Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 36(3): e2308030, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37822038

RESUMO

Carbon nitrides featuring three-dimensional frameworks of CN4 tetrahedra are one of the great aspirations of materials science, expected to have a hardness greater than or comparable to diamond. After more than three decades of efforts to synthesize them, no unambiguous evidence of their existence has been delivered. Here, the high-pressure high-temperature synthesis of three carbon-nitrogen compounds, tI14-C3 N4 , hP126-C3 N4 , and tI24-CN2 , in laser-heated diamond anvil cells, is reported. Their structures are solved and refined using synchrotron single-crystal X-ray diffraction. Physical properties investigations show that these strongly covalently bonded materials, ultra-incompressible and superhard, also possess high energy density, piezoelectric, and photoluminescence properties. The novel carbon nitrides are unique among high-pressure materials, as being produced above 100 GPa they are recoverable in air at ambient conditions.

2.
Materials (Basel) ; 15(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35329688

RESUMO

High hardness improves the material's load-bearing capacity, resulting in the enhancement of tribological properties. However, the high hardness is difficult to achieve for TiAlN coating due to the transformation of the close-packed structure from cubic to hexagonal and the increase in the grain size when the Al content is high. In the present study, the ultrahard TiAlN coatings (hardness > 40 GPa) are successfully developed by filtered cathodic vacuum arc technology to study the effect of nitrogen flux rate on tribological behaviors. The highest hardness of 46.39 GPa is obtained by tuning the nitrogen flux rate to achieve the regulation of Al content and the formation of nanocrystalline. The stable fcc TiAlN phase is formed via the solid-phase reaction under a high nitrogen concentration, and more aluminum atoms replace the titanium atoms in the (Ti, Al)N solid solution. The high Al content of the Ti0.35Al0.65N coating has a nanocrystalline structure and the average crystalline size is 16.52 nm. The TiAlN coating deposited at a nitrogen flux rate of 60 sccm exhibits the best properties of a combination of microhardness = 2972.91 Hv0.5, H = 46.39 GPa, E = 499.4 Gpa, ratio H/E* = 0.093 and ratio H3/E*2 = 0.403. Meanwhile, the TiAlN coating deposited at 60 sccm shows the lowest average friction coefficient of 0.43 and wear rate of 1.3 × 10−7 mm3 N−1 m−1 due to the best mechanical properties.

3.
Materials (Basel) ; 14(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922873

RESUMO

In this study, both the plasma process of filtered laser-arc evaporation and the resulting properties of tetrahedral amorphous carbon coatings are investigated. The energy distribution of the plasma species and the arc spot dynamics during the arc evaporation are described. Different ta-C coatings are synthesized by varying the bias pulse time and temperature during deposition. An increase in hardness was observed with the increased overlapping of the bias and arc pulse times. External heating resulted in a significant loss of hardness. A strong discrepancy between the in-plane properties and the properties in the film normal direction was detected specifically for a medium temperature of 120 °C during deposition. Investigations using electron microscopy revealed that this strong anisotropy can be explained by the formation of nanocrystalline graphite areas and their orientation toward the film's normal direction. This novel coating type differs from standard amorphous a-C and ta-C coatings and offers new possibilities for superior mechanical behavior due to its combination of a high hardness and low in-plane Young's Modulus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA