Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Molecules ; 29(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893512

RESUMO

COVID-19 continues to spread around the world. This is mainly because new variants of the SARS-CoV-2 virus emerge due to genomic mutations, evade the immune system and result in the effectiveness of current therapeutics being reduced. We previously established a series of detection platforms, comprising computational docking analysis, S-protein-based ELISA, pseudovirus entry, and 3CL protease activity assays, which allow us to screen a large library of phytochemicals from natural products and to determine their potential in blocking the entry of SARS-CoV-2. In this new screen, rutaecarpine (an alkaloid from Evodia rutaecarpa) was identified as exhibiting anti-SARS-CoV-2 activity. Therefore, we conducted multiple rounds of structure-activity-relationship (SAR) studies around this phytochemical and generated several rutaecarpine analogs that were subjected to in vitro evaluations. Among these derivatives, RU-75 and RU-184 displayed remarkable inhibitory activity when tested in the 3CL protease assay, S-protein-based ELISA, and pseudovirus entry assay (for both wild-type and omicron variants), and they attenuated the inflammatory response induced by SARS-CoV-2. Interestingly, RU-75 and RU-184 both appeared to be more potent than rutaecarpine itself, and this suggests that they might be considered as lead candidates for future pharmacological elaboration.


Assuntos
Antivirais , Desenho de Fármacos , Alcaloides Indólicos , Simulação de Acoplamento Molecular , Quinazolinas , SARS-CoV-2 , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , SARS-CoV-2/efeitos dos fármacos , Quinazolinas/farmacologia , Quinazolinas/química , Humanos , Antivirais/farmacologia , Antivirais/química , Relação Estrutura-Atividade , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Internalização do Vírus/efeitos dos fármacos , Quinazolinonas
2.
Heliyon ; 10(11): e32262, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38912512

RESUMO

Simultaneous inhibition of soluble epoxide hydrolase (sEH) and fatty acid amide hydrolase (FAAH) with a single small molecule represents a novel therapeutic approach in treating inflammatory pain, since both targets are involved in pain and inflammation processes. In this study using multi-target directed ligands methodology we designed and synthesized 7 quinolinyl-based dual sEH/FAAH inhibitors, using an optimized microwave-assisted Suzuki-Miyaura coupling reaction and tested their potency in human FAAH and human, rat, and mouse sEH inhibition assays. The structure-activity relationship study showed that quinolinyl moiety is well tolerated in the active sites of both enzymes, yielding several very potent dual sEH/FAAH inhibitors with the IC50 values in the low nanomolar range. The most potent dual inhibitor 4d was further evaluated in stability assay in human and rat plasma where it performed better than the standard Warfarin while in vivo study revealed that 1 mg/kg 4d can inhibit acute inflammatory pain in male rats to a similar degree as the traditional nonsteroidal anti-inflammatory drug ketoprofen (30 mg/kg) after intraperitoneal injection. ADMET prediction studies for this dual inhibitor show favorable pharmacokinetic properties which will guide the future in vivo evaluations.

3.
Saudi Pharm J ; 32(5): 102025, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38550332

RESUMO

Based on previous developments of our research programs in trying to find new compounds with multiple biological targets such as antioxidant, anti-diabetic, anti-Alzheimer's, and anti-arthritic agents. In the context, a novel series of sulfonamide derivatives based on the pyrazole or pyridine moieties 3a, b, 7-9, 11-13, 15a, b, and 16 were synthesized from amine compounds with sulfonyl chloride derivatives. The structures of sulfonamide derivatives were elucidated via spectroscopy (1H and 13C NMR). The sulfonamide derivatives were biologically assessed in vitro for their anti-diabetic (α-amylase and α-glucosidase inhibition) and anti-Alzheimer's (acetylcholinesterase inhibition) activities. The biological results revealed that compound 15a is a powerful enzyme inhibitor for α-amylase and α-glucosidase. Also, compound 15b demonstrated inhibitor activity against the acetylcholinesterase enzyme. The structure-activity relationship study of sulfonamide derivatives was accomplished. Furthermore, complementary in silico molecular properties, drug-likeness, ADMET prediction, and surface properties of the two more powerful derivatives 15a and 15b were fulfilled and computed. These studies recommend 15a and 15b as candidates with modifications in their structures before the in vivo assays.

4.
Yakugaku Zasshi ; 143(7): 551-557, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37394451

RESUMO

Naturally occurring cyclopeptides are potential middle-molecule drug candidates beyond Lipinski's rule of five. This paper focuses on the structural determination and structure-activity relationship (SAR) study of two cyclopeptides: asperterrestide A and decatransin. The proposed asperterrestide A was synthesized by solution-phase peptide elongation, followed by macrolactamization. NMR analysis and molecular modeling studies revealed the stereochemistry at the two α-positions of amino acid residues as opposite to each other. This was further confirmed by the total synthesis of the revised asperterrestide A. SAR study of synthetic products revealed that the ß-hydroxy group in the nonproteinogenic amino acid residue was not essential for its cytotoxicity. In addition, N-alkyl-enriched peptide fragments of decatransin were synthesized in solution-phase without diketopiperadine formation. The putative candidates of decatransin was synthesized by convergent peptide coupling, followed by macrocyclization under modified Mitsunobu conditions. The structure of the natural decatransin, including its absolute configuration, was determined through a comparison of spectral data and the cytotoxicity exhibited by the synthetic products.


Assuntos
Aminoácidos , Peptídeos Cíclicos , Peptídeos Cíclicos/química , Peptídeos/química , Relação Estrutura-Atividade , Modelos Moleculares
5.
Bioorg Chem ; 135: 106493, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36996509

RESUMO

Cyclovirobuxine-D (CVB-D) is a Buxus alkaloid and a major active constituent in the Chinese medicinal herb Buxus microphylls. Traditionally, the natural alkaloid cyclovirobuxine-D has a long history of use as a traditional Chinese medicine for cardiovascular diseases as well as to treat a wide variety of medical conditions. As we found that CVB-D inhibited T-type calcium channels, we designed and synthesized a variety of fragments and analogues and evaluated them for the first time as new Cav3.2 inhibitors. Compounds 2-7 exhibited potency against Cav 3.2 channels, and two of them were more active than their parent molecules. As a result of the in vivo experiments, both compounds 3 and 4 showed significantly reduced writhes in the acetic acid-induced writhing test. Studies of molecular modeling have identified possible mechanism(s) of Cav3.2 binding. Moreover, the relationship between structure and activity was studied in a preliminary manner. Our results indicated that compounds 3 and 4 could play an important role in the discovery and development of novel analgesics.


Assuntos
Alcaloides , Antineoplásicos , Buxus , Canais de Cálcio Tipo T , Alcaloides/farmacologia , Analgésicos/farmacologia , Buxus/química
6.
Eur J Med Chem ; 249: 115043, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36736152

RESUMO

Malaria is a devastating disease that causes significant global morbidity and mortality. The rise of drug resistance against artemisinin-based combination therapy demonstrates the necessity to develop alternative antimalarials with novel mechanisms of action. We report the discovery of Ki8751 as an inhibitor of essential kinase PfPK6. 79 derivatives were designed, synthesized and evaluated for PfPK6 inhibition and antiplasmodial activity. Using group efficiency analyses, we established the importance of key groups on the scaffold consistent with a type II inhibitor pharmacophore. We highlight modifications on the tail group that contribute to antiplasmodial activity, cumulating in the discovery of compound 67, a PfPK6 inhibitor (IC50 = 13 nM) active against the P. falciparum blood stage (EC50 = 160 nM), and compound 79, a PfPK6 inhibitor (IC50 < 5 nM) with dual-stage antiplasmodial activity against P. falciparum blood stage (EC50 = 39 nM) and against P. berghei liver stage (EC50 = 220 nM).


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Plasmodium falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Proteínas Quinases , Farmacóforo , Malária Falciparum/tratamento farmacológico , Plasmodium berghei
7.
Arch Pharm (Weinheim) ; 356(4): e2200263, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36617508

RESUMO

Lonafarnib is designed as a farnesyltransferase (FTase) inhibitor and displays inhibitory activities against a wide range of tumor cells. However, a major disadvantage is its unselective activity and high cytotoxicity against nonmalignant cells. Therefore, we structurally modified the terminal 4-methylpiperidine-1-carboxamide residue of lonafarnib and evaluated the antiproliferative effects of the resulting derivatives in Michigan Cancer Foundation - 7 (MCF-7) breast cancer cells as well as simian virus 80 (SV-80) fibroblasts. The highest cytotoxicity against both cell lines (IC50 about 2 µM) was shown by the piperidin-4-yl carbamate 15i and the S-(piperidin-4-yl) carbamothioate 15j. Selectivity for tumor cells was realized in the case of the 1-cyclohexyl-1-methylurea derivative 15b. It reduced the growth of MCF-7 cells with an IC50 of 11.4 µM (lonafarnib: IC50 = 10.8 µM) without influence on the growth of SV-80 cells (IC50 > 50 µM; lonafarnib: IC50 = 14.0 µM). Molecular modeling studies were performed to correlate the cytotoxicity with possible FTase interactions. The theoretical investigations, however, documented a comparable attachment of active, less active, and inactive compounds and did not allow an interpretation of the biological results based on these theoretical considerations.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Relação Estrutura-Atividade , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Farnesiltranstransferase , Antineoplásicos/farmacologia , Antineoplásicos/química , Proliferação de Células , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular
8.
Prostaglandins Other Lipid Mediat ; 164: 106702, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36529320

RESUMO

Soluble epoxide hydrolase (sEH) and fatty acid amide hydrolase (FAAH) are potential targets for several diseases. Previous studies have reported that concomitant selective inhibition of sEH and FAAH produced antinociception effects in an animal model of pain. However, the co-administration of a selective sEH inhibitor and a selective FAAH inhibitor might produce serious side effects due to drug-drug interactions that could complicate drug development in the long term. Thus, discovering dual sEH/FAAH inhibitors, single small molecules that can simultaneously inhibit both sEH and FAAH, would be a significant accomplishment in the medicinal chemistry field. Herein, we report the synthesis and biological evaluation of benzothiazole-phenyl-based analogs as potential dual sEH/FAAH inhibitors. This work represents a follow-up structure-activity relationship (SAR) and metabolic-stability studies of our best dual sEH/FAAH inhibitor identified previously, as well as in vivo evaluation of its effects on voluntary locomotor behavior in rats. Our SAR study indicates that trifluoromethyl groups on the aromatic rings are well tolerated by the targeted enzymes when placed at the ortho and para positions; however, they, surprisingly, did not improve metabolic stability in liver microsomes. Our behavioral studies indicate that doses of dual sEH/FAAH inhibitors that alleviate pain do not depress voluntary behavior in naïve rats, which is a common side effect of currently available analgesic drugs (e.g., opioids). Thus, dual sEH/FAAH inhibitors may be a safe and effective approach to treat pain.


Assuntos
Inibidores Enzimáticos , Manejo da Dor , Animais , Ratos , Benzotiazóis/farmacologia , Benzotiazóis/uso terapêutico , Inibidores Enzimáticos/farmacologia , Dor/tratamento farmacológico , Relação Estrutura-Atividade , Comportamento Animal
9.
Bioorg Med Chem ; 78: 117131, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36571976

RESUMO

To follow up on our previous report on bivalent compounds exhibiting potent co-operative binding at dopamine D2 receptors, we modified the structure of the linker in our earlier bivalent molecules (S)-6-((9-(((R)-5-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)(propyl)amino)nonyl)-(propyl)amino)-5,6,7,8-tetrahydronaphthalen-1-ol (Ia) and (S)-6-((10-(((R)-5-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)(propyl)amino)decyl)(propyl)amino)-5,6,7,8-tetrahydronaphthalen-1-ol (Ib) (Fig. 1) connecting the two pharmaophoric moieties to observe any tolerance in maintaining similar affinities and potencies. Specifically, we introduced aromatic and piperazine moieties in the linker to explore their effect. Overall, similar activities at D2 receptors as observed in our earlier study was maintained in the new molecules e.g. (6S,6'S)-6,6'-((1,4-phenylenebis(ethane-2,1-diyl))bis(propylazanediyl))bis(5,6,7,8-tetrahydronaphthalen-1-ol) (D-382) (Ki, D2 = 3.88 nM). The aromatic moiety in D-382 was next functionalized by introducing hydroxyl groups to mimic polyhydroxy natural products which are known to interact with amyloidogenic proteins. Such a transformation resulted in development of compounds like 2,5-bis(2-(((S)-5-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)(propyl)amino)ethyl)benzene-1,4-diol (D-666) (Ki, D2 = 7.62 nM) which retained similar affinity and potency at D2 receptors. Such dihydroxyl compounds turned out to be potent inhibitors against aggregation and toxicity of recombinant alpha synuclein protein. The work reported here is in line with our overall goal to develop multifunctional dopamine agonist for symptomatic and disease modifying treatment of Parkinson's disease.


Assuntos
Agonistas de Dopamina , Receptores de Dopamina D2 , alfa-Sinucleína , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/química , Piperazinas/farmacologia , Receptores de Dopamina D1 , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/agonistas
10.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293459

RESUMO

Flavonoids are a group of naturally occurring polyphenolic secondary metabolites which have been reported to demonstrate a wide range of pharmacological properties, most importantly, antidiabetic and anti-inflammatory effects. The relationship between hyperglycaemia and inflammation and vascular complications in diabetes is now well established. Flavonoids possessing antidiabetic properties may alleviate inflammation by reducing hyperglycaemia through different mechanisms of action. It has been suggested that the flavonoids' biochemical properties are structure-dependent; however, they are yet to be thoroughly grasped. Hence, the main aim of this review is to understand the antidiabetic and anti-inflammatory properties of various structurally diverse flavonoids and to identify key positions responsible for the effects, their correlation, and the effect of different substitutions on both antidiabetic and anti-inflammatory properties. The general requirement of flavonoids for exerting both anti-inflammatory and antidiabetic effects is found to be the presence of a C2-C3 double bond (C-ring) and hydroxyl groups at the C3', C4', C5, and C7 positions of both rings A and B of a flavonoid skeleton. Furthermore, it has been demonstrated that substitution at the C3 position of a C-ring decreases the anti-inflammatory action of flavonoids while enhancing their antidiabetic activity. Correlation is discussed at length to support flavonoids possessing essential pharmacophores to demonstrate equipotent effects. The consideration of these structural features may play an important role in synthesizing better flavonoid-based drugs possessing dual antidiabetic and anti-inflammatory effects. A meta-analysis further established the role of flavonoids as antidiabetic and anti-inflammatory agents.


Assuntos
Flavonoides , Hiperglicemia , Humanos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Relação Estrutura-Atividade , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação
11.
Eur J Med Chem ; 243: 114728, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36084534

RESUMO

Currently, there is a significant unmet need for novel analgesics with fewer side effects. In this study, we carried out structural modification of a hit compound previously identified in an artificial-intelligence (AI) virtual screening and discovered the potent analgesic, benzo[b]thiophene-2-carboxamide analog (compound 25) with new structural scaffold. We investigated the signaling pathways of opioid receptors mediated by compound 25, and found this racemic compound activated mu-opioid receptor through the cyclic adenosine monophosphate (cAMP) and ß-arrestin-2-mediated pathways with strong potency and efficacy, and accompanying nociceptin-orphanin FQ opioid peptide and delta-opioid receptors through the cAMP pathway with weak potencies. Compound 25 elicited potent antinociception in thermal-stimulated pain (ED50 value of 127.1 ± 34.65 µg/kg) and inflammatory-induced allodynia models with less gastrointestinal transit inhibition and antinociceptive tolerance than morphine. Overall, this study revealed a novel analgesic with reduced risks of side effects.


Assuntos
Analgésicos Opioides , Tiofenos , Humanos , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Analgésicos Opioides/efeitos adversos , Receptores Opioides mu/agonistas , Receptores Opioides/agonistas , Peptídeos Opioides , Morfina/farmacologia , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos/química , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/tratamento farmacológico
12.
Bioorg Med Chem Lett ; 73: 128921, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932905

RESUMO

This study attempted to discover tetralone-derived potent ROS inhibitors by synthesizing sixty-six hydroxylated and halogenated 2-benzylidene-3,4-dihydronaphthalen-1(2H)-ones via Claisen-Schmidt condensation reaction. The majority of the synthesized and investigated compounds significantly inhibited ROS in LPS-stimulated RAW 264.7 macrophages. When compared to malvidin (IC50 = 9.00 µM), compound 28 (IC50 = 0.18 µM) possessing 6­hydroxyl and 2­trifluoromethylphenyl moiety showed the most potent ROS inhibition. In addition, the compounds 20, 31, 39, 45, 47-48, 52, 55-56, 58-60, and 62 also displayed ten folds greater ROS inhibitory activity relative to the reference compound. Based on the structure-activity relationship study, incorporating hydroxyl groups at the 6- and 7-positions of tetralone scaffold along with different halogen functionalities in phenyl ring B is crucial for potent ROS suppression. This study contributes to a better understanding of the effect of halogen and phenolic groups in ROS suppression, and further investigations on 2-benzylidene-3,4-dihydronaphthalen-1(2H)-ones will potentially lead to the discovery of effective anti-inflammatory agents.


Assuntos
Lipopolissacarídeos , Tetralonas , Animais , Halogênios/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos , Camundongos , Óxido Nítrico/farmacologia , Células RAW 264.7 , Espécies Reativas de Oxigênio , Relação Estrutura-Atividade , Tetralonas/farmacologia
13.
Hippocampus ; 32(7): 552-563, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35703084

RESUMO

The ability of endogenous neurosteroids (NSs) with pregnane skeleton modified at positions C-3 and C-5 to modulate the functional activity of inhibitory glycine receptors (GlyR) and ionotropic É£-aminobutyric acid receptors (GABAA R) was estimated. The glycine and GABA-induced chloride current (IGly and IGABA ) were measured in isolated pyramidal neurons of the rat hippocampus and in isolated rat cerebellar Purkinje cells, respectively. Our experiments demonstrated that pregnane NSs affected IGABA and IGly in a different manner. At low concentrations (up to 5 µM), tested pregnane NSs increased or did not change the peak amplitude of the IGABA , but reduced the IGly by decreasing the peak amplitude and/or accelerating desensitization. Namely, allopregnanolone (ALLO), epipregnanolone (EPI), pregnanolone (PA), pregnanolone sulfate (PAS) and 5ß-dihydroprogesterone (5ß-DHP) enhanced the IGABA in Purkinje cells. Dose-response curves plotted in the concentration range from 1 nM to 100 µM were smooth for EPI and 5ß-DHP, but bell-shaped for ALLO, PA and PAS. The peak amplitude of the IGly was reduced by PA, PAS, and 5α- and 5ß-DHP. In contrast, ALLO, ISO and EPI did not modulate it. Dose-response curves for the inhibition of the IGly peak amplitude were smooth for all active compounds. All NSs accelerated desensitization of the IGly . The dose-response relationship for this effect was smooth for ALLO, PA, PAS and 5ß-DHP, but it was U-shaped for EPI, 5α-DHP and ISO. These results, together with our previous results on NSs with androstane skeleton, offer comprehensive overview for understanding the mechanisms of effects of NSs on IGly and IGABA .


Assuntos
Neuroesteroides , Pregnanolona , 5-alfa-Di-Hidroprogesterona/farmacologia , Animais , Cloretos/farmacologia , Glicina/farmacologia , Neurônios/fisiologia , Pregnanos/farmacologia , Pregnanolona/farmacologia , Ratos , Ratos Wistar , Receptores de GABA-A/fisiologia , Ácido gama-Aminobutírico
14.
Bioorg Med Chem ; 65: 116785, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35525109

RESUMO

PP1 is a major phosphoserine/threonine-specific phosphatase that is involved in diseases such as heart insufficiency and diabetes. PP1-disrupting peptides (PDPs) are selective modulators of PP1 activity that release its catalytic subunit, which then dephosphorylates nearby substrates. Recently, PDPs enabled the creation of phosphatase-recruiting chimeras, which are bifunctional molecules that guide PP1 to a kinase to dephosphorylate and inactivate it. However, PDPs are 23mer peptides, which is not optimal for their use in therapy due to potential stability and immunogenicity issues. Therefore, we present here the sequence optimization of the 23mer PDP to a 5mer peptide, involving several attempts considering structure-based virtual screening, high throughput screening and peptide sequence optimization. We provide here a strong pharmacophore as lead structure to enable PP1 targeting in therapy or its use in phosphatase-recruiting chimeras in the future.


Assuntos
Peptídeos , Treonina , Sequência de Aminoácidos , Domínio Catalítico , Peptídeos/química , Fosforilação , Proteína Fosfatase 1/metabolismo , Treonina/metabolismo
15.
Chem Pharm Bull (Tokyo) ; 70(4): 261-268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370202

RESUMO

Habiterpenol is a G2 checkpoint inhibitor isolated from the culture broth of Phytohabitans sp. 3787_5. Here, we report the synthesis of new habiterpenol analogs through the total synthesis process of habiterpenol and evaluating the analogs for G2 checkpoint inhibitory activity. We investigated two different synthetic approaches for total synthesis, with intramolecular conjugate addition and Ti(III)-mediated radical cyclization as key reactions. Although the former was unsuccessful, the latter reaction facilitated stereoselective total synthesis and determination of the absolute configuration of habiterpenol. The extension of these chemistries to a structure-activity relationship (SAR) study gave new habiterpenol analogs, which could not be derived from natural habiterpenol and only be synthesized by applying the total synthesis. Therefore, this study provides important insights into SAR studies of habiterpenol.


Assuntos
Triterpenos , Ciclização , Estereoisomerismo , Relação Estrutura-Atividade , Triterpenos/farmacologia
16.
Cancers (Basel) ; 14(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35158821

RESUMO

Uncontrolled inflammation is a salient factor in multiple chronic inflammatory diseases and cancers. In this review, we provided an in-depth analysis of the relationships and distinctions between uncontrolled inflammation, fibrosis and cancers, while emphasizing the challenges and opportunities of developing novel therapies for the treatment and/or management of these diseases. We described how drug delivery systems, combination therapy and the integration of tissue-targeted and/or pathways selective strategies could overcome the challenges of current agents for managing and/or treating chronic inflammatory diseases and cancers. We also recognized the value of the re-evaluation of the disease-specific roles of multiple pathways implicated in the pathophysiology of chronic inflammatory diseases and cancers-as well as the application of data from single-cell RNA sequencing in the success of future drug discovery endeavors.

17.
Bioorg Med Chem ; 51: 116507, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794001

RESUMO

Fatty acid amide hydrolase (FAAH) is a membrane protein that hydrolyzes endocannabinoids, and its inhibition produces analgesic and anti-inflammatory effects. The soluble epoxide hydrolase (sEH) hydrolyzes epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatetraenoic acids. EETs have anti-inflammatory and inflammation resolving properties, thus inhibition of sEH consequently reduces inflammation. Concurrent inhibition of both enzymes may represent a novel approach in the treatment of chronic pain. Drugs with multiple targets can provide a superior therapeutic effect and a decrease in side effects compared to ligands with single targets. Previously, microwave-assisted methodologies were employed to synthesize libraries of benzothiazole analogs from which high affinity dual inhibitors (e.g. 3, sEH IC50 = 9.6 nM; FAAH IC50 = 7 nM) were identified. Here, our structure-activity relationship studies revealed that the 4-phenylthiazole moiety is well tolerated by both enzymes, producing excellent inhibition potencies in the low nanomolar range (e.g. 6o, sEH IC50 = 2.5 nM; FAAH IC50 = 9.8 nM). Docking experiments show that the new class of dual inhibitors bind within the catalytic sites of both enzymes. Prediction of several pharmacokinetic/pharmacodynamic properties suggest that these new dual inhibitors are good candidates for further in vivo evaluation. Finally, dual inhibitor 3 was tested in the Formalin Test, a rat model of acute inflammatory pain. The data indicate that 3 produces antinociception against the inflammatory phase of the Formalin Test in vivo and is metabolically stable following intraperitoneal administration in male rats. Further, antinociception produced by 3 is comparable to that of ketoprofen, a traditional nonsteroidal anti-inflammatory drug. The results presented here will help toward the long-term goal of developing novel non-opioid therapeutics for pain management.


Assuntos
Amidoidrolases/antagonistas & inibidores , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Tiazóis/farmacologia , Dor Aguda/induzido quimicamente , Dor Aguda/tratamento farmacológico , Dor Aguda/metabolismo , Amidoidrolases/metabolismo , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Epóxido Hidrolases/metabolismo , Formaldeído , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
18.
Eur J Med Chem ; 222: 113610, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34144354

RESUMO

A structure activity relationship (SAR) study of a library of 56 compounds (54 ruthenium and 2 osmium derivatives) based on the trithiolato-bridged dinuclear ruthenium(II)-arene scaffold (general formula [(η6-arene)2Ru2(µ2-SR)3]+, symmetric and [(η6-arene)2Ru2(µ2-SR1)2(µ2-SR2)]+, mixed, respectively) is reported. The 56 compounds (of which 34 are newly designed drug candidates) were synthesized by introducing chemical modifications at the level of bridge thiols, and they were grouped into eight families according to their structural features. The selected fittings were guided by previous results and focused on a fine-tuning of the physico-chemical and steric properties. Newly synthesized complexes were characterized by NMR spectroscopy, mass spectrometry and elemental analysis, and four single-crystal X-ray structures were obtained. The in vitro biological assessment of the compounds was realized by applying a three-step screening cascade: (i) evaluation of the activity against Toxoplasma gondii RH strain tachyzoites expressing ß-galactosidase (T. gondii-ß-gal) grown in human foreskin fibroblast monolayers (HFF) and assessment of toxicity in non-infected HFF host cells; (ii) dose-response assays using selected compound, and (iii) studies on the effects in murine splenocytes. A primary screening was performed at 1 and 0.1 µM, and resulted in the selection of 39 compounds that inhibited parasite proliferation at 1 µM by more than 95% and reduced the viability of HFF by less than 49%. In the secondary screening, dose-response assays showed that the selected compounds exhibited half maximal inhibitory concentration (IC50) values for T. gondii-ß-gal between 0.01 µM and 0.45 µM, with 30 compounds displaying an IC50 lower than 0.1 µM. When applied to non-infected HFF monolayers at 2.5 µM, 8 compounds caused more than 90% and 31 compounds more than 30% viability impairment. The tertiary screening included 14 compounds that did not cause HFF viability loss higher than 50% at 2.5 µM. These derivatives were assessed for potential immunosuppressive activities. First, splenocyte viability was assessed after treatment of cells with concanavalin A (ConA) and lipopolysaccharide (LPS) with compounds applied at 0.1 and 0.5 µM. Subsequently, the 5 compounds exhibiting the lowest splenocyte toxicity were further evaluated for their potential to inhibit B and T cell proliferation. Overall, compound 55 [(η6-p-MeC6H4Pri)2Ru2(µ2-SC6H4-o-CF3)2(µ2-SC6H4-p-OH)]Cl exhibited the most favorable features, and will be investigated as a scaffold for further optimization in terms of anti-parasitic efficacy and drug-like properties.


Assuntos
Antiparasitários/farmacologia , Complexos de Coordenação/farmacologia , Rutênio/farmacologia , Compostos de Sulfidrila/farmacologia , Toxoplasma/efeitos dos fármacos , Antiparasitários/síntese química , Antiparasitários/química , Linhagem Celular , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Rutênio/química , Relação Estrutura-Atividade , Compostos de Sulfidrila/química
19.
J Enzyme Inhib Med Chem ; 36(1): 627-639, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33557647

RESUMO

A new series of 3-O-substituted xanthone derivatives were synthesised and evaluated for their anti-cholinergic activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The results indicated that the xanthone derivatives possessed good AChE inhibitory activity with eleven of them (5, 8, 11, 17, 19, 21-23, 26-28) exhibited significant effects with the IC50 values ranged 0.88 to 1.28 µM. The AChE enzyme kinetic study of 3-(4-phenylbutoxy)-9H-xanthen-9-one (23) and ethyl 2-((9-oxo-9H-xanthen-3-yl)oxy)acetate (28) showed a mixed inhibition mechanism. Molecular docking study showed that 23 binds to the active site of AChE and interacts via extensive π-π stacking with the indole and phenol side chains of Trp86 and Tyr337, besides the hydrogen bonding with the hydration site and π-π interaction with the phenol side chain of Y72. This study revealed that 3-O-alkoxyl substituted xanthone derivatives are potential lead structures, especially 23 and 28 which can be further developed into potent AChE inhibitors.


Assuntos
Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Xantonas/farmacologia , Animais , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Electrophorus , Cavalos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Xantonas/síntese química , Xantonas/química
20.
Eur J Med Chem ; 210: 113087, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33321261

RESUMO

The development of selective CB2 receptor agonists is a promising therapeutic approach for the treatment of inflammatory diseases, without CB1 receptor mediated psychoactive side effects. Preliminary structure-activity relationship studies on pyrazoylidene benzamide agonists revealed the -ylidene benzamide moiety was crucial for functional activity at the CB2 receptor. A small library of compounds with varying linkage moieties between the pyrazole and substituted phenyl group has culminated in the discovery of a potent and selective pyrazolo-[2,3-e]-[1,2,4]-triazine agonist 19 (CB2R EC50 = 19 nM, CB1R EC50 > 10 µM). Docking studies have revealed key structural features of the linkage group that are important for potent functional activity.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Descoberta de Drogas , Receptor CB2 de Canabinoide/agonistas , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA