Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
1.
Cell Rep ; 43(8): 114624, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39154341

RESUMO

Chlamydia trachomatis, a leading cause of bacterial sexually transmitted infections, creates a specialized intracellular replicative niche by translocation and insertion of a diverse array of effectors (Incs [inclusion membrane proteins]) into the inclusion membrane. Here, we characterize IncE, a multifunctional Inc that encodes two non-overlapping short linear motifs (SLiMs) within its short cytosolic C terminus. The proximal SLiM, by mimicking just a small portion of an R-N-ethylmaleimide-sensitive factor adaptor protein receptor (SNARE) motif, binds and recruits syntaxin (STX)7- and STX12-containing vesicles to the inclusion. The distal SLiM mimics the sorting nexin (SNX)5 and SNX6 cargo binding site to recruit SNX6-containing vesicles to the inclusion. By simultaneously binding two distinct vesicle classes, IncE brings these vesicles in close apposition with each other at the inclusion to facilitate C. trachomatis intracellular development. Our work suggests that Incs may have evolved SLiMs to enable rapid evolution in a limited protein space to disrupt host cell processes.


Assuntos
Proteínas de Bactérias , Chlamydia trachomatis , Chlamydia trachomatis/metabolismo , Humanos , Proteínas de Bactérias/metabolismo , Células HeLa , Motivos de Aminoácidos , Transporte Proteico , Nexinas de Classificação/metabolismo , Nexinas de Classificação/genética , Proteínas Qa-SNARE/metabolismo , Ligação Proteica
2.
Elife ; 132024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109999

RESUMO

Prions replicate via the autocatalytic conversion of cellular prion protein (PrPC) into fibrillar assemblies of misfolded PrP. While this process has been extensively studied in vivo and in vitro, non-physiological reaction conditions of fibril formation in vitro have precluded the identification and mechanistic analysis of cellular proteins, which may alter PrP self-assembly and prion replication. Here, we have developed a fibril formation assay for recombinant murine and human PrP (23-231) under near-native conditions (NAA) to study the effect of cellular proteins, which may be risk factors or potential therapeutic targets in prion disease. Genetic screening suggests that variants that increase syntaxin-6 expression in the brain (gene: STX6) are risk factors for sporadic Creutzfeldt-Jakob disease. Analysis of the protein in NAA revealed, counterintuitively, that syntaxin-6 is a potent inhibitor of PrP fibril formation. It significantly delayed the lag phase of fibril formation at highly sub-stoichiometric molar ratios. However, when assessing toxicity of different aggregation time points to primary neurons, syntaxin-6 prolonged the presence of neurotoxic PrP species. Electron microscopy and super-resolution fluorescence microscopy revealed that, instead of highly ordered fibrils, in the presence of syntaxin-6 PrP formed less-ordered aggregates containing syntaxin-6. These data strongly suggest that the protein can directly alter the initial phase of PrP self-assembly and, uniquely, can act as an 'anti-chaperone', which promotes toxic aggregation intermediates by inhibiting fibril formation.


Assuntos
Proteínas Qa-SNARE , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/genética , Animais , Camundongos , Humanos , Proteínas Priônicas/metabolismo , Proteínas Priônicas/genética , Proteínas Priônicas/química , Neurônios/metabolismo , Agregados Proteicos , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/genética
3.
Neurochem Int ; 179: 105824, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39098765

RESUMO

N-methyl-D-aspartate (NMDA) receptors are calcium-permeable ion-channel receptors, specifically activated by glutamate, that permit the activation of specific intracellular calcium-dependent pathways. Aberrant NMDA receptor activation leads to a condition known as excitotoxicity, in which excessive calcium inflow induces apoptotic pathways. To date, memantine is the only NMDA receptor antagonist authorized in clinical practice, hence, a better understanding of the NMDA cascade represents a need to discover novel pharmacological targets. We previously reported non-conventional intracellular signaling triggered by which, upon activation, promotes the interaction between JNK2 and STX1A which enhances the rate of vesicular secretion. We developed a cell-permeable peptide, named JGRi1, able to disrupt such interaction, thus reducing vesicular secretion. In this work, to selectively study the effect of JGRi1 in a much simpler system, we employed neuroblastoma cells, SH-SY5Y. We found that SH-SY5Y cells express the components of the NMDA receptor-JNK2 axis and that the NMDA stimulus increases the rate of vesicle release. Both JGRi1 and memantine protected SH-SY5Y cells from NMDA toxicity, but only JGRi1 reduced the interaction between JNK2 and STX1A. Both drugs successfully reduced NMDA-induced vesicle release, although, unlike memantine, JGRi1 did not prevent calcium influx. NMDA treatment induced JNK2 expression, but not JNK1 or JNK3, which was prevented by both JGRi1 and memantine, suggesting that JNK2 may be specifically involved in the response to NMDA. In conclusion, being JGRi1 able to protect cells against NMDA toxicity by interfering with JNK2/STX1A interaction, it could be considered a novel pharmacological tool to counteract excitotoxicity.


Assuntos
Proteína Quinase 9 Ativada por Mitógeno , N-Metilaspartato , Sintaxina 1 , Humanos , N-Metilaspartato/toxicidade , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/antagonistas & inibidores , Linhagem Celular Tumoral , Sintaxina 1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Memantina/farmacologia
5.
J Cell Mol Med ; 28(10): e18402, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39008328

RESUMO

Syntaxin 17 (STX17) has been identified as a crucial factor in mediating the fusion of autophagosomes and lysosomes. However, its specific involvement in the context of atherosclerosis (AS) remains unclear. This study sought to elucidate the role and mechanistic contributions of STX17 in the initiation and progression of AS. Utilizing both in vivo and in vitro AS model systems, we employed ApoE knockout (KO) mice subjected to a high-fat diet and human umbilical vein endothelial cells (HUVECs) treated with oxidized low-density lipoprotein (ox-LDL) to assess STX17 expression. To investigate underlying mechanisms, we employed shRNA-STX17 lentivirus to knock down STX17 expression, followed by evaluating autophagy and inflammation in HUVECs. In both in vivo and in vitro AS models, STX17 expression was significantly upregulated. Knockdown of STX17 exacerbated HUVEC damage, both with and without ox-LDL treatment. Additionally, we observed that STX17 knockdown impaired autophagosome degradation, impeded autophagy flux and also resulted in the accumulation of dysfunctional lysosomes in HUVECs. Moreover, STX17 knockdown intensified the inflammatory response following ox-LDL treatment in HUVECs. Further mechanistic exploration revealed an association between STX17 and STING; reducing STX17 expression increased STING levels. Further knockdown of STING enhanced autophagy flux. In summary, our findings suggest that STX17 knockdown worsens AS by impeding autophagy flux and amplifying the inflammatory response. Additionally, the interaction between STX17 and STING may play a crucial role in STX17-mediated autophagy.


Assuntos
Aterosclerose , Autofagia , Células Endoteliais da Veia Umbilical Humana , Inflamação , Lipoproteínas LDL , Proteínas Qa-SNARE , Autofagia/genética , Animais , Humanos , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/genética , Camundongos , Lipoproteínas LDL/metabolismo , Técnicas de Silenciamento de Genes , Lisossomos/metabolismo , Camundongos Knockout , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Dieta Hiperlipídica/efeitos adversos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/deficiência
6.
Insect Sci ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075757

RESUMO

Syntaxin 1A (Syx1A) has diverse and indispensable functions in animals. Previous studies have mainly focused on the roles of Syx1A in Drosophila, and so how Syx1A operates during the development of other insects remains poorly understood. This study investigated whether disrupting LmSyx1A using RNA interference (RNAi) affects the growth and development of Locusta migratoria. LmSyx1A was expressed in all tissues tested, with the highest expression observed in the fat body. After 5th-instar nymphs were injected with double-stranded LmSyx1A (dsLmSyx1A), none of the nymphs were able to molt normally and all eventually died. The silencing of LmSyx1A resulted in the cessation of feeding, body weight loss, and atrophy of the midgut and gastric cecum in locusts. Hematoxylin and eosin (H&E) staining showed that the columnar cells in the midgut were severely damaged, with microvilli defects visible in dsLmSyx1A-injected nymphs. Secretory vesicles were observed with transmission electron microscopy (TEM). In addition, reverse transcription quantitative polymerase chain reaction (RT-qPCR) further indicates that silencing LmSyx1A repressed the expression of genes involved in the insulin/mammalian target of rapamycin (mTOR)-associated nutritional pathway. Taken together, these results suggest that LmSyx1A significantly affects the midgut cell layer of locust nymphs, which was partially associated with the downregulation of the insulin/mTOR-associated nutritional pathway. Thus, we argue that LmSyx1A is a suitable target for developing dsRNA-based biological pesticides for managing L. migratoria.

7.
J Infect Dis ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078938

RESUMO

Our previous study showed that OmpA-deficient Salmonella Typhimurium (STM) failed to retain LAMP-1, quit Salmonella-containing vacuole (SCV) and escaped to the host cytosol. Here we show that the cytosolic population of STM ΔompA sequestered autophagic markers, syntaxin17 and LC3B in a sseL-dependent manner and initiated lysosomal fusion. Moreover, inhibition of autophagy using bafilomycinA1 restored its intracellular proliferation. Ectopic overexpression of OmpA in STM ΔsifA restored its vacuolar niche and increased interaction of LAMP-1, suggesting a sifA-independent role of OmpA in maintaining an intact SCV. The OmpA extracellular loops impaired the LAMP-1 recruitment to SCV and caused bacterial release into the cytosol of macrophages, but unlike STM ΔompA, they retained their outer membrane stability and didn't activate the lysosomal degradation pathway aiding in their intra-macrophage survival. Finally, OmpA extracellular loop mutations protected the cytosolic STM ΔsifA from the lysosomal surveillance, revealing a unique OmpA-dependent strategy of STM for its intracellular survival.

8.
Elife ; 122024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831696

RESUMO

During macroautophagy, cytoplasmic constituents are engulfed by autophagosomes. Lysosomes fuse with closed autophagosomes but not with unclosed intermediate structures. This is achieved in part by the late recruitment of the autophagosomal SNARE syntaxin 17 (STX17) to mature autophagosomes. However, how STX17 recognizes autophagosome maturation is not known. Here, we show that this temporally regulated recruitment of STX17 depends on the positively charged C-terminal region of STX17. Consistent with this finding, mature autophagosomes are more negatively charged compared with unclosed intermediate structures. This electrostatic maturation of autophagosomes is likely driven by the accumulation of phosphatidylinositol 4-phosphate (PI4P) in the autophagosomal membrane. Accordingly, dephosphorylation of autophagosomal PI4P prevents the association of STX17 to autophagosomes. Furthermore, molecular dynamics simulations support PI4P-dependent membrane insertion of the transmembrane helices of STX17. Based on these findings, we propose a model in which STX17 recruitment to mature autophagosomes is temporally regulated by a PI4P-driven change in the surface charge of autophagosomes.


Assuntos
Autofagossomos , Fosfatos de Fosfatidilinositol , Proteínas Qa-SNARE , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/genética , Autofagossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Humanos , Simulação de Dinâmica Molecular , Autofagia/fisiologia
9.
Elife ; 132024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831693

RESUMO

A change in the electric charge of autophagosome membranes controls the recruitment of SNARE proteins to ensure that membrane fusion occurs at the right time during autophagy.


Assuntos
Autofagossomos , Autofagia , Fusão de Membrana , Proteínas SNARE , Autofagia/fisiologia , Autofagossomos/metabolismo , Proteínas SNARE/metabolismo , Humanos , Animais
10.
Pestic Biochem Physiol ; 202: 105934, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879326

RESUMO

Syntaxin5 (Syx5) belongs to SNAREs family, which play important roles in fusion of vesicles to target membranes. Most of what we know about functions of Syx5 originates from studies in fungal or vertebrate cells, how Syx5 operates during the development of insects is poorly understood. In this study, we investigated the role of LmSyx5 in the gut development of the hemimetabolous insect Locusta migratoria. LmSyx5 was expressed in many tissues, with higher levels in the gut. Knockdown of LmSyx5 by RNA interference (RNAi) considerably suppressed feeding in both nymphs and adults. The dsLmSyx5-injected locusts lost body weight and finally died at a mortality of 100%. Furthermore, hematoxylin-eosin staining indicated that the midgut is deformed in dsLmSyx5-treated nymphs and the brush border in midgut epithelial cells is severely damaged, suggesting that LmSyx5 is involved in morphogenesis of the midgut. TEM further showed that the endoplasmic reticulum of midgut cells have a bloated appearance. Taken together, these results suggest that LmSyx5 is essential for midgut epithelial homeostsis that affects growth and development of L. migratoria. Thus, Syx5 is a promising RNAi target for controlling L. migratoria, and even other pests.


Assuntos
Comportamento Alimentar , Proteínas de Insetos , Mucosa Intestinal , Locusta migratoria , Proteínas Qa-SNARE , Locusta migratoria/genética , Locusta migratoria/crescimento & desenvolvimento , Locusta migratoria/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Mucosa Intestinal/crescimento & desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Comportamento Alimentar/fisiologia , Técnicas de Silenciamento de Genes , Homologia de Sequência de Aminoácidos , Distribuição Tecidual , Peso Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento
11.
J Cell Physiol ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801215

RESUMO

Syntaxin of plant (SYP) plays a crucial role in SNARE-mediated membrane trafficking during endocytic and secretory pathways, contributing to the regulation and execution of plant immunity against pathogens. Verticillium wilt is among the most destructive fungal diseases affecting cotton worldwide. However, information regarding SYP family genes in cotton is scarce. Through genome-wide identification and transcriptome profiling, we identified GhSYP121, a Qa SNARE gene in Gossypium hirsutum. GhSYP121 is notably induced by Verticillium dahliae, the causal agent of Verticillium wilt in cotton, and acts as a negative regulator of defense against V. dahliae. This is evidenced by the reduced resistance of GhSYP121-deficient cotton and the increased susceptibility of GhSYP121-overexpressing lines. Furthermore, the activation of the salicylic acid (SA) pathway by V. dahliae is inversely correlated with the expression level of GhSYP121. GhSYP121 interacts with its cognate SNARE component, GhSNAP33, which is required for the penetration resistance against V. dahliae in cotton. Collectively, GhSYP121, as a member of the cotton SNARE complex, is involved in regulating the SA pathway during plant defense against V. dahliae. This finding enhances our understanding of the potential role of GhSYP121 in these distinct pathways that contribute to plant defense against V. dahliae infection.

12.
J Neurosci ; 44(24)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38749704

RESUMO

General anesthetics disrupt brain network dynamics through multiple pathways, in part through postsynaptic potentiation of inhibitory ion channels as well as presynaptic inhibition of neuroexocytosis. Common clinical general anesthetic drugs, such as propofol and isoflurane, have been shown to interact and interfere with core components of the exocytic release machinery to cause impaired neurotransmitter release. Recent studies however suggest that these drugs do not affect all synapse subtypes equally. We investigated the role of the presynaptic release machinery in multiple neurotransmitter systems under isoflurane general anesthesia in the adult female Drosophila brain using live-cell super-resolution microscopy and optogenetic readouts of exocytosis and neural excitability. We activated neurotransmitter-specific mushroom body output neurons and imaged presynaptic function under isoflurane anesthesia. We found that isoflurane impaired synaptic release and presynaptic protein dynamics in excitatory cholinergic synapses. In contrast, isoflurane had little to no effect on inhibitory GABAergic or glutamatergic synapses. These results present a distinct inhibitory mechanism for general anesthesia, whereby neuroexocytosis is selectively impaired at excitatory synapses, while inhibitory synapses remain functional. This suggests a presynaptic inhibitory mechanism that complements the other inhibitory effects of these drugs.


Assuntos
Encéfalo , Proteínas de Drosophila , Isoflurano , Proteínas SNARE , Sinapses , Animais , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/fisiologia , Feminino , Proteínas SNARE/metabolismo , Isoflurano/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila , Anestésicos Inalatórios/farmacologia , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Corpos Pedunculados/efeitos dos fármacos , Corpos Pedunculados/metabolismo , Corpos Pedunculados/fisiologia
13.
Front Cell Neurosci ; 18: 1380064, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799985

RESUMO

The soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) superfamily plays a pivotal role in cellular trafficking by facilitating membrane fusion events. These SNARE proteins, including syntaxins, assemble into complexes that actively facilitate specific membrane fusion events. Syntaxins, as integral components of the SNARE complex, play a crucial role in initiating and regulating these fusion activities. While specific syntaxins have been extensively studied in various cellular processes, including neurotransmitter release, autophagy and endoplasmic reticulum (ER)-to-Golgi protein transport, their roles in the retina remain less explored. This review aims to enhance our understanding of syntaxins' functions in the retina by shedding light on how syntaxins mediate membrane fusion events unique to the retina. Additionally, we seek to establish a connection between syntaxin mutations and retinal diseases. By exploring the intricate interplay of syntaxins in retinal function and health, we aim to contribute to the broader comprehension of cellular trafficking in the context of retinal physiology and pathology.

14.
J Microbiol ; 62(4): 315-325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451450

RESUMO

Acinetobacter baumannii (A. baumannii) causes autophagy flux disorder by degrading STX17, resulting in a serious inflammatory response. It remains unclear whether STX17 can alter the inflammatory response process by controlling autolysosome function. This study aimed to explore the role of STX17 in the regulation of pyroptosis induced by A. baumannii. Our findings indicate that overexpression of STX17 enhances autophagosome degradation, increases LAMP1 expression, reduces Cathepsin B release, and improves lysosomal function. Conversely, knockdown of STX17 suppresses autophagosome degradation, reduces LAMP1 expression, augments Cathepsin B release, and accelerates lysosomal dysfunction. In instances of A. baumannii infection, overexpression of STX17 was found to improve lysosomal function and reduce the expression of mature of GSDMD and IL-1ß, along with the release of LDH, thus inhibiting pyroptosis caused by A. baumannii. Conversely, knockdown of STX17 led to increased lysosomal dysfunction and further enhanced the expression of mature of GSDMD and IL-1ß, and increased the release of LDH, exacerbating pyroptosis induced by A. baumannii. These findings suggest that STX17 regulates pyroptosis induced by A. baumannii by modulating lysosomal function.


Assuntos
Acinetobacter baumannii , Interleucina-1beta , Lisossomos , Piroptose , Proteínas Qa-SNARE , Lisossomos/metabolismo , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Humanos , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/genética , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Autofagia , Animais , Catepsina B/metabolismo , Catepsina B/genética , Infecções por Acinetobacter/microbiologia , Camundongos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Autofagossomos/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Gasderminas
15.
Biol Psychiatry ; 96(2): 125-136, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490366

RESUMO

BACKGROUND: Pathogenic variants in STXBP1/MUNC18-1 cause severe encephalopathies that are among the most common in genetic neurodevelopmental disorders. Different molecular disease mechanisms have been proposed, and pathogenicity prediction is limited. In this study, we aimed to define a generalized disease concept for STXBP1-related disorders and improve prediction. METHODS: A cohort of 11 disease-associated and 5 neutral variants (detected in healthy individuals) were tested in 3 cell-free assays and in heterologous cells and primary neurons. Protein aggregation was tested using gel filtration and Triton X-100 insolubility. PRESR (predicting STXBP1-related disorder), a machine learning algorithm that uses both sequence- and 3-dimensional structure-based features, was developed to improve pathogenicity prediction using 231 known disease-associated variants and comparison to our experimental data. RESULTS: Disease-associated variants, but none of the neutral variants, produced reduced protein levels. Cell-free assays demonstrated directly that disease-associated variants have reduced thermostability, with most variants denaturing around body temperature. In addition, most disease-associated variants impaired SNARE-mediated membrane fusion in a reconstituted assay. Aggregation/insolubility was observed for none of the variants in vitro or in neurons. PRESR outperformed existing tools substantially: Matthews correlation coefficient = 0.71 versus <0.55. CONCLUSIONS: These data establish intrinsic protein instability as the generalizable, primary cause for STXBP1-related disorders and show that protein-specific ortholog and 3-dimensional information improve disease prediction. PRESR is a publicly available diagnostic tool.


Assuntos
Proteínas Munc18 , Mutação de Sentido Incorreto , Estabilidade Proteica , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Humanos , Neurônios/metabolismo , Animais , Aprendizado de Máquina , Células HEK293
16.
J Physiol ; 602(6): 1175-1197, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38431908

RESUMO

Non-invasive transcranial direct-current stimulation (tDCS) is a safe ischaemic stroke therapy. Cathodal bilateral tDCS (BtDCS) is a modified tDCS approach established by us recently. Because selenium (Se) plays a crucial role in cerebral ischaemic injury, we investigated whether cathodal BtDCS conferred neuroprotection via regulating Se-dependent signalling in rat cerebral ischaemia-reperfusion (I/R) injury. We first showed that the levels of Se and its transport protein selenoprotein P (SEPP1) were reduced in the rat cortical penumbra following I/R, whereas cathodal BtDCS prevented the reduction of Se and SEPP1. Interestingly, direct-current stimulation (DCS) increased SEPP1 level in cultured astrocytes subjected to oxygen-glucose deprivation reoxygenation (OGD/R) but had no effect on SEPP1 level in OGD/R-insulted neurons, indicating that DCS may increase Se in ischaemic neurons by enhancing the synthesis and secretion of SEPP1 in astrocytes. We then revealed that DCS reduced the number of injured mitochondria in OGD/R-insulted neurons cocultured with astrocytes. DCS and BtDCS prevented the reduction of the mitochondrial quality-control signalling, vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4), in OGD/R-insulted neurons cocultured with astrocytes and the ischaemic brain respectively. Under the same experimental conditions, downregulation of SEPP1 blocked DCS- and BtDCS-induced upregulation of VAMP2 and STX4. Finally, we demonstrated that cathodal BtDCS increased Se to reduce infract volume following I/R. Together, the present study uncovered a molecular mechanism by which cathodal BtDCS confers neuroprotection through increasing SEPP1 in astrocytes and subsequent upregulation of SEPP1/VAMP2/STX4 signalling in ischaemic neurons after rat cerebral I/R injury. KEY POINTS: Cathodal bilateral transcranial direct-current stimulation (BtDCS) prevents the reduction of selenium (Se) and selenoprotein P in the ischaemic penumbra. Se plays a crucial role in cerebral ischaemia injury. Direct-current stimulation reduces mitochondria injury and blocks the reduction of vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4) in oxygen-glucose deprivation reoxygenation-insulted neurons following coculturing with astrocytes. Cathodal BtDCS regulates Se/VAMP2/STX4 signalling to confer neuroprotection after ischaemia.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Selênio , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Ratos , Animais , Isquemia Encefálica/terapia , Isquemia Encefálica/metabolismo , Neuroproteção/fisiologia , Proteína 2 Associada à Membrana da Vesícula , Selenoproteína P , Oxigênio/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Glucose/metabolismo , Proteínas Qa-SNARE
17.
Autophagy Rep ; 3(1)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344192

RESUMO

Macroautophagy (also known as autophagy) plays a pivotal role in maintaining cellular homeostasis. The terminal step of the multi-step autophagy degradation pathway involves fusion between the cargo-laden, double-membraned autophagosome and the lytic organelle lysosome/vacuole. Over the past decade, various core components of the molecular machinery that execute this critical terminal autophagy event have been identified. This review highlights recent advances in understanding the molecular structures, biochemical functions, and regulatory mechanisms of key components of this highly sophisticated machinery including the SNARE fusogens, tethering factors, Rab GTPases and associated guanine nucleotide exchange factors, and other accessory factors.

18.
J Biol Chem ; 300(3): 105687, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280430

RESUMO

HIV-1 Gag protein is synthesized in the cytosol and is transported to the plasma membrane, where viral particle assembly and budding occur. Endosomes are alternative sites of Gag accumulation. However, the intracellular transport pathways and carriers for Gag have not been clarified. We show here that Syntaxin6 (Syx6), a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) involved in membrane fusion in post-Golgi networks, is a molecule responsible for Gag trafficking and also for tumor necrosis factor-α (TNFα) secretion and that Gag and TNFα are cotransported via Syx6-positive compartments/vesicles. Confocal and live-cell imaging revealed that Gag colocalized and cotrafficked with Syx6, a fraction of which localizes in early and recycling endosomes. Syx6 knockdown reduced HIV-1 particle production, with Gag distributed diffusely throughout the cytoplasm. Coimmunoprecipitation and pulldown show that Gag binds to Syx6, but not its SNARE partners or their assembly complexes, suggesting that Gag preferentially binds free Syx6. The Gag matrix domain and the Syx6 SNARE domain are responsible for the interaction and cotrafficking. In immune cells, Syx6 knockdown/knockout similarly impaired HIV-1 production. Interestingly, HIV-1 infection facilitated TNFα secretion, and this enhancement did not occur in Syx6-depleted cells. Confocal and live-cell imaging revealed that TNFα and Gag partially colocalized and were cotransported via Syx6-positive compartments/vesicles. Biochemical analyses indicate that TNFα directly binds the C-terminal domain of Syx6. Altogether, our data provide evidence that both Gag and TNFα make use of Syx6-mediated trafficking machinery and suggest that Gag expression does not inhibit but rather facilitates TNFα secretion in HIV-1 infection.


Assuntos
HIV-1 , Proteínas Qa-SNARE , Vesículas Transportadoras , Fator de Necrose Tumoral alfa , Produtos do Gene gag do Vírus da Imunodeficiência Humana , Endossomos/metabolismo , HIV-1/genética , HIV-1/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Transporte Proteico/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Ligação Proteica , Domínios Proteicos , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Humanos , Linhagem Celular , Vesículas Transportadoras/metabolismo , Replicação Viral/genética
19.
Mol Med ; 30(1): 4, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172666

RESUMO

BACKGROUND: Autophagic defects are involved in Methamphetamine (Meth)-induced neurotoxicity. Syntaxin 17 (Stx17), a member of the SNARE protein family, participating in several stages of autophagy, including autophagosome-late endosome/lysosome fusion. However, the role of Stx17 and potential mechanisms in autophagic defects induced by Meth remain poorly understood. METHODS: To address the mechanism of Meth-induced cognitive impairment, the adenovirus (AV) and adeno-associated virus (AAV) were injected into the hippocampus for stereotaxis to overexpress Stx17 in vivo to examine the cognitive ability via morris water maze and novel object recognition. In molecular level, the synaptic injury and autophagic defects were evaluated. To address the Meth induced neuronal damage, the epidermal growth factor receptor (EGFR) degradation assay was performed to evaluate the degradability of the "cargos" mediated by Meth, and mechanistically, the maturation of the vesicles, including autophagosomes and endosomes, were validated by the Co-IP and the GTP-agarose affinity isolation assays. RESULTS: Overexpression of Stx17 in the hippocampus markedly rescued the Meth-induced cognitive impairment and synaptic loss. For endosomes, Meth exposure upregulated Rab5 expression and its guanine-nucleotide exchange factor (GEF) (immature endosome), with a commensurate decreased active form of Rab7 (Rab7-GTP) and impeded the binding of Rab7 to CCZ1 (mature endosome); for autophagosomes, Meth treatment elicited a dramatic reduction in the overlap between Stx17 and autophagosomes but increased the colocalization of ATG5 and autophagosomes (immature autophagosomes). After Stx17 overexpression, the Rab7-GTP levels in purified late endosomes were substantially increased in parallel with the elevated mature autophagosomes, facilitating cargo (Aß42, p-tau, and EGFR) degradation in the vesicles, which finally ameliorated Meth-induced synaptic loss and memory deficits in mice. CONCLUSION: Stx17 decrease mediated by Meth contributes to vesicle fusion defects which may ascribe to the immature autophagosomes and endosomes, leading to autophagic dysfunction and finalizes neuronal damage and cognitive impairments. Therefore, targeting Stx17 may be a novel therapeutic strategy for Meth-induced neuronal injury.


Assuntos
Autofagossomos , Autofagia , Animais , Camundongos , Autofagossomos/metabolismo , Endossomos/metabolismo , Receptores ErbB/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanosina Trifosfato/metabolismo
20.
Neurobiol Dis ; 190: 106363, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37996040

RESUMO

Sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, is thought to occur when the cellular prion protein (PrPC) spontaneously misfolds and assembles into prion fibrils, culminating in fatal neurodegeneration. In a genome-wide association study of sCJD, we recently identified risk variants in and around the gene STX6, with evidence to suggest a causal increase of STX6 expression in disease-relevant brain regions. STX6 encodes syntaxin-6, a SNARE protein primarily involved in early endosome to trans-Golgi network retrograde transport. Here we developed and characterised a mouse model with genetic depletion of Stx6 and investigated a causal role of Stx6 expression in mouse prion disease through a classical prion transmission study, assessing the impact of homozygous and heterozygous syntaxin-6 knockout on disease incubation periods and prion-related neuropathology. Following inoculation with RML prions, incubation periods in Stx6-/- and Stx6+/- mice differed by 12 days relative to wildtype. Similarly, in Stx6-/- mice, disease incubation periods following inoculation with ME7 prions also differed by 12 days. Histopathological analysis revealed a modest increase in astrogliosis in ME7-inoculated Stx6-/- animals and a variable effect of Stx6 expression on microglia activation, however no differences in neuronal loss, spongiform change or PrP deposition were observed at endpoint. Importantly, Stx6-/- mice are viable and fertile with no gross impairments on a range of neurological, biochemical, histological and skeletal structure tests. Our results provide some support for a pathological role of Stx6 expression in prion disease, which warrants further investigation in the context of prion disease but also other neurodegenerative diseases considering syntaxin-6 appears to have pleiotropic risk effects in progressive supranuclear palsy and Alzheimer's disease.


Assuntos
Síndrome de Creutzfeldt-Jakob , Doenças Priônicas , Príons , Camundongos , Humanos , Animais , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Príons/genética , Príons/metabolismo , Estudo de Associação Genômica Ampla , Camundongos Transgênicos , Encéfalo/metabolismo , Doenças Priônicas/genética , Doenças Priônicas/patologia , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA