RESUMO
N-fused pyrrolidinyl spirooxindole belongs to a class of privileged heterocyclic scaffolds and is prevalent in natural alkaloids and synthetic pharmaceutical molecules. To realize the switchable synthesis of divergent N-fused pyrrolidinyl spirooxindoles for further biological activity evaluation via a substrate-controlled strategy, a chemically sustainable, catalysis-free, and dipolarophile-controlled three-component 1,3-dipolar cycloaddition of isatin-derived azomethine ylides with diverse dipolarophiles is described in this work. A total of 40 functionalized N-fused pyrrolidinyl spirooxindoles were synthesized in 76-95% yields with excellent diastereoselectivities (up to >99:1 dr). The scaffolds of these products can be well-controlled by employing different 1,4-enedione derivatives as dipolarophiles in EtOH at room temperature. This study provides an efficient strategy to afford a spectrum of natural-like and potentially bioactive N-fused pyrrolidinyl spirooxindoles.