Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Phys Med Biol ; 69(15)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38862003

RESUMO

Objective.Magnetic particle imaging (MPI) is an emerging medical tomographic imaging modality that enables real-time imaging with high sensitivity and high spatial and temporal resolution. For the system matrix reconstruction method, the MPI reconstruction problem is an ill-posed inverse problem that is commonly solved using the Kaczmarz algorithm. However, the high computation time of the Kaczmarz algorithm, which restricts MPI reconstruction speed, has limited the development of potential clinical applications for real-time MPI. In order to achieve fast reconstruction in real-time MPI, we propose a greedy regularized block Kaczmarz method (GRBK) which accelerates MPI reconstruction.Approach.GRBK is composed of a greedy partition strategy for the system matrix, which enables preprocessing of the system matrix into well-conditioned blocks to facilitate the convergence of the block Kaczmarz algorithm, and a regularized block Kaczmarz algorithm, which enables fast and accurate MPI image reconstruction at the same time.Main results.We quantitatively evaluated our GRBK using simulation data from three phantoms at 20 dB, 30 dB, and 40 dB noise levels. The results showed that GRBK can improve reconstruction speed by single orders of magnitude compared to the prevalent regularized Kaczmarz algorithm including Tikhonov regularization, the non-negative Fused Lasso, and wavelet-based sparse model. We also evaluated our method on OpenMPIData, which is real MPI data. The results showed that our GRBK is better suited for real-time MPI reconstruction than current state-of-the-art reconstruction algorithms in terms of reconstruction speed as well as image quality.Significance.Our proposed method is expected to be the preferred choice for potential applications of real-time MPI.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos , Fatores de Tempo , Tomografia/métodos , Imagem Molecular/métodos
2.
Phys Med Biol ; 69(3)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38168021

RESUMO

Objective. Imaging of superparamagnetic iron oxide nanoparticles based on their non-linear response to alternating magnetic fields shows promise for imaging cells and vasculature in healthy and diseased tissue. Such imaging can be achieved through x-space reconstruction typically along a unidirectional Cartesian trajectory, which rapidly convolutes the particle distribution with a 'anisotropic blurring' point spread function (PSF), leading to images with anisotropic resolution.Approach. Here we propose combining the time domine-system matrix and x-space reconstruction methods into a forward model, where the output of the forward model is the PSF-blurred x-space reconstructed image. We then treat the blur as an inverse problem solved by Kaczmarz iteration.Main results. After we have proposed the method optimization, the normal resolution of simulation and device images has been increased from 3.5 mm and 5.25 mm to 1.5 mm and 3.25 mm, which has reached the level in the tangential resolution. Quantitative indicators of image quality such as PSNR and SSIM have also been greatly improved.Significance. Simulation and imaging of real phantoms indicate that our approach provides better isotropic resolution and image quality than the x-space method alone or other methods for removing PSF blur. Using our proposed method to optimize the image quality of x-space reconstructed images using unidirectional Cartesian trajectories, it will promote the clinical application of MPI in the future.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Campos Magnéticos , Imagens de Fantasmas , Nanopartículas Magnéticas de Óxido de Ferro
3.
Med Phys ; 50(10): 6334-6353, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37190786

RESUMO

BACKGROUND: Gel dosimeters are a potential tool for measuring the complex dose distributions that characterize modern radiotherapy. A prototype tabletop solid-tank fan-beam optical CT scanner for readout of gel dosimeters was recently developed. This scanner does not have a straight raypath from source to detector, thus images cannot be reconstructed using filtered backprojection (FBP) and iterative techniques are required. Iterative image reconstruction requires a system matrix that describes the geometry of the imaging system. Stored system matrices can become immensely large, making them impractical for storage on a typical desktop computer. PURPOSE: Here we develop a method to reduce the storage size of optical CT system matrices through use of polar coordinate discretization while accounting for the refraction in optical CT systems. METHODS: A ray tracing simulator was developed to track the path of light rays as they traverse the different mediums of the optical CT scanner. Cartesian coordinate discretized system matrices (CCDSMs) and polar coordinate discretized system matrices (PCDSMs) were generated by discretizing the reconstruction area of the optical CT scanner into a Cartesian pixel grid and a polar coordinate pixel grid, respectively. The length of each ray through each pixel was calculated and used to populate the system matrices. To ensure equal weighting during iterative reconstruction, the radial rings of PCDSMs were asymmetrically spaced such that the area of each polar pixel was constant. Two clinical phantoms and several synthetic phantoms were produced and used to evaluate the reconstruction techniques under known conditions. Reconstructed images were analyzed in terms of spatial resolution, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), signal nonuniformity (SNU), and Gamma map pass percentage. RESULTS: A storage size reduction of 99.72% was found when comparing a PCDSM to a CCDSM with the same total number of pixels. Images reconstructed with a PCDSM were found to have superior SNR, CNR, SNU, and Gamma (1 mm, 1%) pass percentage compared to those reconstructed with a CCDSM. Increasing spatial resolution in the radial direction with increasing radial distance was found in both PCDSM and CCDSM reconstructions due to the outer regions refracting light more severely. Images reconstructed with a PCDSM showed a decrease in spatial resolution in the azimuthal directions as radial distance increases, due to the widening of the polar pixels. However, this can be mitigated with only a slight increase in storage size by increasing the number of projections. A loss of spatial resolution in the radial direction within 5 mm radially from center was found when reconstructing with a PCDSM, due to the large innermost pixels. However, this was remedied by increasing the number of radial rings within the PCDSM, yielding radial spatial resolution on par with images reconstructed with a CCDSM and a storage size reduction of 99.26%. CONCLUSIONS: Discretizing the image pixel elements in polar coordinates achieved a system matrix storage size reduction of 99.26% with only minimal reduction in the image quality.


Assuntos
Radiometria , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Radiometria/métodos , Tomógrafos Computadorizados , Razão Sinal-Ruído , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
4.
Sensors (Basel) ; 23(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36904898

RESUMO

Gamma imagers play a key role in both industrial and medical applications. Modern gamma imagers typically employ iterative reconstruction methods in which the system matrix (SM) is a key component to obtain high-quality images. An accurate SM could be acquired from an experimental calibration step with a point source across the FOV, but at a cost of long calibration time to suppress noise, posing challenges to real-world applications. In this work, we propose a time-efficient SM calibration approach for a 4π-view gamma imager with short-time measured SM and deep-learning-based denoising. The key steps include decomposing the SM into multiple detector response function (DRF) images, categorizing DRFs into multiple groups with a self-adaptive K-means clustering method to address sensitivity discrepancy, and independently training separate denoising deep networks for each DRF group. We investigate two denoising networks and compare them against a conventional Gaussian filtering method. The results demonstrate that the denoised SM with deep networks faithfully yields a comparable imaging performance with the long-time measured SM. The SM calibration time is reduced from 1.4 h to 8 min. We conclude that the proposed SM denoising approach is promising and effective in enhancing the productivity of the 4π-view gamma imager, and it is also generally applicable to other imaging systems that require an experimental calibration step.

5.
Phys Med Biol ; 68(3)2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36584394

RESUMO

Objective.Magnetic particle imaging (MPI) is an emerging tomography imaging technique with high specificity and temporal-spatial resolution. MPI reconstruction based on the system matrix (SM) is an important research content in MPI. However, SM is usually obtained by measuring the response of an MPI scanner at all positions in the field of view. This process is very time-consuming, and the scanner will overheat in a long period of continuous operation, which is easy to generate thermal noise and affects MPI imaging performance.Approach.In this study, we propose a deep image prior-based method that prominently decreases the time of SM calibration. It is an unsupervised method that utilizes the neural network structure itself to recover a high-resolution SM from a downsampled SM without the need to train the network using a large amount of training data.Main results.Experiments on the Open MPI data show that the time of SM calibration can be greatly reduced with only slight degradation of image quality.Significance.This study provides a novel method for obtaining SM in MPI, which shows the potential to achieve SM recovery at a high downsampling rate. It is expected that this study will increase the practicability of MPI in biomedical applications and promote the development of MPI in the future.


Assuntos
Nanopartículas de Magnetita , Nanopartículas de Magnetita/química , Tomografia , Imagens de Fantasmas , Redes Neurais de Computação , Fenômenos Magnéticos
6.
J Magn Reson ; 344: 107307, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36308904

RESUMO

Electron paramagnetic resonance (EPR) imaging is an advanced oxygen imaging modality for oxygen-image guided radiation. The iterative reconstruction algorithm is the research hot-point in image reconstruction for EPR imaging (EPRI) for this type of algorithm may incorporate image-prior information to construct advanced optimization model to achieve accurate reconstruction from sparse-view projections and/or noisy projections. However, the system matrix in the iterative algorithm needs complicated calculation and needs huge memory-space if it is stored in memory. In this work, we propose an iterative reconstruction algorithm without system matrix for EPRI to simplify the whole iterative reconstruction process. The function of the system matrix is to calculate the projections, whereas the function of the transpose of the system matrix is to perform backprojection. The existing projection and backprojection methods are all based on the configuration that the imaged-object remains stationary and the scanning device rotates. Here, we implement the projection and backprojection operations by fixing the scanning device and rotating the object. Thus, the core algorithm is only the commonly-used image-rotation algorithm, while the calculation and store of the system matrix are avoided. Based on the idea of image rotation, we design a specific iterative reconstruction algorithm for EPRI, total variation constrained data divergence minimization (TVcDM) algorithm without system matrix, and named it as image-rotation based TVcDM (R-TVcDM). Through a series of comparisons with the original TVcDM via real projection data, we find that the proposed algorithm may achieve similar reconstruction accuracy with the original one. But it avoids the complicated calculation and store of the system matrix. The insights gained in this work may be also applied to other imaging modalities, for example computed tomography and positron emission tomography.


Assuntos
Algoritmos , Oxigênio , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
7.
Vis Comput Ind Biomed Art ; 5(1): 24, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36180612

RESUMO

Magnetic particle imaging (MPI) is an emerging molecular imaging technique with high sensitivity and temporal-spatial resolution. Image reconstruction is an important research topic in MPI, which converts an induced voltage signal into the image of superparamagnetic iron oxide particles concentration distribution. MPI reconstruction primarily involves system matrix- and x-space-based methods. In this review, we provide a detailed overview of the research status and future research trends of these two methods. In addition, we review the application of deep learning methods in MPI reconstruction and the current open sources of MPI. Finally, research opinions on MPI reconstruction are presented. We hope this review promotes the use of MPI in clinical applications.

8.
Med Biol Eng Comput ; 60(11): 3295-3309, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36171462

RESUMO

In order to improve the imaging quality of magneto-acoustic concentration tomography for magnetic nanoparticles (MNPs) with magnetic induction (MACT-MI) and overcome the boundary singularity, this paper built a matrix model which shows the relationship between the partial derivative distribution of MNP concentration and the ultrasound signals, and focused on proposing a concentration reconstruction method based on the least squares QR factorization (LSQR) method-trapezoidal method. Firstly, simulation models with different shapes were established. Secondly, the magnetic and acoustic field simulation data was substituted into the inverse problem method based on LSQR-trapezoidal method for concentration reconstruction. Finally, the reconstructed images were analyzed and the effect of MNP cluster radius on the reconstruction was investigated. Considering the diffusely asymptotic concentration distribution of MNPs in actual biological tissue environment, an asymptotic concentration model was established and the reconstructed images were analyzed. The simulation results show that under the same conditions, compared with the reconstruction method based on the method of moments (MoM), LSQR-trapezoidal method has clearer image boundaries, more stable imaging results, and faster imaging speed. Compared with the uniform concentration model, LSQR-trapezoidal method is more applicable to the asymptotic concentration model. This study provides a basis for further reconstruction of the accuracy of experimental research.


Assuntos
Nanopartículas de Magnetita , Acústica , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Análise dos Mínimos Quadrados , Fenômenos Magnéticos , Tomografia/métodos
9.
Med Biol Eng Comput ; 59(11-12): 2383-2396, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34628572

RESUMO

The existing magneto-acoustic concentration tomography with magnetic induction (MACT-MI) inverse problem algorithm has some problems such as the singularity of reconstructed boundary and poor anti-noise performance, which make it difficult to be applied to recognition of early breast cancer tumor. Therefore, a system matrix linking the concentration distribution information of magnetic nanoparticles (MNPs) to the ultrasonic signal was built in this paper, and a truncated singular value decomposition (TSVD) based MNPS concentration reconstruction algorithm was proposed. Firstly, a simulation model was established. Secondly, the magnetic field and acoustic field simulation data were substituted into the inverse problem algorithm based on TSVD for concentration reconstruction. Finally, the effects of the number of singular values, SNR and radius of MNPs on the reconstruction results were studied. The simulation results show that, the inverse problem algorithm based on TSVD proposed in this paper can maximize the use of ultrasonic signals, and has a good reconstruction effect on 1 mm small-radius MNPs, high resolution reconstructed images can also be obtained under the condition of low SNR, which can effectively promote the clinical application of this imaging method.


Assuntos
Neoplasias da Mama , Nanopartículas de Magnetita , Acústica , Neoplasias da Mama/diagnóstico por imagem , Simulação por Computador , Feminino , Humanos , Tomografia
10.
J Xray Sci Technol ; 29(5): 851-865, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34308898

RESUMO

PURPOSE: Total Variation (TV) minimization algorithm is a classical compressed sensing (CS) based iterative image reconstruction algorithm that can accurately reconstruct images from sparse-view projections in computed tomography (CT). However, the system matrix used in the algorithm is often too large to be stored in computer memory. The purpose of this study is to investigate a new TV algorithm based on image rotation and without system matrix to avoid the memory requirement of system matrix. METHODS: Without loss of generality, a rotation-based adaptive steepest descent-projection onto convex sets (R-ASD-POCS) algorithm is proposed and tested to solve the TV model in parallel beam CT. Specifically, simulation experiments are performed via the Shepp-Logan, FORBILD and real CT image phantoms are used to verify the inverse-crime capability of the algorithm and evaluate the sparse reconstruction capability and the noise suppression performance of the algorithm. RESULTS: Experimental results show that the algorithm can achieve inverse-crime, accurate sparse reconstruction and thus accurately reconstruct images from noisy projections. Compared with the classical ASD-POCS algorithm, the new algorithm may yield the similar image reconstruction accuracy without use of the huge system matrix, which saves the computational memory space significantly. Additionally, the results also show that R-ASD-POCS algorithm is faster than ASD-POCS. CONCLUSIONS: The proposed new algorithm can effectively solve the problem of using huge memory in large scale and iterative image reconstruction. Integrating with ASD-POCS frame, this no-system-matrix based scheme may be readily extended and applied to any iterative image reconstructions.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Simulação por Computador , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos
11.
Phys Med Biol ; 66(12)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34049291

RESUMO

The use of multi-pinhole collimation has enabled ultra-high-resolution imaging of SPECT and PET tracers in small animals. Key for obtaining high-quality images is the use of statistical iterative image reconstruction with accurate energy-dependent photon transport modelling through collimator and detector. This can be incorporated in a system matrix that contains the probabilities that a photon emitted from a certain voxel is detected at a specific detector pixel. Here we introduce a fast Monte-Carlo based (FMC-based) matrix generation method for pinhole imaging that is easy to apply to various radionuclides. The method is based on accelerated point source simulations combined with model-based interpolation to straightforwardly change or combine photon energies of the radionuclide of interest. The proposed method was evaluated for a VECTor PET-SPECT system with (i) a HE-UHR-M collimator and (ii) an EXIRAD-3D 3D autoradiography collimator. Both experimental scans with99mTc,111In, and123I, and simulated scans with67Ga and90Y were performed for evaluation. FMC was compared with two currently used approaches, one based on a set of point source measurements with99mTc (dubbed traditional method), and the other based on an energy-dependent ray-tracing simulation (ray-tracing method). The reconstruction results show better image quality when using FMC-based matrices than when applying the traditional or ray-tracing matrices in various cases. FMC-based matrices generalise better than the traditional matrices when imaging radionuclides with energies deviating too much from the energy used in the calibration and are computationally more efficient for very-high-resolution imaging than the ray-tracing matrices. In addition, FMC has the advantage of easily combining energies in a single matrix which is relevant when imaging radionuclides with multiple photopeak energies (e.g.67Ga and111In) or with a continuous energy spectrum (e.g.90Y). To conclude, FMC is an efficient, accurate, and versatile tool for creating system matrices for ultra-high-resolution pinhole SPECT.


Assuntos
Fótons , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Processamento de Imagem Assistida por Computador , Método de Monte Carlo , Imagens de Fantasmas
12.
Diagnostics (Basel) ; 11(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925830

RESUMO

Magnetic particle imaging (MPI) is a novel non-invasive molecular imaging technology that images the distribution of superparamagnetic iron oxide nanoparticles (SPIONs). It is not affected by imaging depth, with high sensitivity, high resolution, and no radiation. The MPI reconstruction with high precision and high quality is of enormous practical importance, and many studies have been conducted to improve the reconstruction accuracy and quality. MPI reconstruction based on the system matrix (SM) is an important part of MPI reconstruction. In this review, the principle of MPI, current construction methods of SM and the theory of SM-based MPI are discussed. For SM-based approaches, MPI reconstruction mainly has the following problems: the reconstruction problem is an inverse and ill-posed problem, the complex background signals seriously affect the reconstruction results, the field of view cannot cover the entire object, and the available 3D datasets are of relatively large volume. In this review, we compared and grouped different studies on the above issues, including SM-based MPI reconstruction based on the state-of-the-art Tikhonov regularization, SM-based MPI reconstruction based on the improved methods, SM-based MPI reconstruction methods to subtract the background signal, SM-based MPI reconstruction approaches to expand the spatial coverage, and matrix transformations to accelerate SM-based MPI reconstruction. In addition, the current phantoms and performance indicators used for SM-based reconstruction are listed. Finally, certain research suggestions for MPI reconstruction are proposed, expecting that this review will provide a certain reference for researchers in MPI reconstruction and will promote the future applications of MPI in clinical medicine.

13.
J Med Signals Sens ; 10(1): 1-11, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32166072

RESUMO

BACKGROUND: Relative to classical methods in computed tomography, iterative reconstruction techniques enable significantly improved image qualities and/or lowered patient doses. However, the computational speed is a major concern for these iterative techniques. In the present study, we present a method for fast system matrix calculation based on the line integral model (LIM) to speed up the computations without compromising the image quality. In addition, we develop a hybrid line-area integral model (AIM) that highlights the advantages of both LIM and AIMs. METHODS: The contributing detectors for a given pixel and a given projection view, and the length of corresponding intersection lines with pixels, are calculated using our proposed algorithm. For the hybrid method, the respective narrow-angle fan beam was modeled by multiple equally spaced lines. The computed system matrix was evaluated in the context of reconstruction using the simultaneous algebraic reconstruction technique (SART) as well as maximum likelihood expectation maximization (MLEM). RESULTS: The proposed LIM offers a considerable reduction in calculation times compared to the standard Siddon algorithm: 2.9 times faster. Differences in root mean square error and peak signal-to-noise ratio were not significant between the proposed LIM and the Siddon algorithm for both SART and MLEM reconstruction methods (P > 0.05). Meanwhile, the proposed hybrid method resulted in significantly improved image qualities relative to LIM and the Siddon algorithm (P < 0.05), though computations were 4.9 times more intensive than the proposed LIM. CONCLUSION: We have proposed two fast algorithms to calculate the system matrix. The first is based on LIM and was faster than the Siddon algorithm, with matched image quality, whereas the second method is a hybrid LIM-AIM that achieves significantly improved images though with its computational requirements.

14.
Heliyon ; 6(1): e03279, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993530

RESUMO

The system matrix (SM) being a main part of statistical image reconstruction algorithms establishes relationship between the object and projection space. The aim was to determine it in a short duration time, towards obtaining the best quality of contrast images. In this study, a new analytical method based on Cavalieri's principle as subdividing common regions has been proposed in which the precision of the amounts of estimated areas was improved by increasing the number of divisions (NOD), and consequently the total SM's time was increased. An important issue is the tradeoff between the NODs and computational time. For this purpose, a Monte Carlo simulated Jaszczak phantom study was performed by the Monte Carlo N-Particle transport code version 5 (MCNP5) in which the tomographic images of resolution and contrast phantoms were reconstructed by maximum likelihood expectation maximization (MLEM) algorithm, and the influence of NODs variations was investigated. The results show that the lowest and best quality have been obtained at the NODs of 0 and 8, respectively and in the optimum case, the SM's total time at NOD of 8 was 925 s, which was much lower than those of the conventional Monte Carlo simulations and experimental test.

15.
Med Phys ; 44(10): 5172-5186, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28681375

RESUMO

PURPOSE: To comprehensively evaluate both the acceleration and image-quality impacts of axial compression and its degree of modeling in fully 3D PET image reconstruction. METHOD: Despite being used since the very dawn of 3D PET reconstruction, there are still no extensive studies on the impact of axial compression and its degree of modeling during reconstruction on the end-point reconstructed image quality. In this work, an evaluation of the impact of axial compression on the image quality is performed by extensively simulating data with span values from 1 to 121. In addition, two methods for modeling the axial compression in the reconstruction were evaluated. The first method models the axial compression in the system matrix, while the second method uses an unmatched projector/backprojector, where the axial compression is modeled only in the forward projector. The different system matrices were analyzed by computing their singular values and the point response functions for small subregions of the FOV. The two methods were evaluated with simulated and real data for the Biograph mMR scanner. RESULTS: For the simulated data, the axial compression with span values lower than 7 did not show a decrease in the contrast of the reconstructed images. For span 11, the standard sinogram size of the mMR scanner, losses of contrast in the range of 5-10 percentage points were observed when measured for a hot lesion. For higher span values, the spatial resolution was degraded considerably. However, impressively, for all span values of 21 and lower, modeling the axial compression in the system matrix compensated for the spatial resolution degradation and obtained similar contrast values as the span 1 reconstructions. Such approaches have the same processing times as span 1 reconstructions, but they permit significant reduction in storage requirements for the fully 3D sinograms. For higher span values, the system has a large condition number and it is therefore difficult to recover accurately the higher frequencies. Modeling the axial compression also achieved a lower coefficient of variation but with an increase of intervoxel correlations. The unmatched projector/backprojector achieved similar contrast values to the matched version at considerably lower reconstruction times, but at the cost of noisier images. For a line source scan, the reconstructions with modeling of the axial compression achieved similar resolution to the span 1 reconstructions. CONCLUSIONS: Axial compression applied to PET sinograms was found to have a negligible impact for span values lower than 7. For span values up to 21, the spatial resolution degradation due to the axial compression can be almost completely compensated for by modeling this effect in the system matrix at the expense of considerably larger processing times and higher intervoxel correlations, while retaining the storage benefit of compressed data. For even higher span values, the resolution loss cannot be completely compensated possibly due to an effective null space in the system. The use of an unmatched projector/backprojector proved to be a practical solution to compensate for the spatial resolution degradation at a reasonable computational cost but can lead to noisier images.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons , Algoritmos , Razão Sinal-Ruído
16.
Comput Med Imaging Graph ; 48: 30-48, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26748039

RESUMO

Positron emission tomography (PET) is a nuclear imaging modality that provides in vivo quantitative measurements of the spatial and temporal distribution of compounds labeled with a positron emitting radionuclide. In the last decades, a tremendous effort has been put into the field of mathematical tomographic image reconstruction algorithms that transform the data registered by a PET camera into an image that represents slices through the scanned object. Iterative image reconstruction methods often provide higher quality images than conventional direct analytical methods. Aside from taking into account the statistical nature of the data, the key advantage of iterative reconstruction techniques is their ability to incorporate detailed models of the data acquisition process. This is mainly realized through the use of the so-called system matrix, that defines the mapping from the object space to the measurement space. The quality of the reconstructed images relies to a great extent on the accuracy with which the system matrix is estimated. Unfortunately, an accurate system matrix is often associated with high reconstruction times and huge storage requirements. Many attempts have been made to achieve realistic models without incurring excessive computational costs. As a result, a wide range of alternatives to the calculation of the system matrix exists. In this article we present a review of the different approaches used to address the problem of how to model, calculate and store the system matrix.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Modelos Teóricos , Tomografia por Emissão de Pósitrons/métodos , Simulação por Computador , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
ISA Trans ; 60: 244-253, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26654724

RESUMO

An improved tuning methodology of PID controller for standard second order plus time delay systems (SOPTD) is developed using the approach of Linear Quadratic Regulator (LQR) and pole placement technique to obtain the desired performance measures. The pole placement method together with LQR is ingeniously used for SOPTD systems where the time delay part is handled in the controller output equation instead of characteristic equation. The effectiveness of the proposed methodology has been demonstrated via simulation of stable open loop oscillatory, over damped, critical damped and unstable open loop systems. Results show improved closed loop time response over the existing LQR based PI/PID tuning methods with less control effort. The effect of non-dominant pole on the stability and robustness of the controller has also been discussed.

18.
J Xray Sci Technol ; 23(1): 1-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25567402

RESUMO

Iterative image reconstruction (IIR) with sparsity-exploiting methods, such as total variation (TV) minimization, used for investigations in compressive sensing (CS) claim potentially large reductions in sampling requirements. Quantifying this claim for computed tomography (CT) is non-trivial, as both the singularity of undersampled reconstruction and the sufficient view number for sparse-view reconstruction are ill-defined. In this paper, the singular value decomposition method is used to study the condition number and singularity of the system matrix and the regularized matrix. An estimation method of the empirical lower bound is proposed, which is helpful for estimating the number of projection views required for exact reconstruction. Simulation studies show that the singularity of the system matrices for different projection views is effectively reduced by regularization. Computing the condition number of a regularized matrix is necessary to provide a reference for evaluating the singularity and recovery potential of reconstruction algorithms using regularization. The empirical lower bound is helpful for estimating the projections view number with a sparse reconstruction algorithm.


Assuntos
Algoritmos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Modelos Biológicos , Modelos Estatísticos , Análise Numérica Assistida por Computador , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
IEEE Trans Nucl Sci ; 59(5): 1990-1996, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26236041

RESUMO

Recently, high-resolution gamma cameras have been developed with detectors containing > 105-106 elements. Single-photon emission computed tomography (SPECT) imagers based on these detectors usually also have a large number of voxel bins and therefore face memory storage issues for the system matrix when performing fast tomographic reconstructions using iterative algorithms. To address these issues, we have developed a method that parameterizes the detector response to a point source and generates the system matrix on the fly during MLEM or OSEM on graphics hardware. The calibration method, interpolation of coefficient data, and reconstruction results are presented in the context of a recently commissioned small-animal SPECT imager, called FastSPECT III.

20.
IEEE Nucl Sci Symp Conf Rec (1997) ; 2011: 3548-3553, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26568672

RESUMO

Recently, high-resolution gamma cameras have been developed with detectors containing> 105-106 elements. SPECT imagers based on these detectors usually also have a large number of voxel bins and therefore face memory storage issues for the system matrix when performing fast tomographic reconstructions using iterative algorithms. To address these issues, we have developed a method that parameterizes the detector response to a point source and generates the system matrix on the fly during MLEM or OSEM on graphics hardware. The calibration method, interpolation of coefficient data, and reconstruction results are presented in the context of a recently commissioned small-animal SPECT imager, called FastSPECT III.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA