Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Front Vet Sci ; 11: 1380623, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737457

RESUMO

Introduction: Preventing potential foreign animal diseases is a high priority, with re-emerging threats such as African Swine Fever emerging close to North American borders. The Secure Pork Supply (SPS) plan provides a voluntary framework for swine producer biosecurity planning and disease outbreak preparedness. However, biosecurity knowledge varies greatly among swine veterinarians, managers, and caretakers within the industry, which impacts the understanding, quality, implementation and biosecurity plan agreements with the SPS guidelines unless review procedures and quality control mechanisms are in place. Therefore, this study aimed to describe and identify the level of biosecurity planning agreements between producer-and/or swine veterinarian-made biosecurity plans for commercial swine sites and the SPS plan guidelines during a review process. Material and methods: Biosecurity maps (N = 368) and written plans (N = 247) were obtained from six Midwest swine companies/veterinary clinics. Maps were evaluated on accuracy and placement of mandatory map features based on SPS guidelines, and discrepancies between the development of producer-made biosecurity maps and written biosecurity plans. Multivariable mixed logistic regression analyses were conducted to identify differences in SPS planning accuracy based on herd size, production stage, and characteristics related to geographical site location (e.g., land cover type and expected feral swine population density in the region). Results: In this study, 55.8% (205/368) of all provided biosecurity maps had to be revised due to misplaced or missing map features. In addition, 80.9% (200/247) of the written plans had one or more conflicts with the corresponding biosecurity maps. The main biosecurity planning issues involved feed delivery activities, where the mapping of vehicle movements (89.9%, 222/247) were in direct conflict with the written SPS plans. Sites located in areas with a moderate expected feral swine population density had 3-fold increased odds of needing map revisions compared to sites with low expected feral swine population density. Sites located in predominately farmland had 7.3% lower odds of having biosecurity map and SPS plan conflicts for every 1.0% increase in farmland landcover in a 10-km radius around the swine site. Discussion: Human oversight or lack of knowledge regarding biosecurity planning and implementation is common, which may culminate in important preparedness shortcomings in disease prevention and control strategies for U.S. swine farms. Future efforts should focus on additional biosecurity training for swine producers and veterinarians alongside with quality control benchmarking of producer made plans.

2.
Vet Res ; 55(1): 48, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594744

RESUMO

Actinobacillus pleuropneumoniae (APP) is a bacterium frequently associated with porcine pleuropneumonia. The acute form of the disease is highly contagious and often fatal, resulting in significant economic losses for pig farmers. Serotype diversity and antimicrobial resistance (AMR) of APP strains circulating in north Italian farms from 2015 to 2022 were evaluated retrospectively to investigate APP epidemiology in the area. A total of 572 strains isolated from outbreaks occurring in 337 different swine farms were analysed. The majority of isolates belonged to serotypes 9/11 (39.2%) and 2 (28.1%) and serotype diversity increased during the study period, up to nine different serotypes isolated in 2022. The most common resistances were against tetracycline (53% of isolates) and ampicillin (33%), followed by enrofloxacin, florfenicol and trimethoprim/sulfamethoxazole (23% each). Multidrug resistance (MDR) was common, with a third of isolates showing resistance to more than three antimicrobial classes. Resistance to the different classes and MDR varied significantly depending on the serotype. In particular, the widespread serotype 9/11 was strongly associated with florfenicol and enrofloxacin resistance and showed the highest proportion of MDR isolates. Serotype 5, although less common, showed instead a concerning proportion of trimethoprim/sulfamethoxazole resistance. Our results highlight how the typing of circulating serotypes and the analysis of their antimicrobial susceptibility profile are crucial to effectively manage APP infection and improve antimicrobial stewardship.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Pleuropneumonia , Doenças dos Suínos , Tianfenicol/análogos & derivados , Suínos , Animais , Sorogrupo , Testes de Sensibilidade Microbiana/veterinária , Enrofloxacina , Fazendas , Estudos Retrospectivos , Pleuropneumonia/epidemiologia , Pleuropneumonia/veterinária , Pleuropneumonia/microbiologia , Antibacterianos/farmacologia , Sulfametoxazol/farmacologia , Trimetoprima/farmacologia , Itália/epidemiologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/microbiologia , Infecções por Actinobacillus/epidemiologia , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/microbiologia , Sorotipagem/veterinária
3.
Anim Biosci ; 37(4): 755-774, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606453

RESUMO

The main objective of this study was to present data on the current situation and future trends of pig meat production in the European Union-27 (EU). Pig production has played an important social and economic role for centuries in many states of the EU. In 2022, pig meat production in the EU reached 23 M tons, which represented 21% of total production worldwide. The two key reasons that justify such amount of pork produced, are the acceptance and high consumption of the meat by the local population and the high quality of the meat produced which facilitated pork export. However, current data show a reduction in pork production for the last three years, as a consequence of a series of events that include i) problems with the chain of ingredients supply, ii) uncontrolled increase in African Swine Fever (ASF) outbreaks, iii) fast recovery of pig production in China, iv) increasing concerns by the rural population on the high cost to meet future requirements of the EU legislation on farm management, environmental sustainability and animal welfare, v) increased cost of all inputs involved in pig production and vi) limited interest of the new farmer generation to work on the pig sector. Consequently, pork production is expected to decrease in the EU for the next years, although sales will be maintained at a relative high level because pork is the meat preferred by local consumers in most EU countries. In order to maintain the favourable position of the pork industry in the near future, strategies to implement include: i) maintain the quality of the meat destinated to export markets, ii) improve the control of outbreaks of ASF and other swine diseases, iii) implementation of technological innovations to improve working conditions making more attractive to work in the pork sector of the food chain to the new generation of farmers and workers.

4.
Front Vet Sci ; 10: 1158306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456959

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) remains widely distributed across the U.S. swine industry. Between-farm movements of animals and transportation vehicles, along with local transmission are the primary routes by which PRRSV is spread. Given the farm-to-farm proximity in high pig production areas, local transmission is an important pathway in the spread of PRRSV; however, there is limited understanding of the role local transmission plays in the dissemination of PRRSV, specifically, the distance at which there is increased risk for transmission from infected to susceptible farms. We used a spatial and spatiotemporal kernel density approach to estimate PRRSV relative risk and utilized a Bayesian spatiotemporal hierarchical model to assess the effects of environmental variables, between-farm movement data and on-farm biosecurity features on PRRSV outbreaks. The maximum spatial distance calculated through the kernel density approach was 15.3 km in 2018, 17.6 km in 2019, and 18 km in 2020. Spatiotemporal analysis revealed greater variability throughout the study period, with significant differences between the different farm types. We found that downstream farms (i.e., finisher and nursery farms) were located in areas of significant-high relative risk of PRRSV. Factors associated with PRRSV outbreaks were farms with higher number of access points to barns, higher numbers of outgoing movements of pigs, and higher number of days where temperatures were between 4°C and 10°C. Results obtained from this study may be used to guide the reinforcement of biosecurity and surveillance strategies to farms and areas within the distance threshold of PRRSV positive farms.

5.
Sensors (Basel) ; 22(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35161454

RESUMO

In this paper we present the development of photonic integrated circuit (PIC) biosensors for the label-free detection of six emerging and endemic swine viruses, namely: African Swine Fever Virus (ASFV), Classical Swine Fever Virus (CSFV), Porcine Reproductive and Respiratory Syndrome Virus (PPRSV), Porcine Parvovirus (PPV), Porcine Circovirus 2 (PCV2), and Swine Influenza Virus A (SIV). The optical biosensors are based on evanescent wave technology and, in particular, on Resonant Rings (RRs) fabricated in silicon nitride. The novel biosensors were packaged in an integrated sensing cartridge that included a microfluidic channel for buffer/sample delivery and an optical fiber array for the optical operation of the PICs. Antibodies were used as molecular recognition elements (MREs) and were selected based on western blotting and ELISA experiments to ensure the high sensitivity and specificity of the novel sensors. MREs were immobilized on RR surfaces to capture viral antigens. Antibody-antigen interactions were transduced via the RRs to a measurable resonant shift. Cell culture supernatants for all of the targeted viruses were used to validate the biosensors. Resonant shift responses were dose-dependent. The results were obtained within the framework of the SWINOSTICS project, contributing to cover the need of the novel diagnostic tools to tackle swine viral diseases.


Assuntos
Vírus da Febre Suína Africana , Técnicas Biossensoriais , Circovirus , Doenças dos Suínos , Viroses , Animais , Suínos
6.
Transbound Emerg Dis ; 69(5): e1549-e1560, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35188711

RESUMO

Accounting for multiple modes of livestock disease dissemination in epidemiological models remains a challenge. We developed and calibrated a mathematical model for transmission of porcine reproductive and respiratory syndrome virus (PRRSV), tailored to fit nine modes of between-farm transmission pathways including: farm-to-farm proximity (local transmission), contact network of batches of pigs transferred between farms (pig movements), re-break probabilities for farms with previous PRRSV outbreaks, with the addition of four different contact networks of transportation vehicles (vehicles to transport pigs to farms, pigs to markets, feed and crew) and the amount of animal by-products within feed ingredients (e.g., animal fat or meat and bone meal). The model was calibrated on weekly PRRSV outbreaks data. We assessed the role of each transmission pathway considering the dynamics of specific types of production (i.e., sow, nursery). Although our results estimated that the networks formed by transportation vehicles were more densely connected than the network of pigs transported between farms, pig movements and farm proximity were the main PRRSV transmission routes regardless of farm types. Among the four vehicle networks, vehicles transporting pigs to farms explained a large proportion of infections, sow = 20.9%; nursery = 15%; and finisher = 20.6%. The animal by-products showed a limited association with PRRSV outbreaks through descriptive analysis, and our model results showed that the contribution of animal fat contributed only 2.5% and meat and bone meal only .03% of the infected sow farms. Our work demonstrated the contribution of multiple routes of PRRSV dissemination, which has not been deeply explored before. It also provides strong evidence to support the need for cautious, measured PRRSV control strategies for transportation vehicles and further research for feed by-products modelling. Finally, this study provides valuable information and opportunities for the swine industry to focus effort on the most relevant modes of PRRSV between-farm transmission.


Assuntos
Produtos Biológicos , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Criação de Animais Domésticos/métodos , Animais , Feminino , Minerais , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Suínos
7.
Transbound Emerg Dis ; 69(4): e532-e546, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34590433

RESUMO

African swine fever (ASF) is considered the most impactful transboundary swine disease. In the absence of effective vaccines, control strategies are heavily dependent on mass depopulation and shipment restrictions. Here, we developed a nested multiscale model for the transmission of ASF, combining a spatially explicit network model of animal shipments with a deterministic compartmental model for the dynamics of two ASF strains within 3 km × 3 km pixels in one Brazilian state. The model outcomes are epidemic duration, number of secondary infected farms and pigs, and distance of ASF spread. The model also shows the spatial distribution of ASF epidemics. We analyzed quarantine-based control interventions in the context of mortality trigger thresholds for the deployment of control strategies. The mean epidemic duration of a moderately virulent strain was 11.2 days, assuming the first infection is detected (best-case scenario), and 15.9 days when detection is triggered at 10% mortality. For a highly virulent strain, the epidemic duration was 6.5 days and 13.1 days, respectively. The distance from the source to infected locations and the spatial distribution was not dependent on strain virulence. Under the best-case scenario, we projected an average number of infected farms of 23.77 farms and 18.8 farms for the moderate and highly virulent strains, respectively. At 10% mortality-trigger, the predicted number of infected farms was on average 46.27 farms and 42.96 farms, respectively. We also demonstrated that the establishment of ring quarantine zones regardless of size (i.e. 5 km, 15 km) was outperformed by backward animal movement tracking. The proposed modelling framework provides an evaluation of ASF epidemic potential, providing a ranking of quarantine-based control strategies that could assist animal health authorities in planning the national preparedness and response plan.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Epidemias , Doenças dos Suínos , Febre Suína Africana/epidemiologia , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/fisiologia , Animais , Surtos de Doenças/veterinária , Epidemias/prevenção & controle , Epidemias/veterinária , Fazendas , Suínos , Doenças dos Suínos/epidemiologia
8.
Transbound Emerg Dis ; 69(2): 396-412, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33475245

RESUMO

A limited understanding of the transmission dynamics of swine disease is a significant obstacle to prevent and control disease spread. Therefore, understanding between-farm transmission dynamics is crucial to developing disease forecasting systems to predict outbreaks that would allow the swine industry to tailor control strategies. Our objective was to forecast weekly porcine epidemic diarrhoea virus (PEDV) outbreaks by generating maps to identify current and future PEDV high-risk areas, and simulating the impact of control measures. Three epidemiological transmission models were developed and compared: a novel epidemiological modelling framework was developed specifically to model disease spread in swine populations, PigSpread, and two models built on previously developed ecosystems, SimInf (a stochastic disease spread simulations) and PoPS (Pest or Pathogen Spread). The models were calibrated on true weekly PEDV outbreaks from three spatially related swine production companies. Prediction accuracy across models was compared using the receiver operating characteristic area under the curve (AUC). Model outputs had a general agreement with observed outbreaks throughout the study period. PoPS had an AUC of 0.80, followed by PigSpread with 0.71, and SimInf had the lowest at 0.59. Our analysis estimates that the combined strategies of herd closure, controlled exposure of gilts to live viruses (feedback) and on-farm biosecurity reinforcement reduced the number of outbreaks. On average, 76% to 89% reduction was seen in sow farms, while in gilt development units (GDU) was between 33% to 61% when deployed to sow and GDU farms located in probabilistic high-risk areas. Our multi-model forecasting approach can be used to prioritize surveillance and intervention strategies for PEDV and other diseases potentially leading to more resilient and healthier pig production systems.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Ecossistema , Fazendas , Feminino , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/prevenção & controle
9.
Microb Pathog ; 158: 105022, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34129904

RESUMO

Seneca Valley virus (SVV) is the causative agent of an emerging infectious vesicular disease in swine that is clinically indistinguishable from other vesicular diseases of swine. This study utilized healthy suckling piglets (control) and SVV-naturally infected suckling piglets to determine the effects of SVV on lymphoid tissues and determined the SVV RNA load by quantitative RT-PCR (qRT-PCR). Furthermore, immunohistochemistry (IHC) analyses were performed to quantify the expression of T and B cell lymphocytes, natural killer cells, cleaved caspase 3, and ki-67. The main histopathologic finding in the infected group was severe lymphoid depletion. The highest average of SVV RNA load by qRT-PCR (Log10 genomic copies/g of tissue) occurred at the spleen (8.54 ± 0.8), followed by the tonsils (8.04 ± 1.42), and mesenteric lymph nodes (6.90 ± 1.42). The IHC analyses revealed that there was an increased in cellular apoptosis with concomitant reduction in the proliferation of B cells. The results from this study have demonstrated that SVV-infected piglets exhibited decreased lymphocyte density probably due to lymphoid apoptosis, affecting particularly B-cells lymphocytes.


Assuntos
Infecções por Picornaviridae , Doenças dos Suínos , Animais , Apoptose , Linfócitos B , Picornaviridae , Suínos
10.
BMC Vet Res ; 17(1): 117, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712000

RESUMO

BACKGROUND: At present, the process of inspection and quarantine starts with sampling at the customs port, continues with transporting the samples to the central laboratory for inspection experiments, and ends with the inspected results being fed back to the port. This process had the risks of degradation of biological samples and generation of pathogenic microorganisms and did not meet the rapid on-site detection demand because it took a rather long time. Therefore, it is urgently needed to develop a rapid and high-throughput detection assay of pathogenic microorganisms at the customs port. The aim of this study was to develop a microfluidic chip to rapidly detect swine pathogenic microorganisms with high-throughput and higher accuracy. Moreover, this chip will decrease the risk of spreading infection during transportation. RESULTS: A series of experiments were performed to establish a microfluidic chip. The resulting data showed that the positive nucleic acid of four swine viruses were detected by using a portable and rapid microfluidic PCR system, which could achieve a on-site real-time quantitative PCR detection. Furthermore, the detection results of eight clinical samples were obtained within an hour. The lowest concentration that amplified of this microfluidic PCR detection system was as low as 1 copies/µL. The results showed that the high specificity of this chip system in disease detection played an important role in customs inspection and quarantine during customs clearance. CONCLUSION: The microfluidic PCR detection system established in this study could meet the requirement for rapid detection of samples at the customs port. This chip could avoid the risky process of transporting the samples from the sampling site to the testing lab, and drastically reduce the inspection cycle. Moreover, it would enable parallel inspections on one chip, which greatly raised the efficiency of inspection.


Assuntos
Dispositivos Lab-On-A-Chip/veterinária , Reação em Cadeia da Polimerase Multiplex/veterinária , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Doenças dos Suínos/virologia , Animais , Circovirus/genética , Circovirus/isolamento & purificação , Herpesvirus Suídeo 1/genética , Herpesvirus Suídeo 1/isolamento & purificação , Ensaios de Triagem em Larga Escala , Dispositivos Lab-On-A-Chip/virologia , Microfluídica/instrumentação , Reação em Cadeia da Polimerase Multiplex/métodos , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Suínos , Doenças dos Suínos/diagnóstico
11.
Transbound Emerg Dis ; 68(4): 2465-2476, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33155439

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a significant global, enteric coronavirus in pigs and was first reported in Colombia in 2014. However, the epidemiology, genetic and antigenic characteristics of the virus have yet to be investigated. In this study, we investigated the dissemination of PEDV by testing 536 samples by RT-PCR over a 33-month period. The 35.8% of positive samples (n = 192) was significantly different (p < .01) between months over time, with a higher number of positives samples occurring at the beginning of the epidemic and during the second epidemic wave within the main pork producing region. The complete PEDV genomes were generated for 21 strains, which shared a high nucleotide and amino acid sequence identity, except for the spike (S) gene. Recombinant regions were identified within the Colombian strains and between Colombian and Asian PEDV strains. Phylogenetic analysis of the 21 Colombian strains demonstrated the presence of 7 lineages that shared common ancestors with PEDV strains from the United States. Moreover, the antigenic analysis demonstrated residue differences in the neutralizing epitopes in the spike and nucleocapsid proteins. Our results illustrated the simultaneous introduction of the two PEDV genotypes (GIIa American pandemic and S-INDEL) into the Colombian swine industry during the 2014 PEDV epidemic and enhanced our understanding of the epidemiology and molecular diversity of PEDV in Colombia.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Colômbia/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Epidemias/veterinária , Filogenia , Vírus da Diarreia Epidêmica Suína/genética , Suínos , Doenças dos Suínos/epidemiologia , Estados Unidos
12.
Transbound Emerg Dis ; 67(6): 2564-2578, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32419367

RESUMO

African Swine Fever (ASF) is a contagious disease of domestic and wild pigs caused by the African Swine Fever Virus (ASFV). The disease has spread globally in recent years with serious economic consequences to pork production. This report describes an ASF outbreak that occurred in a large-scale Chinese commercial pig farm. The outbreak started in 2018 and presents the spatial and temporal spread of infection in an intensive pig farm. Pig houses adjacent to exit rooms had a higher risk of infection (Odds ratio = 14.4, 95%CI: 1.5-140). Introduction of disease is presumed to have occurred through a contaminated vehicle used in the sale of pigs with poor productivity. This investigation shows the process of ASFV infection and spread in a facility with presumed adequate biosecurity measures. These findings may benefit others in the control of ASF in large-scale pig farms.


Assuntos
Febre Suína Africana/epidemiologia , Criação de Animais Domésticos/estatística & dados numéricos , Surtos de Doenças/veterinária , Febre Suína Africana/virologia , Vírus da Febre Suína Africana , Animais , China/epidemiologia , Feminino , Razão de Chances , Sus scrofa , Suínos
13.
Emerg Infect Dis ; 26(2): 255-265, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31961296

RESUMO

Coronaviruses cause respiratory and gastrointestinal diseases in diverse host species. Deltacoronaviruses (DCoVs) have been identified in various songbird species and in leopard cats in China. In 2009, porcine deltacoronavirus (PDCoV) was detected in fecal samples from pigs in Asia, but its etiologic role was not identified until 2014, when it caused major diarrhea outbreaks in swine in the United States. Studies have shown that PDCoV uses a conserved region of the aminopeptidase N protein to infect cell lines derived from multiple species, including humans, pigs, and chickens. Because PDCoV is a potential zoonotic pathogen, investigations of its prevalence in humans and its contribution to human disease continue. We report experimental PDCoV infection and subsequent transmission among poultry. In PDCoV-inoculated chicks and turkey poults, we observed diarrhea, persistent viral RNA titers from cloacal and tracheal samples, PDCoV-specific serum IgY antibody responses, and antigen-positive cells from intestines.


Assuntos
Infecções por Coronavirus/virologia , Deltacoronavirus/isolamento & purificação , Doenças dos Suínos/epidemiologia , Animais , Galinhas , Infecções por Coronavirus/transmissão , Suínos , Doenças dos Suínos/transmissão , Doenças dos Suínos/virologia , Perus , Estados Unidos/epidemiologia
14.
Sensors (Basel) ; 19(18)2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31540156

RESUMO

In this paper we introduce a field diagnostic device based on the combination of advanced bio-sensing and photonics technologies, to tackle emerging and endemic viruses causing swine epidemics, and consequently significant economic damage in farms. The device is based on the use of microring resonators fabricated in silicon nitride with CMOS compatible techniques. In the paper, the designed and fabricated photonic integrated circuit (PIC) sensors are presented and characterized, showing an optimized performance in terms of optical losses (30 dB per ring) and extinction ration for ring resonances (15 dB). Furthermore, the results of an experiment for porcine circovirus 2 (PCV2) detection by using the developed biosensors are presented. Positive detection for different virus concentrations has been obtained. The device is currently under development in the framework of the EU Commission co-funded project SWINOSTICS.


Assuntos
Técnicas Biossensoriais/métodos , Óptica e Fotônica , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/virologia , Viroses/diagnóstico , Animais , Circovirus/isolamento & purificação , Suínos
15.
Sensors (Basel) ; 19(2)2019 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-30669504

RESUMO

In this paper, we present the concept of a novel diagnostic device for on-site analyses, based on the use of advanced bio-sensing and photonics technologies to tackle emerging and endemic viruses causing swine epidemics and significant economic damage in farms. The device is currently under development in the framework of the EU Commission co-funded project. The overall concept behind the project is to develop a method for an early and fast on field detection of selected swine viruses by non-specialized personnel. The technology is able to detect pathogens in different types of biological samples, such as oral fluids, faeces, blood or nasal swabs. The device will allow for an immediate on-site threat assessment. In this work, we present the overall concept of the device, its architecture with the technical requirements, and all the used innovative technologies that contribute to the advancements of the current state of the art.


Assuntos
Equipamentos para Diagnóstico , Doenças dos Suínos/diagnóstico , Suínos/virologia , Viroses/diagnóstico , Animais , Técnicas Biossensoriais , Reprodutibilidade dos Testes
16.
Front Vet Sci ; 6: 486, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998765

RESUMO

African swine fever (ASF) is currently spreading westwards throughout Europe and eastwards into China, with cases occurring in both wild boar and domestic pigs. A generic risk assessment framework is used to determine the probability of first infection with ASF virus (ASFV) at a fine spatial scale across European Union Member States. The framework aims to assist risk managers across Europe with their ASF surveillance and intervention activities. Performing the risk assessment at a fine spatial scale allows for hot-spot surveillance, which can aid risk managers by directing surveillance or intervention resources at those areas or pathways deemed most at risk, and hence enables prioritization of limited resources. We use 2018 cases of ASF to estimate prevalence of the disease in both wild boar and pig populations and compute the risk of initial infection for 2019 at a 100 km2 cell resolution via three potential pathways: legal trade in live pigs, natural movement of wild boar, and legal trade in pig meat products. We consider the number of pigs, boar and amount of pig meat entering our area of interest, the prevalence of the disease in the origin country, the probability of exposure of susceptible pigs or boar in the area of interest to introduced infected pigs, boar, or meat from an infected pig, and the probability of transmission to susceptible animals. We provide maps across Europe indicating regions at highest risk of initial infection. Results indicate that the risk of ASF in 2019 was predominantly focused on those regions which already had numerous cases in 2018 (Poland, Lithuania, Hungary, Romania, and Latvia). The riskiest pathway for ASFV transmission to pigs was the movement of wild boar for Eastern European countries and legal trade of pigs for Western European countries. New infections are more likely to occur in wild boar rather than pigs, for both the pig meat and wild boar movement pathways. Our results provide an opportunity to focus surveillance activities and thus increase our ability to detect ASF introductions earlier, a necessary requirement if we are to successfully control the spread of this devastating disease for the pig industry.

17.
Transbound Emerg Dis ; 65(2): e489-e493, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29148267

RESUMO

Recently, the number of clinical reports of growing pigs showing neurological signs possibly related to viral infections has increased. The objective of this report was to describe two outbreaks of an atypical condition observed in 6- to 7-week-old pigs with a morbidity of 20% and a fatality rate of 60% in two unrelated farms of the same company. During the acute phase of the disease, fever, sudden death, neurological signs, ear necrosis and occasional corneal opacity were observed. Histopathological examination revealed interstitial pneumonia, lymphoid depletion and lymphocytic vasculitis in different organs and mild polioencephalomyelitis suggesting a potential viral infection. Possible aetiologies such as exogenous intoxications, salt intoxication, mineral deficiencies/intoxications (Se, Cu, Cd and Zn), oedema disease and mycotoxicosis were ruled out through the diagnostic process. No clinically relevant bacteria could be consistently isolated from affected animals, and the presence of the common swine viruses was ruled out by PCR or RT-PCR. Porcine Teschovirus serotype 13 was the only virus detected by RT-PCR within central nervous system (CNS) of acutely affected pigs. This is the first description of PTV serotype 13 within the CNS of clinically affected pigs.


Assuntos
Surtos de Doenças/veterinária , Encefalomielite/veterinária , Infecções por Picornaviridae/veterinária , Doenças dos Suínos/virologia , Teschovirus/isolamento & purificação , Animais , Encefalomielite/epidemiologia , Encefalomielite/virologia , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/virologia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Sorogrupo , Medula Espinal/virologia , Suínos , Doenças dos Suínos/epidemiologia
18.
Prev Vet Med ; 145: 67-72, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28903876

RESUMO

Enzootic pneumonia (EP) in pigs caused by Mycoplasma (M.) hyopneumoniae has successfully been combatted in Switzerland. A control program was fully implemented in 2004 which is based on total depopulation strategies of affected fattening farms as well as partial depopulation on breeding farms. Thereby, the number of cases has dropped drastically from more than 200 in 2003 to two cases in 2013. Currently monitoring is done based on clinical observation and subsequent diagnostic of coughing pigs. Moreover, in case of more than 10% gross pathological lesions per slaughter batch laboratory confirmation for EP is compulsory. Despite these strict measures it was not possible to eliminate M. hyopneumoniae from Swiss pig production. In fact, during the last few years the number of EP cases has slightly increased. Therefore, genotyping of the involved M. hyopneumoniae strains was conducted in order to elucidate possible sources and routes of infection. All available and typeable samples from totally 22 cases during the period 2014-2016 were investigated by extended multilocus sequence typing (MLST). A total of 16 cases, including eight from 2014, five from 2015 and three from 2016 could thereby be included in the study. MLST revealed that the majority of cases in 2014/2015 were due to two major spread scenarios, i.e. two M. hyopneumoniae sequence types, each scenario involving six individual production farms in five to six different Cantons (states), respectively. Moreover, by comparison of archived sequences some sequence types were observed over ten years demonstrating their persistence over a long time and the possible partial failure of elimination measures in Switzerland. Insufficient sanitation on affected farms and subsequent animal transport of symptomless infected pigs could lead to recurrent cases. Wild boar harbor identical strains found with EP but solid data are missing to assign a role as reservoir to this wild animal. Implementing a monitoring scheme for M. hyopneumoniae in wild boar in combination with genotyping of all available samples from domestic pigs could direct responsible authorities to possible gaps and deficiencies of control measures taken for combating enzootic pneumonia. With the newly installed PubMLST database sequence types for M. hyopneumoniae are now available and allow tracing back strains on the international level.


Assuntos
Mycoplasma hyopneumoniae/genética , Pneumonia Suína Micoplasmática/epidemiologia , Animais , Genótipo , Tipagem de Sequências Multilocus/veterinária , Suínos , Suíça/epidemiologia
19.
Transbound Emerg Dis ; 64(4): 1168-1177, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26924683

RESUMO

A study was conducted between May 2013 and August 2014 in three provinces of Vietnam to investigate financial impacts of swine diseases in pig holdings in 2010-2013. The aim of the study was to quantify the costs of swine diseases at producer level in order to understand swine disease priority for monitoring at local level. Financial impacts of porcine reproductive and respiratory syndrome (PRRS), foot and mouth disease (FMD), and epidemic diarrhoea were assessed for 162 pig holders in two Red River Delta provinces and in one Mekong River Delta province, using data on pig production and swine disease outbreaks at farms. Losses incurred by swine diseases were estimated, including direct losses due to mortality (100% market value of pig before disease onset) and morbidity (abortion, delay of finishing stage), and indirect losses due to control costs (treatment, improving biosecurity and emergency vaccination) and revenue foregone (lower price in case of emergency selling). Financial impacts of swine diseases were expressed as percentage of gross margin of pig holding. The gross margin varied between pig farming groups (P < 0.0001) in the following order: large farm (USD 18 846), fattening farm (USD 7014) and smallholder (USD 2350). The losses per pig holding due to PRRS were the highest: 41% of gross margin for large farm, 38% for fattening farm and 63% for smallholder. Cost incurred by FMD was lower with 19%, 25% and 32% of gross margin of pig holding in large farm, fattening farm and smallholder, respectively. The cost of epidemic diarrhoea was the lowest compared to losses due to PRRS and FMD and accounted for around 10% of gross margin of pig holding in the three pig farming groups. These estimates provided critical elements on swine disease priorities to better inform surveillance and control at both national and local level.


Assuntos
Criação de Animais Domésticos/economia , Fazendas/economia , Doenças dos Suínos/economia , Animais , Feminino , Masculino , Suínos , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA