Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.369
Filtrar
1.
Adv Sci (Weinh) ; : e2404753, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39303219

RESUMO

Several studies have observed renal cell ferroptosis during cisplatin-induced acute kidney injury (AKI). However, the mechanism is not completely clear. In this study, oxidized arachidonic acid (AA) metabolites are increased in cisplatin-treated HK-2 cells. Targeted metabolomics showed that the end product of pyrimidine biosynthesis is decreased and the initiating substrate of pyrimidine biosynthesis is increased in cisplatin-treated mouse kidneys. Mitochondrial DHODH, a key enzyme for pyrimidine synthesis, and its downstream product CoQH2, are downregulated. DHODH overexpression attenuated but DHODH silence exacerbated cisplatin-induced CoQH2 depletion and lipid peroxidation. Mechanistically, renal DHODH acetylation is elevated in cisplatin-exposed mice. Mitochondrial SIRT3 is reduced in cisplatin-treated mouse kidneys and HK-2 cells. Both in vitro SIRT3 overexpression and in vivo NMN supplementation attenuated cisplatin-induced mitochondrial DHODH acetylation and renal cell ferroptosis. By contrast, Sirt3 knockout aggravated cisplatin-induced mitochondrial DHODH acetylation and renal cell ferroptosis, which can not be attenuated by NMN. Additional experiments showed that cisplatin caused mitochondrial dysfunction and SIRT3 SUMOylation. Pretreatment with mitochondria-target antioxidant MitoQ alleviated cisplatin-caused mitochondrial dysfunction, SIRT3 SUMOylation, and DHODH acetylation. MitoQ pretreatment protected against cisplatin-caused AKI and renal cell ferroptosis. Taken together, these results suggest that mitochondrial dysfunction-evoked DHODH acetylation partially contributes to renal cell ferroptosis during cisplatin-induced AKI.

2.
Neoplasia ; 57: 101055, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39260131

RESUMO

BACKGROUND: Glioblastoma (GBM) poses a significant medical challenge due to its aggressive nature and poor prognosis. Mitochondrial unfolded protein response (UPRmt) and the heat shock factor 1 (HSF1) pathway play crucial roles in GBM pathogenesis. Post-translational modifications, such as SUMOylation, regulate the mechanism of action of HSF1 and may influence the progression of GBM. Understanding the interplay between SUMOylation-modified HSF1 and GBM pathophysiology is essential for developing targeted therapies. METHODS: We conducted a comprehensive investigation using cellular, molecular, and in vivo techniques. Cell culture experiments involved establishing stable cell lines, protein extraction, Western blotting, co-immunoprecipitation, and immunofluorescence analysis. Mass spectrometry was utilized for protein interaction studies. Computational modeling techniques were employed for protein structure analysis. Plasmid construction and lentiviral transfection facilitated the manipulation of HSF1 SUMOylation. In vivo studies employed xenograft models for tumor growth assessment. RESULTS: Our research findings indicate that HSF1 primarily undergoes SUMOylation at the lysine residue K298, enhancing its nuclear translocation, stability, and downstream heat shock protein expression, while having no effect on its trimer conformation. SUMOylated HSF1 promoted the UPRmt pathway, leading to increased GBM cell proliferation, migration, invasion, and reduced apoptosis. In vivo studies have confirmed that SUMOylation of HSF1 enhances its oncogenic effect in promoting tumor growth in GBM xenograft models. CONCLUSION: This study elucidates the significance of SUMOylation modification of HSF1 in driving GBM progression. Targeting SUMOylated HSF1 may offer a novel therapeutic approach for GBM treatment. Further investigation into the specific molecular mechanisms influenced by SUMOylated HSF1 is warranted for the development of effective targeted therapies to improve outcomes for GBM patients.

3.
Mol Neurobiol ; 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39276308

RESUMO

SUMOylation is a post-translational modification that attaches a small ubiquitin-like modifier (SUMO) group to a target protein via SUMO ligases, while deSUMOylation refers to the removal of this SUMO group by sentrin-specific proteases (SENPs). Although the functions of these processes have been well described in the nucleus, the role of SUMOylation and deSUMOylation in regulating ion channels is emerging as a novel area of study. Despite this, their contributions to pain signaling remain less clear. Therefore, this review consolidates the current evidence on the link(s) between SUMOylation, deSUMOylation, and pain, with a specific focus on ion channels expressed in the sensory system. Additionally, we explore the role of SUMOylation in the expression and function of kinases, vesicle proteins, and transcription factors, which result in the modulation of certain ion channels contributing to pain. Altogether, this review aims to highlight the relationship between SUMOylation and deSUMOylation in the modulation of ion channels, ultimately exploring the potential therapeutic role of these processes in chronic pain.

4.
Int J Oncol ; 65(4)2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39239750

RESUMO

SUMOylation plays a crucial role in numerous cellular biological and pathophysiological processes associated with human disease; however, the mechanisms regulating the genes involved in SUMOylation remain unclear. In the present study, E2F transcription factor 4 (E2F4) was identified as an E2F member related to hepatocellular carcinoma (HCC) progression by public database analysis. It was found that E2F4 promoted the proliferation and invasiveness of HCC cells via SUMOylation using Soft agar and Transwell migration assays. Mechanistically, it was demonstrated that E2F4 upregulated the transcript and protein expression levels of baculoviral IAP repeat containing 5, cell division cycle associated 8 and DNA topoisomerase II α using western blotting. Furthermore, the interaction between E2F4 with lin­9 DREAM multi­vulva class B core complex component (LIN9) was explored by co­immunoprecipitation, immunofluorescence co­localization and bimolecular fluorescence complementation assays. Moreover, it was demonstrated that E2F4 promoted the progression of HCC cells via LIN9. Rescue experiments revealed that LIN9 facilitated the SUMOylation and proliferation of HCC cells, which was prevented by knocking down E2F4 expression. In conclusion, the findings of the present study indicated that E2F4 plays a major role in the proliferation of HCC cells and may be a potential therapeutic target in the future.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Progressão da Doença , Fator de Transcrição E2F4 , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Sumoilação , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Fator de Transcrição E2F4/metabolismo , Fator de Transcrição E2F4/genética , Linhagem Celular Tumoral , Movimento Celular
5.
Int J Biochem Cell Biol ; 176: 106662, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293559

RESUMO

Dysregulated protein homeostasis, characterized by abnormal protein accumulation and aggregation, is a key contributor to the progression of neurodegenerative disorders such as Huntington's disease and spinocerebellar ataxia type 3 (SCA3). Previous studies have identified PIAS1 gene variants in patients with late-onset SCA3 and Huntington's disease. This study aims to elucidate the role of PIAS1 and its S510G variant in modulating the pathogenic mechanisms of SCA3. Through in vitro biochemical analyses and in vivo assays, we demonstrate that PIAS1 stabilizes both wild-type and mutant ataxin-3 (ATXN3). The PIAS1 S510G variant, however, selectively reduces the stability and SUMOylation of mutant ATXN3, thereby decreasing its aggregation and toxicity while maintaining the stability of wild-type ATXN3. This effect is mediated by a weakened interaction with the SUMO-conjugating enzyme UBC9 in the presence of mutant ATXN3. In Drosophila models, downregulation of dPIAS1 resulted in reduced levels of mutant ATXN3 and alleviated associated phenotypes, including retinal degeneration and motor dysfunction. Our findings suggest that the PIAS1 S510G variant acts as a genetic modifier of SCA3, highlighting the potential of targeting SUMOylation as a therapeutic strategy for this disease.

6.
Poult Sci ; 103(12): 104272, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39293264

RESUMO

In mammals, promyelocytic leukemia (PML) protein, also named as TRIM19, is the key component of nuclear membrane-less sub structures PML nuclear bodies (PML-NB) or nuclear domains 10 (ND10). PML-NBs are dynamic foci that consist of numerous permanently or transiently associated proteins. The mammalian PMLs are involved in the regulation of various cellular pathways, including apoptosis, intrinsic and innate antiviral immunity, cell cycle, DNA damage, senescence and etc. Nevertheless, little is known about the role of chicken PML (chPML). In this study, chPML gene was cloned, and its several functions were characterized. We found that chPML was widely expressed in different tissues of chickens, and showed different subcellular distribution pattern in DF-1 cells comparing with LMH and HD11 cells. Like human PML, chPML was identified to be SUMOylated. K463 is 1 critical SUMOylation site and 240RARRG244 is SUMO interaction motif (SIM) of chPML. Moreover, qPCR showed that chPML could not only up-regulate the expression of host innate immune factor IFN-ß and its downstream ISGs, but also antigen presentation-related factors including class II transactivator (CIITA) and MHC II DM beta 2 (DMB2). Notably, over-expression of chIFN-ß could promote the expression of endogenous chPML. All these provide novel insights into the function of chPML, and pave the way for further studying the roles of chPML in biological process and anti-infection function.

7.
EMBO Rep ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304777

RESUMO

The serine/threonine protein phosphatase 5 (PP5) regulates hormone and stress-induced signaling networks. Unlike other phosphoprotein phosphatases, PP5 contains both regulatory and catalytic domains and is further regulated through post-translational modifications (PTMs). Here we identify that SUMOylation of K430 in the catalytic domain of PP5 regulates phosphatase activity. Additionally, phosphorylation of PP5-T362 is pre-requisite for SUMOylation, suggesting the ordered addition of PTMs regulates PP5 function in cells. Using the glucocorticoid receptor, a well known substrate for PP5, we demonstrate that SUMOylation results in substrate release from PP5. We harness this information to create a non-SUMOylatable K430R mutant as a 'substrate trap' and globally identified novel PP5 substrate candidates. Lastly, we generated a consensus dephosphorylation motif using known substrates, and verified its presence in the new candidate substrates. This study unravels the impact of cross talk of SUMOylation and phosphorylation on PP5 phosphatase activity and substrate release in cells.

8.
Biochem Biophys Rep ; 39: 101800, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39286522

RESUMO

Tau is a microtubule-associated protein that contributes to cytoskeletal stabilization. Aggregation of tau proteins is associated with neurodegenerative disorders such as Alzheimer's disease. Several types of posttranslational modifications that alter the physical properties of tau proteins have been identified. SUMOylation is a reversible modification of lysine residues by a small ubiquitin-like modifier (SUMO). In this study, we examined the enzymes that regulate the SUMOylation and deSUMOylation of tau in an alternatively spliced form, 0N4R-tau. Among SUMO E3 ligases, we found protein inhibitor of activated STAT (PIAS)xα and PIASxß increase the levels of SUMOylated tau. The deSUMOylation enzymes sentrin-specific protease (SENP)1 and SENP2 reduced the levels of SUMO-conjugated tau. SUMO1 modification increased the level of phosphorylated tau, which was suppressed in the presence of SENP1. Furthermore, we examined the effect of tripartite motif (TRIM)11, which was recently identified as an E3 ligase for SUMO2 modification of tau. We found that TRIM11 increased the modification of both 2N4R- and 0N4R-tau by SUMO1, which was attenuated by mutation of the target lysine residue to arginine. These findings suggest that the expression and activity of SUMOylation regulatory proteins modulate the physical properties of tau proteins and may contribute to the onset and/or progression of tau-associated neurodegenerative disorders.

9.
Mol Cell Neurosci ; 131: 103969, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39260456

RESUMO

SUMOylation is a post-translational modification essential for various biological processes. SUMO proteins bind to target substrates in a three-step enzymatic pathway, which is rapidly reversible by the action of specific proteases, known as SENPs. Studies have shown that SUMOylation is dysregulated in several human disorders, including neurodegenerative diseases that are characterized by the progressive loss of neurons, mitochondrial dysfunction, deficits in autophagy, and oxidative stress. Considering the potential neuroprotective roles of SUMOylation, the aim of this study was to investigate the effects of SENP3 knockdown in H4 neuroglioma cells exposed to rotenone, an in vitro model of cytotoxicity that mimics dopaminergic loss in Parkinson's disease (PD). The current data show that SENP3 knockdown increases SUMO-2/3 conjugates, which is accompanied by reduced levels of the mitochondrial fission protein Drp1 and increased levels of the mitochondrial fusion protein OPA1. Of high interest, SENP3 knockdown prevented rotenone-induced superoxide production and cellular death. Taken together, these findings highlight the importance of SUMOylation in maintaining mitochondrial homeostasis and the neuroprotective potential of this modification in PD.

10.
J Biol Chem ; : 107764, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270822

RESUMO

Triple-negative breast cancer (TNBC) is a prevalent malignancy in women, casting a formidable shadow on their well-being. Positioned within the nucleolus, SUMO-specific protease 3 (SENP3) assumes a pivotal role in the realms of development and tumorigenesis. However, the participation of SENP3 in TNBC remains a mystery. Here, we elucidate that SENP3 exerts inhibitory effects on migration and invasion capacities, as well as on the stem cell-like phenotype, within TNBC cells. Further experiments showed that YAP1 is the downstream target of SENP3, and SENP3 regulates tumorigenesis in a YAP1-dependent manner. YAP1 is found to be SUMOylated and SENP3 deconjugates SUMOylated YAP1 and promotes degradation mediated by the ubiquitin-proteasome system. More importantly, YAP1 with a mutation at the SUMOylation site impedes the capacity of wild-type YAP1 in TNBC tumorigenesis. Taken together, our findings firmly establish the pivotal role of SENP3 in the modulation of YAP1 deSUMOylation, unveiling novel mechanistic insight into the important role of SENP3 in the regulation of TNBC tumorigenesis in a YAP1-dependent manner.

11.
Int J Biol Macromol ; 279(Pt 2): 135201, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216563

RESUMO

BACKGROUND: The nucleocapsid protein (N protein) is the most abundant protein in SARS-CoV-2. Viral RNA and this protein are bound by electrostatic forces, forming cytoplasmic helical structures known as nucleocapsids. Subsequently, these nucleocapsids interact with the membrane (M) protein, facilitating virus budding into early secretory compartments. SCOPE OF REVIEW: Exploring the role of the N protein in the SARS-CoV-2 life cycle, pathogenesis, post-sequelae consequences, and interaction with host immunity has enhanced our understanding of its function and potential strategies for preventing SARS-CoV-2 infection. MAJOR CONCLUSION: This review provides an overview of the N protein's involvement in SARS-CoV-2 infectivity, highlighting its crucial role in the virus-host protein interaction and immune system modulation, which in turn influences viral spread. GENERAL SIGNIFICANCE: Understanding these aspects identifies the N protein as a promising target for developing effective antiviral treatments and vaccines against SARS-CoV-2.

12.
Biomed Pharmacother ; 179: 117127, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39191026

RESUMO

Neuropathic pain (NP) remains one of the world's most difficult problems, and people suffering from NP have their quality of life affected to a great extent and constantly suffer from pain. Sensitization of injurious receptors, ectopic firing of afferent nerves after nerve injury, and coupling between sympathetic and sensory neurons are involved in the onset or development of NP, but the pathogenesis of NP is still not well understood. We found that the ubiquitin system is involved in the pathogenesis of NP and has a crucial role in it. The ubiquitin system can be involved in the onset or reversal of NP by affecting ion channels, cellular signal transduction, glial cells, and the regulation of non-coding RNAs. This provides new ideas for the treatment of NP. The ubiquitin system may be a new effective target for the treatment of NP. A continued, in-depth understanding of the mechanisms of the ubiquitin system involved in NP could further refine the study of analgesic targets and improve pharmacological studies.


Assuntos
Neuralgia , Ubiquitina , Neuralgia/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/fisiopatologia , Humanos , Ubiquitina/metabolismo , Animais , Transdução de Sinais
13.
J Mol Biol ; 436(22): 168768, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216515

RESUMO

Neurofibromin (Nf1) is a giant multidomain protein encoded by the tumour-suppressor gene NF1. NF1 is mutated in a common genetic disease, neurofibromatosis type I (NF1), and in various cancers. The protein has a Ras-GAP (GTPase activating protein) activity but is also connected to diverse signalling pathways through its SecPH domain, which interacts with lipids and different protein partners. We previously showed that Nf1 partially colocalized with the ProMyelocytic Leukemia (PML) protein in PML nuclear bodies, hotspots of SUMOylation, thereby suggesting the potential SUMOylation of Nf1. Here, we demonstrate that the full-length isoform 2 and a SecPH fragment of Nf1 are substrates of the SUMO pathway and identify a well-defined SUMOylation profile of SecPH with two main modified lysines. One of these sites, K1731, is highly conserved and surface-exposed. Despite the presence of an inverted SUMO consensus motif surrounding K1731, and a potential SUMO-interacting motif (SIM) within SecPH, we show that neither of these elements is necessary for K1731 SUMOylation, which is also independent of Ubc9 SUMOylation on K14. A 3D model of an interaction between SecPH and Ubc9 centred on K1731, combined with site-directed mutagenesis, identifies specific structural elements of SecPH required for K1731 SUMOylation, some of which are affected in reported NF1 pathogenic variants. This work provides a new example of SUMOylation dependent on the tertiary rather than primary protein structure surrounding the modified site, expanding our knowledge of mechanisms governing SUMOylation site selection.

14.
Front Cell Dev Biol ; 12: 1436369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161589

RESUMO

Formation of the Dorsal nuclear-cytoplasmic gradient is important for the proper establishment of gene expression patterns along the dorsal-ventral (DV) axis during embryogenesis in Drosophila melanogaster. Correct patterning of the DV axis leads to formation of the presumptive mesoderm, neurogenic ectoderm, dorsal ectoderm, and amnioserosa, which are tissues necessary for embryo viability. While Toll signaling is necessary for Dorsal gradient formation, a gradient still forms in the absence of Toll, suggesting there are additional mechanisms required to achieve correct nuclear Dorsal levels. Potential mechanisms include post-translational modification, shuttling, and nuclear spacing. Post-translational modification could affect import and export rates either directly through modification of a nuclear localization sequence or nuclear export sequence, or indirectly by affecting interactions with binding partners that alter import and export rates. Shuttling, which refers to the facilitated diffusion of Dorsal through its interaction with its cytoplasmic inhibitor Cactus, could regulate nuclear levels by delivering more Dorsal ventrally. Finally, nuclear spacing could result in higher nuclear levels by leaving fewer nuclei in the ventral domain to uptake Dorsal. This review details how each of these mechanisms may help establish Dorsal nuclear levels in the early fly embryo, which serves as a paradigm for understanding how the dynamics of graded inputs can influence patterning and target gene expression. Furthermore, careful analysis of nuclear Dorsal levels is likely to provide general insights as recent studies have suggested that the regulation of nuclear import affects the timing of gene expression at the maternal-to-zygotic transition.

15.
Oncol Rev ; 18: 1430237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144161

RESUMO

Post-translational modifications play crucial roles in regulating protein functions and stabilities. PTEN is a critical tumor suppressor involved in regulating cellular proliferation, survival, and migration processes. However, dysregulation of PTEN is common in various human cancers. PTEN stability and activation/suppression have been extensively studied in the context of tumorigenesis through inhibition of the PI3K/AKT signaling pathway. PTEN undergoes various post-translational modifications, primarily including phosphorylation, acetylation, ubiquitination, SUMOylation, neddylation, and oxidation, which finely tune its activity and stability. Generally, phosphorylation modulates PTEN activity through its lipid phosphatase function, leading to altered power of the signaling pathways. Acetylation influences PTEN protein stability and degradation rate. SUMOylation has been implicated in PTEN localization and interactions with other proteins, affecting its overall function. Neddylation, as a novel modification of PTEN, is a key regulatory mechanism in the loss of tumor suppressor function of PTEN. Although current therapeutic approaches focus primarily on inhibiting PI3 kinase, understanding the post-translational modifications of PTEN could help provide new therapeutic strategies that can restore PTEN's role in PIP3-dependent tumors. The present review summarizes the major recent developments in the regulation of PTEN protein level and activity. We expect that these insights will contribute to better understanding of this critical tumor suppressor and its potential implications for cancer therapy in the future.

16.
Plant Biol (Stuttg) ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180227

RESUMO

OsS1Fa1, a homologue of spinach S1Fa, is a small protein in rice that contains four distinct conserved motifs and participates in drought tolerance. However, the biological functions of these conserved motifs have not been characterized to date. Therefore, we investigated the roles of these conserved domains in the localization and cellular function of OsS1Fa1. We analysed the subcellular localization of OsS1Fa1 using confocal laser scanning microscopy (CLSM), following particle bombardment and bacterial infiltration. An E. coli in vivo reconstituted sumoylation assay was conducted to investigate sumoylation of OsS1Fa1. We characterized the function of the transmembrane domain of OsS1Fa1 in drought tolerance using transgenic Arabidopsis plants. Fluorescence analysis showed that OsS1Fa1 localized to the nuclear and cytoplasmic membranes. Mutation and cell fractionation analyses revealed that the membrane localization domain determined the subcellular localization of OsS1Fa1. The rice homologue OsS1Fa2 and Arabidopsis orthologs AtS1Fa1, AtS1Fa2, and AtS1Fa3 also exhibited similar localization patterns as OsS1Fa1. Sumoylation analysis demonstrated that OsS1Fa1 was conjugated with the small ubiquitin-related modifier (SUMO). Transgenic analysis showed that overexpression of OsS1Fa1(TMm1), a mutant form of the transmembrane domain of OsS1Fa1, in Arabidopsis did not enhance drought stress tolerance, whereas OsS1Fa1 overexpression improved the drought tolerance of transgenic Arabidopsis. Our data indicate that rice and Arabidopsis S1Fa1 proteins localize in the nuclear and cytoplasmic membranes, and that transmembrane domain determines subcellular localization and plays an important role in drought stress tolerance.

17.
J Transl Med ; 22(1): 762, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143486

RESUMO

BACKGROUND: Personalized disease models are crucial for evaluating how diseased cells respond to treatments, especially in case of innovative biological therapeutics. Extracellular vesicles (EVs), nanosized vesicles released by cells for intercellular communication, have gained therapeutic interest due to their ability to reprogram target cells. We here utilized urinary podocytes obtained from children affected by steroid-resistant nephrotic syndrome with characterized genetic mutations as a model to test the therapeutic potential of EVs derived from kidney progenitor cells (nKPCs). METHODS: EVs were isolated from nKPCs derived from the urine of a preterm neonate. Three lines of urinary podocytes obtained from nephrotic patients' urine and a line of Alport syndrome patient podocytes were characterized and used to assess albumin permeability in response to nKPC-EVs or various drugs. RNA sequencing was conducted to identify commonly modulated pathways after nKPC-EV treatment. siRNA transfection was used to demonstrate the involvement of SUMO1 and SENP2 in the modulation of permeability. RESULTS: Treatment with the nKPC-EVs significantly reduced permeability across all the steroid-resistant patients-derived and Alport syndrome-derived podocytes. At variance, podocytes appeared unresponsive to standard pharmacological treatments, with the exception of one line, in alignment with the patient's clinical response at 48 months. By RNA sequencing, only two genes were commonly upregulated in nKPC-EV-treated genetically altered podocytes: small ubiquitin-related modifier 1 (SUMO1) and Sentrin-specific protease 2 (SENP2). SUMO1 and SENP2 downregulation increased podocyte permeability confirming the role of the SUMOylation pathway. CONCLUSIONS: nKPCs emerge as a promising non-invasive source of EVs with potential therapeutic effects on podocytes with genetic dysfunction, through modulation of SUMOylation, an important pathway for the stability of podocyte slit diaphragm proteins. Our findings also suggest the feasibility of developing a non-invasive in vitro model for screening regenerative compounds on patient-derived podocytes.


Assuntos
Vesículas Extracelulares , Síndrome Nefrótica , Podócitos , Podócitos/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/patologia , Humanos , Síndrome Nefrótica/patologia , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/metabolismo , Vesículas Extracelulares/metabolismo , Avaliação Pré-Clínica de Medicamentos , Modelos Biológicos , Células-Tronco/metabolismo , Esteroides/farmacologia , Rim/patologia , Rim/metabolismo , Resistência a Medicamentos , Recém-Nascido , Masculino
18.
Pharmacol Rev ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164116

RESUMO

α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease (PD), Dementia with Lewy Bodies and Multiple System Atrophy. Various factors, including post-translational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various post-translational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the co-occurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. Significance Statement α-Synuclein as a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple post-translational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease and potential therapeutic opportunities.

19.
Cell Commun Signal ; 22(1): 395, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123188

RESUMO

Esophageal cancer is common worldwide, with ESCC being the most frequent tumor in East Asia. Tumor-associated macrophages are an important component of the ESCC microenvironment. SUMOylation is a post-translational modification of proteins, and SUMO-specific proteases (SENPs) play an important role in de-SUMOylation. In human patients, we discovered that the levels of SENP3 were upregulated in the tumor-associated macrophages. Furthermore, the loss of SENP3 enhanced the alternative activation of macrophages in the 4-NQO-induced ESCC mice model. This is the first study to identify SENP3-mediated macrophage polarization via the de-SUMOylation of interferon regulatory factor 4 (IRF4) at the K349 site. Alternative activation of macrophages increases the migration and invasion potential of ESCC cells and promotes their progression in vivo. Moreover, patients with relatively low SENP3 expression in macrophages exhibit higher primary PET SUVmax value and lymph node metastasis rates. In summary, this study revealed that SENP3-mediated IRF4 de-SUMOylation is crucial for the alternative activation of macrophages and influences the progression of ESCC.


Assuntos
Cisteína Endopeptidases , Fatores Reguladores de Interferon , Ativação de Macrófagos , Sumoilação , Animais , Feminino , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética , Progressão da Doença , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Macrófagos/metabolismo , Macrófagos Associados a Tumor/metabolismo
20.
Cell Commun Signal ; 22(1): 404, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160548

RESUMO

SUMOylation, a post-translational modification involving the covalent attachment of small ubiquitin-like modifier (SUMO) proteins to target substrates, plays a pivotal role at the intersection of gut health and disease, influencing various aspects of intestinal physiology and pathology. This review provides a comprehensive examination of SUMOylation's diverse roles within the gut microenvironment. We examine its critical roles in maintaining epithelial barrier integrity, regulating immune responses, and mediating host-microbe interactions, thereby highlighting the complex molecular mechanisms that underpin gut homeostasis. Furthermore, we explore the impact of SUMOylation dysregulation in various intestinal disorders, including inflammatory bowel diseases and colorectal cancer, highlighting its implications as a potential diagnostic biomarker and therapeutic target. By integrating current research findings, this review offers valuable insights into the dynamic interplay between SUMOylation and gut health, paving the way for novel therapeutic strategies aimed at restoring intestinal equilibrium and combating associated pathologies.


Assuntos
Sumoilação , Humanos , Animais , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA