Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 678(Pt A): 1165-1175, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39284271

RESUMO

CO2 hydrogenation to hydrocarbons under high space velocity is crucial for industrial applications, but traditional Fe-based catalysts often suffer from the low activity and poor stability. Herein, we report a new tandem catalyst system combining Pt/TiO2 catalysts with Fe3C catalysts for the direct conversion of CO2 into C2-C4 hydrocarbons under high space velocity. The Pt/TiO2 component promotes *CO intermediate production with an enhanced Reverse Water-Gas Shift (RWGS) reaction efficiency, providing a highly reactive species for the Fe3C catalyst to achieve Fischer-Tropsch synthesis (FTS). By maximizing the contact interface between the Pt/TiO2 and Fe-based components through a granule mixing configuration, we achieve significant enhancements in both CO2 conversion rate (24.0 %) and C2-C4 hydrocarbons selectivity (51.1 %) under the gaseous hourly space velocity (GHSV) of 100000 mL gcat-1h-1. Besides, excellent stability is achieved by the tandem catalysts with continuous catalysis for up to 80 h without significant decrease in activity. Through modulation of the reduction states of iron oxide, we effectively tune the composition of Fe-based catalyst, thereby tailoring the product distribution. Through this work, we not only offer a promising avenue for reducing CO2 for efficient CO2 utilization but also highlight the importance of catalyst design in advancing sustainable chemical synthesis.

2.
Angew Chem Int Ed Engl ; : e202409288, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261282

RESUMO

Plastic pollution poses a pressing environmental challenge in modern society. Chemical catalytic conversion offers a promising solution for upgrading waste plastics into valuable liquid alkanes and other high value products. However, the current methods yield mixed products with a broad carbon distribution. To address this challenge, we introduce a tandem catalytic system that features matched acidic sites and confined metals for the conversion of low-density polyethylene (LDPE) into liquid alkanes. This system achieves a liquid alkane yield of 94.0%, with 84.8% of C5-C7 light alkanes. Combined with in situ FTIR and molecular dynamics simulation, the shape-selective mechanisms is elucidated, which ensures that only olefins of the appropriate size can diffuse to the encapsulated Pt sites within the zeolite for hydrogenation, resulting in an ultra-narrow product distribution. Furthermore, due to the rapid diffusion of olefins within the hierarchical zeolite, the catalyst exhibits higher catalytic efficiency and resistance to coking tendency. Our findings contribute to the design of efficient catalysts for plastic waste valorization.

3.
Adv Sci (Weinh) ; 11(34): e2404053, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38973357

RESUMO

Electrochemical CO2 reduction has garnered significant interest in the conversion of sustainable energy to valuable fuels and chemicals. Cu-based bimetallic catalysts play a crucial role in enhancing *CO concentration on Cu sites for efficient C─C coupling reactions, particularly for C2 product generation. To enhance Cu's electronic structure and direct its selectivity toward C2 products, a novel strategy is proposed involving the in situ electropolymerization of a nano-thickness cobalt porphyrin polymeric network (EP-CoP) onto a copper electrode, resulting in the creation of a highly effective EP-CoP/Cu tandem catalyst. The even distribution of EP-CoP facilitates the initial reduction of CO2 to *CO intermediates, which then transition to Cu sites for efficient C─C coupling. DFT calculations confirm that the *CO enrichment from Co sites boosts *CO coverage on Cu sites, promoting C─C coupling for C2+ product formation. The EP-CoP/Cu gas diffusion electrode achieves an impressive current density of 726 mA cm-2 at -0.9 V versus reversible hydrogen electrode (RHE), with a 76.8% Faraday efficiency for total C2+ conversion and 43% for ethylene, demonstrating exceptional long-term stability in flow cells. These findings mark a significant step forward in developing a tandem catalyst system for the effective electrochemical production of ethylene.

4.
Nanomaterials (Basel) ; 13(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36770446

RESUMO

One-dimensional (1D) core-sheath nanofibers, platinum (Pt)-loaded ceria (CeO2) sheath on mesoporous silica (SiO2) core were fabricated, characterized, and used as catalysts for the reverse water gas shift reaction (RWGS). CeO2 nanofibers (NFs) were first prepared by electrospinning (ES), and then Pt nanoparticles were loaded on the CeO2 NFs using two different deposition methods: wet impregnation and solvothermal. A mesoporous SiO2 sheath layer was then deposited by sol-gel process. The phase composition, structural, and morphological properties of synthesized materials were investigated by scanning electron microscope (SEM), scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), nitrogen adsorption/desorption method, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis, and CO2 temperature programmed desorption (CO2-TPD). The results of these characterization techniques revealed that the core-sheath NFs with a core diameter between 100 and 300 nm and a sheath thickness of about 40-100 nm with a Pt loading of around 0.5 wt.% were successfully obtained. The impregnated catalyst, Pt-CeO2 NF@mesoporous SiO2, showed the best catalytic performance with a CO2 conversion of 8.9% at 350 °C, as compared to the sample prepared by the Solvothermal method. More than 99% selectivity of CO was achieved for all core-sheath NF-catalysts.

5.
Sci Bull (Beijing) ; 67(16): 1679-1687, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36546047

RESUMO

Tandem electrocatalysis is an emerging concept for effective electrochemical CO2 reduction reaction (CO2RR) towards multicarbons (C2+). This decouples the multiple steps of CO2-to-C2+ into two steps of CO2-to-CO and CO-to-C2+ catalyzed by individual catalysts, to improve the Faradic efficiency (FE). However, due to the mass-transport limitation of CO from the generation site to the long-distance consumption site, such a strategy still remains challenge for high-rate production of C2+ products. Herein, we designed CuO/Ni single atoms tandem catalyst, which made the catalytic sites of Ni and Cu for independently catalyzing CO2-to-CO and CO-to-C2+ compactly neighbored, enabling the in-situ generation and rapid consumption of CO. The CuO/Ni SAs tandem catalyst achieved a particularly high partial current density of C2+ products (1220.8 mA/cm2), while still maintained outstanding C2+ products FE (81.4%) and excellent selectivities towards ethylene (FE 54.1%) and ethanol (FE 28.8%), enabling the profitable production of multicarbons by CO2RR.

6.
Angew Chem Int Ed Engl ; 61(9): e202110657, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34851536

RESUMO

Electroreduction of CO2 on a polymer-modified Cu-based catalyst has shown high multi-electron reduction (>2 e- ) selectivity, however, most of the corresponding current densities are still too small to support industrial applications. In this work, we designed a poly(ionic liquid) (PIL)-based Cu0 -CuI tandem catalyst for the production of C2+ products with both high reaction rate and high selectivity. Remarkably, a high C2+ faradaic efficiency (FE C 2 + ) of 76.1 % with a high partial current density of 304.2 mA cm-2 is obtained. Mechanistic studies reveal the numbers and highly dispersed Cu0 -PIL-CuI interfaces are vital for such reactivity. Specifically, Cu nanoparticles derived Cu0 -PIL interfaces account for high current density and a moderate C2+ selectivity, whereas CuI species derived PIL-CuI interfaces exhibit high activity for C-C coupling with the local enriched *CO intermediate. Furthermore, the presence of the PIL layer promotes the C2+ selectivity by lowering the barrier of C-C coupling.

7.
Molecules ; 26(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918888

RESUMO

The electrochemical carbon dioxide reduction reaction (CO2RR) to C2 chemicals has received great attention. Here, we report the cuprous oxide (Cu2O) nanocubes cooperated with silver (Ag) nanoparticles via the replacement reaction for a synergetic CO2RR. The Cu2O-Ag tandem catalyst exhibits an impressive Faradaic efficiency (FE) of 72.85% for C2 products with a partial current density of 243.32 mA·cm-2. The electrochemical experiments and density functional theory (DFT) calculations reveal that the introduction of Ag improves the intermediate CO concentration on the catalyst surface and meanwhile reduces the C-C coupling reaction barrier energy, which is favorable for the synthesis of C2 products.

8.
Innovation (Camb) ; 1(2): 100029, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34557707

RESUMO

Unveiling the distance effect between different sites in multifunctional catalysts remains a major challenge. Herein, we investigate the distance effect by constructing a dual-site distance-controlled tandem catalyst with a five-layered TiO2/Pt/TiO2/Ni/TiO2 tubular nanostructure by template-assisted atomic layer deposition. In this catalyst, the Ni and Pt sites are separated by a porous TiO2 interlayer, and the distance between them can be precisely controlled on the subnanometer scale by altering the thickness of the interlayer, while the inner and outer porous TiO2 layers are designed for structural stability. The catalyst exhibits superior performance for the tandem hydrazine hydrate decomposition to hydrogen and subsequent nitrobenzene hydrogenation when the Ni and Pt site distance is on the subnanometer level. The performance increases with the decrease of the distance and is better than the catalyst without the TiO2 interlayer. Isotopic and kinetic experiments reveal that the distance effect controls the transfer of active hydrogen, which is the rate-determining step of the tandem reaction in a water solvent. Reduced Ti species with oxygen vacancies on the TiO2 interlayer provide the active sites for hydrogen transfer with -Ti-OH surface intermediates via the continuous chemisorption/desorption of water. A smaller distance induces the generation of more active sites for hydrogen transfer and thus higher efficiency in the synergy of Ni and Pt sites. Our work provides new insight for the distance effect of different active sites and the mechanism of intermediate transfer in tandem reactions.

9.
ChemSusChem ; 12(24): 5217-5223, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31464059

RESUMO

Efficient conversion of renewable biomass platform chemicals into high-quality fuels remains challenging. A one-pot catalytic approach has been developed to synthesize various structurally defined biofuels by using Hf(OTf)4 and Pd/C for selective tandem catalysis and 2-methylfuran (2-MF) as a renewable feedstock. 2-MF first undergoes Lewis acid-catalyzed hydroxyalkylation/alkylation (HAA) condensation with carbonyl compounds to afford intermediates containing the targeted carbon skeletons of hydrocarbon or ether products, and these intermediates then undergo hydrogenation or hydrodeoxygenation to afford the target products, catalyzed by metal triflate+Pd/C in the same pot. The present process can produce structurally defined alkanes and cyclic ethers under mild conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA