH' that leads to tooth enamel erosion. In summary, stilbenoids have anti-S. mutans activity, and prenylation enhances this activity.

12.
Molecules ; 29(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257336

RESUMO

Naturally occurring stilbenoids, such as the (E)-stilbenoid resveratrol and the (Z)-stilbenoid combretastatin A4, have been considered as promising lead compounds for the development of anticancer drugs. The antitumour properties of stilbenoids are known to be modulated by cytochrome P450 enzymes CYP1A1 and CYP1B1, which contribute to extrahepatic phase I xenobiotic and drug metabolism. Thirty-four methyl ether analogues of resveratrol were synthesised, and their anticancer properties were assessed, using the MTT cell proliferation assay on a panel of human breast cell lines. Breast tumour cell lines that express CYP1 were significantly more strongly affected by the resveratrol analogues than the cell lines that did not have CYP1 activity. Metabolism studies using isolated CYP1 enzymes provided further evidence that (E)-stilbenoids can be substrates for these enzymes. Structures of metabolic products were confirmed by comparison with synthetic standards and LC-MS co-elution studies. The most promising stilbenoid was (E)-4,3',4',5'-tetramethoxystilbene (DMU212). The compound itself showed low to moderate cytotoxicity, but upon CYP1-catalysed dealkylation, some highly cytotoxic metabolites were formed. Thus, DMU212 selectively affects proliferation of cells that express CYP1 enzymes.


Assuntos
Citocromo P-450 CYP1A1 , Família 1 do Citocromo P450 , Humanos , Resveratrol/farmacologia , Catálise , Linhagem Celular Tumoral
13.
Plant Sci ; 341: 111994, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38262480

RESUMO

As significant phytoalexins, stilbene compounds can improve the stress resistance of grapes under biotic and abiotic stress conditions and have biological effects such as antitumour, antioxidant, immune regulation and cardiovascular protection activities in humans. RESVERATROL SYNTHASE (RS), also known as STILBENE SYNTHASE (STS), is the critical enzyme regulating stilbene synthesis and has been identified in a few plant species. However, the regulatory mechanisms of stilbene synthesis are uncertain. In this study, an NAC family transcription factor from Vitis quinquangularis, named VqNAC44, was characterized as an indirect regulator of stilbene synthesis. It is worth noting that VqNAC44 did not bind to the STS promoter nor did it interact with the STS protein but interacted with the MYB transcription factor VqMYB15. This interaction between VqMYB15 and VqNAC44 was validated by a yeast two-hybrid assay and bimolecular fluorescence complementation. Overexpressing VqNAC44 in Arabidopsis thaliana significantly increased its tolerance to biotic and abiotic stresses. Transient overexpression of VqNAC44 and VqMYB15 in grape leaves resulted in increased expression of the STS gene and increased production of stilbene compounds. The experimental results confirmed that VqNAC44 regulated stilbene synthesis by interacting with VqMYB15, thereby enhancing the plant stress resistance.


Assuntos
Arabidopsis , Estilbenos , Vitis , Humanos , Vitis/metabolismo , Resistência à Doença/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Estilbenos/metabolismo , China , Regulação da Expressão Gênica de Plantas
14.
J Exp Bot ; 75(6): 1671-1695, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38198655

RESUMO

Lignin, flavonoids, melatonin, and stilbenes are plant specialized metabolites with diverse physiological and biological functions, supporting plant growth and conferring stress resistance. Their biosynthesis requires O-methylations catalyzed by 5-hydroxyconiferaldehyde O-methyltransferase (CAldOMT; also called caffeic acid O-methyltransferase, COMT). CAldOMT was first known for its roles in syringyl (S) lignin biosynthesis in angiosperm cell walls and later found to be multifunctional. This enzyme also catalyzes O-methylations in flavonoid, melatonin, and stilbene biosynthetic pathways. Phylogenetic analysis indicated the convergent evolution of enzymes with OMT activities towards the monolignol biosynthetic pathway intermediates in some gymnosperm species that lack S-lignin and Selaginella moellendorffii, a lycophyte which produces S-lignin. Furthermore, neofunctionalization of CAldOMTs occurred repeatedly during evolution, generating unique O-methyltransferases (OMTs) with novel catalytic activities and/or accepting novel substrates, including lignans, 1,2,3-trihydroxybenzene, and phenylpropenes. This review summarizes multiple aspects of CAldOMTs and their related proteins in plant metabolism and discusses their evolution, molecular mechanism, and roles in biorefineries, agriculture, and synthetic biology.


Assuntos
Melatonina , Estilbenos , Lignina , Filogenia , Metiltransferases/genética , Metabolismo Secundário , Flavonoides , Proteínas de Plantas/genética
15.
Chembiochem ; 25(2): e202300698, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37889156

RESUMO

Using high-fidelity, permeable, lipophilic, and bright fluorophores for imaging lipid droplets (LDs) in tissues holds immense potential in diagnosing conditions such as diabetic or alcoholic fatty liver disease. In this work, we utilized linear and Λ-shaped polarity-sensitive fluorescent probes for imaging LDs in both cellular and tissue environments, specifically in rats with diabetic and alcoholic fatty liver disease. The fluorescent probes possess several key characteristics, including high permeability, lipophilicity, and brightness, which make them well-suited for efficient LD imaging. Notably, the probes exhibit a substantial Stokes shift, with 143 nm for DCS and 201 nm for DCN with selective targeting of the lipid droplets. Our experimental investigations successfully differentiated morphological variations between diseased and normal tissues in three distinct tissue types: liver, adipose, and small intestine. They could help provide pointers for improved detection and understanding of LD-related pathologies.


Assuntos
Diabetes Mellitus , Fígado Gorduroso Alcoólico , Ratos , Animais , Gotículas Lipídicas , Corantes Fluorescentes
16.
Neurochem Res ; 49(2): 306-326, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37940760

RESUMO

Neurodegenerative disorders are characterized by mitochondrial dysfunction and subsequently oxidative stress, inflammation, and apoptosis that contribute to neuronal cytotoxicity and degeneration. Huntington's (HD), Alzheimer's (AD), and Parkinson's (PD) diseases are three of the major neurodegenerative diseases. To date, researchers have found various natural phytochemicals that could potentially be used to treat neurodegenerative diseases. Particularly, the application of natural phenolic compounds has gained significant traction in recent years, driven by their various biological activities and therapeutic efficacy in human health. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and can neutralize the effects of oxidative stress, inflammation, and apoptosis in animal models. This review focuses on the current state of knowledge on phenolic compounds, including phenolic acids, flavonoids, stilbenes, and coumarins, as well as their beneficial effects on human health. We further provide an overview of the therapeutic potential and mechanisms of action of natural dietary phenolics in curing neurodegenerative diseases in animal models.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fenóis/farmacologia , Fenóis/uso terapêutico , Polifenóis/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Inflamação/tratamento farmacológico
17.
Microorganisms ; 11(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38138103

RESUMO

The abnormal proliferation of Cutibacterium acnes is the main cause of acne vulgaris. Natural antibacterial plant extracts have gained great interest due to the efficacy and safety of their use in skin care products. Bletilla striata is a common externally used traditional Chinese medicine, and several of its isolated stilbenes were reported to exhibit good antibacterial activity. In this study, the antimicrobial activity of stilbenes from B. striata (BSS) against C. acnes and its potential effect on cell membrane were elucidated by determining the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), bacterial growth curve, adenosine triphosphate (ATP) levels, membrane potential (MP), and the expression of genes related to fatty acid biosynthesis in the cell membrane. In addition, the morphological changes in C. acnes by BSS were observed using transmission electron microscopy (TEM). Experimentally, we verified that BSS possessed significant antibacterial activity against C. acnes, with an MIC and MBC of 15.62 µg/mL and 62.5 µg/mL, respectively. The growth curve indicated that BSS at 2 MIC, MIC, 1/2 MIC, and 1/4 MIC concentrations inhibited the growth of C. acnes. TEM images demonstrated that BSS at an MIC concentration disrupted the morphological structure and cell membrane in C. acnes. Furthermore, the BSS at the 2 MIC, MIC, and 1/2 MIC concentrations caused a decrease in the intracellular ATP levels and the depolarization of the cell membrane as well as BSS at an MIC concentration inhibited the expression of fatty acid biosynthesis-associated genes. In conclusion, BSS could exert good antimicrobial activity by interfering with cell membrane in C. acnes, which have the potential to be developed as a natural antiacne additive.

18.
Front Pharmacol ; 14: 1326682, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155902

RESUMO

Stilbenes are characterized by a vinyl group connecting two benzene rings to form the basic parent nucleus. Hydrogen atoms on different positions of the benzene rings can be substituted with hydroQxyl groups. These unique structural features confer anti-inflammatory, antibacterial, antiviral, antioxidant, anticancer, cardiovascular protective, and neuroprotective pharmacological effects upon these compounds. Numerous small molecule compounds have demonstrated these pharmacological activities in recent years, including Resveratrol, and Pterostilbene, etc. Tamoxifen and Raloxifene are FDA-approved commonly prescribed synthetic stilbene derivatives. The emphasis is on the potential of these small molecules and their structural derivatives as epigenetic regulators in various diseases. Stilbenes have been shown to modulate epigenetic marks, such as DNA methylation and histone modification, which can alter gene expression patterns and contribute to disease development. This review will discuss the mechanisms by which stilbenes regulate epigenetic marks in various diseases, as well as clinical trials, with a focus on the potential of small molecule and their derivatives such as Resveratrol, Pterostilbene, and Tamoxifen.

19.
Molecules ; 28(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005243

RESUMO

The control of oxidative stress with natural active substances could limit the development of numerous pathologies. Our objective was to study the antiradical effects of resveratrol (RSV), ε-viniferin (VNF), and vitisin B (VB) alone or in combination, and those of a standardized stilbene-enriched vine extract (SSVE). In the DPPH-, FRAP-, and NO-scavenging assays, RSV presented the highest activity with an IC50 of 81.92 ± 9.17, 13.36 ± 0.91, and 200.68 ± 15.40 µM, respectively. All binary combinations resulted in additive interactions in the DPPH- and NO-scavenging assays. In the FRAP assay, a synergic interaction for RSV + VNF, an additive for VNF + VB, and an antagonistic for RSV + VB were observed. The ternary combination of RSV + VNF + VB elicited an additive interaction in the DPPH assay and a synergic interaction in the FRAP- and NO-scavenging assays. There was no significant difference between the antioxidant activity of the SSVE and that of the combination of RSV + VNF. In conclusion, RSV presented the highest effects, followed by VNF and VB. The interactions revealed additive or synergistic effects, depending on the combination of the stilbenes and assay.


Assuntos
Antioxidantes , Estilbenos , Resveratrol , Antioxidantes/farmacologia , Estilbenos/farmacologia
20.
Plants (Basel) ; 12(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37836128

RESUMO

The heartwood of the Swiss Stone Pine, Pinus cembra L., has been scarcely investigated for secondary metabolites for a long period of time. Considering age and relative simplicity of heartwood investigations dating back to the 1940s to 1960s, we conducted the first investigation of P. cembra heartwood by HPLC, using UHPLC-DAD-ESI-MSn and HPLC-DAD techniques in combination with isolation and NMR spectroscopy, with focus on stilbenes, bibenzyls and flavonoids. Analytical problems in the HPLC analysis of Pinus stilbenes and flavonoids on reversed stationary phases were also challenged, by comparing HPLC on pentafluorophenyl (PFP) and C18 stationary phases. Seven flavonoids (1, 2, 3, 7, 8, 11, 12), four stilbenes (4, 6, 10, 13), two bibenzyls (5, 9), three fatty acids (14, 16, 17) and one diterpenic acid (15) were detected in an ethanolic extract of Pinus cembra heartwood. HPLC comparison of reversed stationary phases in HPLC showed that the antifungal, antibacterial and chemosensitizing dihydropinosylvin monomethyl ether (9) and pinosylvin monomethyl ether (10) can be separated on PFP, but not on C18 material, when eluting with a screening gradient of 20-100% acetonitrile. Flavonoid separation showed additional benefits of combining analyses on different stationary phases, as flavonoids 7 and 8 could only be separated on one of two C18 stationary phases. Earlier phytochemical results for heartwood investigations were shown to be mostly correct, yet expandable. Substances 5 to 12 were found in alignment with these references, proving remarkable phytochemical analyses at the time. Evidence for the described presence of pinobanksin could not be found. Substances 1 to 4 and 13 have to our knowledge not yet been described for P. cembra.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA