Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Prev Nutr Food Sci ; 29(2): 210-219, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38974591

RESUMO

Edible films are thin films frequently manufactured using natural bioresources and are employed in food packaging to safeguard food quality. This research prepared edible films from renewable biomass consisting of Belitung taro tuber starch (Xanthosoma sagittifolium) and incorporated sorbitol as a plasticizer, carboxymethyl cellulose as a reinforcing agent, and moringa leaf extract (Moringa oleifera) as an antioxidant. The physicochemical characteristics of the resulting edible films were examined. The most favorable treatment was identified in an edible film containing 3% (v/v based on the total volume of 100 mL) of moringa leaf extract. This exhibited a tensile strength of 6.86 N/mm2, percent elongation of 73.71%, elasticity of 9.37×10-3 kgf/mm2, water absorption of 349.03%, solubility of 93.18%, and water vapor transmission speed of 3.18 g/h m2. Its shelf life was five days at ambient temperature. The edible film was found to have 135.074 ppm of half maximal inhibitory concentration (IC50) based on the antioxidant analysis of inhibition concentration (IC50) value measurements, and was classified as having moderate antioxidant activity. Additionally, the biodegradability assessment revealed that the edible films degraded within 14 days. Based on this data, it can be deduced that adding moringa leaf extract enhances the physicochemical and functional characteristics of the film. These edible films can be used as substitutes for nonrenewable and nonbiodegradable packaging materials.

2.
Heliyon ; 10(12): e33292, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39022056

RESUMO

Taro and macabo are plants with high food, medicinal and economic value, but are under-utilized in Benin. The aim of this study was to identify local varieties of taro and macabo grown in Benin, with their vernacular names, farmers' recognition criteria and distribution. Data were collected between May 2021 and May 2023, through interviews using semi-structured questionnaires. The sample surveyed consisted of 349 taro/macabo producers, distributed in 40 villages belonging to 9 departments. The variables collected concerned producers' socio-demographic characteristics, local appellations, farmers' recognition criteria and the distribution of local varieties of the two species, and were processed by calculating relative citation frequencies and establishing a generalized linear model in R software. In addition, QGIS software was used to represent the distribution of the varieties surveyed. A total of 42 local appellations have been registered to designate all local varieties. Ten local varieties, including six of C. esculenta (V1 to V6) and four of X. sagittifolium (V7 to V10), were identified on the basis of seven (07) farmers' criteria, the main ones being tuber color (41.88 %) and leaf blade color (23.30 %). Local varieties V1, V3, V4 and V5 were the most widespread for C. esculenta, while varieties V7 and V9 were the most widely distributed from the south to the north of the country for X. sagittifolium. The socio-demographic parameters such as age category, occupation and ethnic groups tested had a significant influence (p < 0.05) on the number of local varieties held by growers. Agro-morphological characterization will provide data for the selection of elite varieties.

3.
Heliyon ; 10(10): e31224, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38807866

RESUMO

Execution of natural thickener (wild taro corm) over pretreated cotton woven fabric with reactive dye has been explored in this research work. Taro root was collected from Sherpur in Bangladesh and made into a fine powder using a grinder. Thickener pastes were prepared by using different concentrations of taro powder, then their viscosity was measured to find out the difference with sodium alginate thickener, which is traditionally used for reactive printing. A suitable thickener stock paste concentration was selected from a number of trials and depending on the result of visual sharpness of the printed samples. A suitable reactive printing method was selected between all in (1 step) and 2 step methods of reactive printing and finally the amount of thickener on the printing recipe was optimized. The color fastness to wash, color fastness to rubbing, bending length, K/S value, levelness, penetration%, print paste adds on and visual sharpness were measured to assess the printing quality. The findings indicate that when Taro corm powder is combined with boiled water, it produces a solution with higher viscosity. Additionally, a mixture of 15 % taro and boiled water yields the most distinct print outline. Comparatively, the 2-step reactive printing method offers a superior outline compared to the 1-step (all in one) method. Moreover, using 50 to 60 gm of taro corm thickening paste for every 100 g of print paste results in a higher K/S value. The results revealed that the wild taro corm could be used successfully as thickener for reactive printing. Finally, the cost was also calculated, and it was found economical as well compared to sodium alginate.

4.
BMC Plant Biol ; 24(1): 478, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816693

RESUMO

Taro is a widely utilized starch resource plant. It is essential to quantify the expression levels of functional genes associated with taro growth using real-time quantitative polymerase chain reaction (RT-qPCR). However, to obtain reliable RT-qPCR results, appropriate reference genes (RGs) are required for data normalization. In this study, we screened seven novel candidate RGs using transcriptome datasets from taro, encompassing data from growth corms and various tissues. The expression stability of these seven new RGs, along with the commonly used RGs Actin, EF1-α, and ß-tubulin, was assessed using Delta Ct, BestKeeper, geNorm, and NormFinder algorithms. Furthermore, we conducted a comprehensive analysis using the RefFinder program and validated the results using the target gene, CeAGPL1. The findings revealed that ACY-1 and PIA2 were the optimal multiple RGs for normalization during corm growth, while COX10 and Armc8 were suitable for samples including various types of tissues. Furthermore, we found three RGs, Armc8, COX10 and CCX4L, were the optimal RGs for drought stress. This study assessed the suitability of RGs in taro for the first time. The identified RGs provide valuable resources for studying corm growth, diverse tissues, and drought stress. This study contributes to the advancement of our understanding of the underlying mechanisms that govern the growth of taro.


Assuntos
Colocasia , Secas , Genes de Plantas , Transcriptoma , Colocasia/genética , Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Padrões de Referência
5.
J Agric Food Chem ; 72(22): 12762-12774, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775801

RESUMO

Small-granule starches (SGSs) have technological advantages over starches of conventional sizes for many applications. The study compared the granular characteristics of three SGSs (from amaranth, quinoa, and taro) with those of maize and potato starches and revealed their molecular basis. The results indicated that the supramolecular architecture of starch granules was not necessarily correlated with granule size. Acid hydrolysis of amaranth and quinoa starches was fast due to not only their small granule sizes but also the defects in the supramolecular structure, to which short external and internal chain lengths of amaranth and quinoa amylopectins contributed. By comparison, the granular architecture of taro starch granules was more stable partly due to the longer external chain length of taro amylopectin. Comparison of the molecular composition of branched subunits (released by using α-amylase of Bacillus amyloliquefaciens) in amylopectins and that in lintnerized starches suggested a significant heterogeneous degradation of amaranth and quinoa starches at supramolecular levels.


Assuntos
Amaranthus , Chenopodium quinoa , Amido , Amido/química , Amido/metabolismo , Amaranthus/química , Chenopodium quinoa/química , Tamanho da Partícula , Zea mays/química , Hidrólise , Solanum tuberosum/química , Amilopectina/química
6.
Int J Biol Macromol ; 271(Pt 1): 132606, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38788875

RESUMO

The present investigation was aimed to fabricate and optimize extended-release beads of diclofenac sodium based on an ion-cross-linked matrix of pectin (PTN) and taro (Colocasia esculenta) stolon polysaccharide (TSP) with 23 full factorial design. Total polysaccharide concentration (TPC), polysaccharide ratio (PR), and cross-linker concentration ([CaCl2]) were taken as independent factors with two levels of each. Initially, TSP was extracted, purified, and characterized. Fourier-transform infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) showed drug-polymer compatibility. The study also revealed the significant positive effect of TSP on drug entrapment efficiency (DEE) and sustaining drug release. The response variables (DEE, cumulative % drug-release at 1, 2, 4, 6, and 10 h, release-constant, time for 50 % and 90 % drug release (T50%, T90%), release-similarity factor (f2), and difference factor (f1) were analyzed, and subsequently, independent fabrication variables were numerically optimized by Design-Expert software (Version-13; Stat-Ease Inc., Minneapolis). The optimized batch exhibited appreciable DEE of 88.5 % (± 2.2) and an extended-release profile with significantly higher T50%, T90%, and release-similarity factor (f2) of 4.7 h, 11.4 h, and 71.6, respectively. Therefore, the study exhibited successful incorporation of the novel TSP as a potential alternative adjunct polysaccharide in the pectin-based ion-cross-linked inter-penetrating polymeric network for extended drug release.


Assuntos
Colocasia , Preparações de Ação Retardada , Diclofenaco , Liberação Controlada de Fármacos , Pectinas , Diclofenaco/química , Pectinas/química , Colocasia/química , Portadores de Fármacos/química , Polissacarídeos/química , Cálcio/química , Microesferas , Espectroscopia de Infravermelho com Transformada de Fourier
7.
J Food Sci ; 89(5): 2629-2644, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38578118

RESUMO

Taro (Colocasia esculenta) flour is a viable carbohydrate alternative and a functional additive for food formulation; however, different taro varieties may possess distinct characteristics that may influence their suitability for food production. This study evaluated the nutritional, physicochemical, and functional properties of flours from five Hawaiian taro varieties: Bun-Long, Mana Ulu, Moi, Kaua'i Lehua, and Tahitian. Tahitian, Bun-long, and Moi had high total starch contents of 40.8, 38.9, and 34.1 g/100 g, respectively. Additionally, Moi had the highest neutral detergent fiber (25.5 g/100 g), lignin (1.39 g/100 g), and cellulose (5.31 g/100 g). In terms of physicochemical properties, Tahitian showed the highest water solubility index (33.3 g/100 g), while Tahitian and Moi exhibited the two highest water absorption indices (5.81 g/g and 5.68 g/g, respectively). Regarding functional properties, Tahitian had the highest water absorption capacity (3.48 g/g), and Tahitian and Moi had the two highest oil absorption capacities (3.15 g/g and 2.68 g/g, respectively). Therefore, the flours from these Hawaiian taro varieties possess promising characteristics that could enhance food quality when used as alternative additives in food processing.


Assuntos
Colocasia , Fibras na Dieta , Farinha , Valor Nutritivo , Amido , Colocasia/química , Farinha/análise , Havaí , Amido/análise , Amido/química , Fibras na Dieta/análise , Solubilidade , Celulose/química , Celulose/análise , Lignina/química , Lignina/análise , Água
8.
Chemosphere ; 355: 141746, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522673

RESUMO

Hydrothermal carbonization was applied to taro peel wastes to produce hydrochars using a facile and environmentally friendly process. Four different entities were prepared: hydrochar (TPh), phosphoric-activated hydrochar (P-TPh), and silver@hydrochars (Ag@TPh, Ag@P-TPh). The elemental compositions of the single and composite hydrochars were confirmed by EDX. Among the produced hydrochars, the morphology of the Ag@hydrochar composites demonstrated more wrinkled structure, and Ag nanoparticles decorated the surface. The optimal experimental conditions for levofloxacin adsorption were determined to be a contact time of 45 min, hydrochar dose of 0.15 g L-1, and pH of 7. The best adsorption performances were assigned to Ag@hydrochars. Two machine learning models were applied to predict the levofloxacin adsorption efficiency of the Ag@hydrochars. A central composite design (CCD) and a 3-10-1 artificial neural network (ANN) model were developed to estimate the removal performance of levofloxacin using Levenberg-Marquardt backpropagation algorithm based on correlation and error analysis of the adopted training functions. Furthermore, the ANN sensitivity analysis revealed the order of the relative importance variable as initial concentration> hydrochar dose> pH. The predicted values of the CCD and ANN models fitted the experimental results with R2> 0.989. Therefore, the applied models were effective in predicting levofloxacin removal under different operating conditions. This work provides an open option for the sustainable management of food industry wastes and the possibility of waste valorization to effective hydrochar composites to be applied in water treatment processes.


Assuntos
Levofloxacino , Nanopartículas Metálicas , Adsorção , Prata , Redes Neurais de Computação , Carbono
9.
Front Biosci (Landmark Ed) ; 29(2): 57, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38420795

RESUMO

BACKGROUND: Colocasia esculenta L. Schott is a main traditional root crop in China, serving as an important vegetable and staple food. Drought stress plays vital role on the growth and development of taro corm. METHODS: Two different varieties of taro in Jiangsu were selected: Xiangsha taro and Longxiang taro. The accumulation characteristics, morphological structure, and physicochemical properties of taro corm starch were studied by microscopic observation, particle size analysis, and X-ray diffractometer (XRD) analysis. Transcriptome analyses were used to identify the related genes of taro corm under drought stress. RESULTS: During the growth of taro, the number of amyloplasts showed an obvious increasing trend and shifted from being dispersed throughout the cells to being gathered on one side of the cells, and morphological observations showed that smaller granular distribution gradually changed to a larger lumpy distribution. The particle size of Longxiang taro is smaller than that of Xiangsha taro. Under drought stress conditions, the occurrence of starch grains and corm size were inhibited in Xiangsha taro. Transcriptome sequencing of drought-stressed taro corms showed that the enzymes related to starch synthesis were differentially expressed. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of drought-stressed taro corms showed that drought affected hormone signal transduction, material metabolism, drought stress tolerance, plant growth and development, and stress resistance, which triggered the plant drought adaptive response. CONCLUSIONS: Drought stress inhibits starch accumulation in taro.


Assuntos
Colocasia , Amido , Amido/química , Colocasia/genética , Colocasia/química , Secas , Alimentos , China
10.
Genes (Basel) ; 15(1)2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275619

RESUMO

Taro is a plant in the Araceae family, and its leafstalk possesses significant botanical and culinary value owing to its noteworthy medicinal and nutritional attributes. Leafstalk colour is an essential attribute that significantly influences its desirability and appeal to both breeders and consumers. However, limited information is available about the underlying mechanism responsible for the taro plant's colouration. Thus, the purpose of the current study was to elucidate the information on purple leafstalks in taro through comprehensive metabolome and transcriptome analysis. In total, 187 flavonoids, including 10 anthocyanins, were identified. Among the various compounds analysed, it was observed that the concentrations of five anthocyanins (keracyanin chloride (cyanidin 3-O-rutinoside chloride), cyanidin 3-O-glucoside, tulipanin (delphinidin 3-rutinoside chloride), idaein chloride (cyanidin 3-O-galactoside), and cyanidin chloride) were found to be higher in purple taro leafstalk compared to green taro leafstalk. Furthermore, a total of 3330 differentially expressed genes (DEGs) were identified by transcriptome analysis. Subsequently, the correlation network analysis was performed to investigate the relationship between the expression levels of these differentially expressed genes and the content of anthocyanin. There were 18 DEGs encoding nine enzymes detected as the fundamental structural genes contributing to anthocyanin biosynthesis, along with seven transcription factors (3 MYB and 4 bHLH) that may be promising candidate modulators of the anthocyanin biosynthesis process in purple taro leafstalk. The findings of the current investigation not only provide a comprehensive transcriptional code, but also give information on anthocyanin metabolites as well as beneficial insights into the colour mechanism of purple taro leafstalk.


Assuntos
Antocianinas , Colocasia , Colocasia/genética , Colocasia/metabolismo , Transcriptoma , Cloretos , Perfilação da Expressão Gênica , Metaboloma/genética
11.
Int J Biol Macromol ; 261(Pt 1): 129702, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280699

RESUMO

Taro starch (TS) was modified by dry heat treatment (DHT) for different periods (1, 3, 5, and 7 h at 130 °C) and temperatures (90, 110, 130, and 150 °C for 5 h) to expand its applications in food and other industries. The structure and functional properties of DHT-modified TS were characterized. It was found that TS granules became agglomerated after DHT, and the particle size, amylose content, solubility, and retrogradation enthalpy change of TS increased with increasing dry heating time and temperature, whereas the relative crystallinity, molecular weight, swelling power, gelatinization temperature, and enthalpy change decreased. The absorbance ratio of 1047 cm-1/1022 cm-1 for DHT-modified TS (except at 7 h) was higher than that of native TS. DHT increased the contact angle of TS in a time- and temperature-dependent manner. At a moderate strength, DHT increased the pasting viscosity, relative setback value, and storage modulus but decreased the relative breakdown value. Moreover, DHT (except at 150 °C) caused a decrease in the rapid digestive starch content and estimated glycemic index of TS. These results suggested that DHT-modified TS could be used in foods with high viscosity requirements, gel foods, and low-glycemic index starch-based foods.


Assuntos
Colocasia , Amido , Amido/química , Temperatura Alta , Fenômenos Químicos , Amilose/química , Viscosidade
12.
Foods ; 13(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38254561

RESUMO

The purpose of this study was to apply infrared-assisted spouted bed drying (IRSBD) technology for Areca taro drying and to investigate the effects of different parameters on its drying quality. Specifically, in order to determine the suitable conditions for IRSBD, the effects of different drying temperatures (45 °C, 50 °C, 55 °C, and 60 °C) and cutting sizes (6 × 6 × 6 mm, 8 × 8 × 8 mm, 10 × 10 × 10 mm, and 12 × 12 × 12 mm) on the drying characteristics, temperature uniformity, and quality properties (including colour, rehydration ratio, total phenol content, total flavonoid content, and antioxidant activity) of Areca taro were studied. The results showed that the optimal drying condition was the sample with a cutting size of 10 × 10 × 10 mm and drying at 50 °C, which yielded the dried sample with the best colour, highest total phenol and flavonoid contents, maximum antioxidant capacity, and rehydration ratio.

13.
Int J Biol Macromol ; 254(Pt 1): 127803, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37913879

RESUMO

The physicochemical properties of Lipu taro starch (LTS), cassava starch (CS) and wheat starch (WS) were analyzed. These starches exhibited a comparable starch content (86 %). However, LTS had a significantly lower amylose content (15.93 %) compared to CS (26.62 %) and WS (33.53 %). Moreover, LTS demonstrated an irregular polygonal cubic morphology with a smaller particle size of 2.55 µm while possessed an A-type crystal structure with high crystallinity at 25.07 %. In contrast, CS and WS had larger particle sizes of 13.33 µm and 16.68 µm, respectively, with lower crystallinities of 22.52 % and 20.33 %. Due to these physicochemical properties, LTS exhibited superior emulsification properties with a higher emulsifying activity index of 8.63 m2/g and an emulsion stability index of 69.18 min, whereas CS and WS had values of 2.35 m2/g and 25.15 min, and 0.37 m2/g and 11.48 min, respectively. LTS also demonstrated enhanced thermal stability, characterized by higher gelatinization temperature (indicated by To, Tp, Tc, and ΔT) and reduced paste viscosity (indicated by PV, TV, FV, SBV, and BDV) compared to CS. However, the mechanical strength of the gel made from LTS (indicated by hardness, adhesiveness, springiness, gumminess, and chewiness) was comparatively inferior to those from CS and WS.


Assuntos
Colocasia , Amido , Amido/química , Colocasia/química , Amilose/química , Tamanho da Partícula , Viscosidade
14.
Antioxidants (Basel) ; 12(10)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37891880

RESUMO

Colocasia esculenta L. leaves are considered a by-product of taro cultivation and are discarded as environmental waste, despite their valuable phenolic composition. Their valorization to obtain value-added substances for medicinal, food, and cosmetic applications is the aim of the current work. An ultrasound-assisted extraction was developed for the environmentally friendly and sustainable isolation of taro leaf antioxidants using natural deep eutectic solvents (NaDESs). Among the utilized solvents, the NaDES based on betaine and ethylene glycol provided the best extraction efficiencies in terms of polyphenolic content and antioxidant activity. Multi-response optimization suggested a solvent-to-solid ratio of 10 mL g-1, a processing time of 60 min, an extraction temperature of 60 °C, and a water content of 33.8% (w/w) as optimal extraction parameters. Leaf extract obtained under these optimum operational parameters demonstrated a strong radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (65.80 ± 0.87%), a high ferric reducing antioxidant power (126.62 ± 1.92 µmol TE g-1 sample), and significant protection against oxidative stress-induced DNA damage. The chromatographic characterization of the optimum extract revealed its richness in flavonoids (flavones and flavonols). The outcomes of the present study suggest that the proposed method could serve as a highly efficient and green alternative for the recovery of polyphenols from agricultural wastes.

15.
Poult Sci ; 102(12): 103100, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837678

RESUMO

Biodegradable films based on polymers from renewable resources have become a feasible technology to preserve the quality (texture, color, flavor) and safety of food. The addition of antimicrobial agents to films can prevent the growth of pathogenic microorganisms that affect meat and poultry products. In this study, a biodegradable film with sodium alginate (SA), taro starch (MS), and nisin (Nis) was optimized to have high tensile strength (TS), breaking force (BF), and a low water vapor permeability (WVP) using a Box-Behnken response surface design, and its antimicrobial effect was evaluated in relation to its use as a packaging material for chicken meat. The OB was characterized via analysis of its mechanical, physical, and chemical properties; in addition, the total migration of Nis was also analyzed, along with its retention ability, the kinetics of the release of Nis into food simulants, and its antimicrobial activity against Listeria monocytogenes in vitro and on inoculated chicken meat. The resulting optimal OB was produced with 1.9% MS, 1% glycerol (G), and 2,369 IU/mL of Nis, and displayed adequate TS and WVP. The OB significantly reduced the microbial load and helped extend the shelf life of the chicken meat under refrigeration by up to 15 d. Total migration and the kinetics of the release of Nis showed that the OB can be used on hydrophilic and acidic foods, making it a natural alternative for use in food packaging.


Assuntos
Anti-Infecciosos , Colocasia , Nisina , Animais , Nisina/farmacologia , Amido/química , Galinhas , Alginatos/farmacologia , Alginatos/química , Anti-Infecciosos/química , Carne , Embalagem de Alimentos/métodos , Antibacterianos/farmacologia , Antibacterianos/química
16.
Int J Biol Macromol ; 253(Pt 2): 126772, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37683744

RESUMO

The goal of the proposed study is to investigate the effects of three different power levels (30, 32 and 34 kV) and exposure time (2, 4 and 8 min) of dielectric barrier discharge (DBD) atmospheric cold plasma treatment on the functional and physicochemical characteristics of taro starch. Investigations were done into how different treatments impact the multi-structural, functional and physicochemical attributes of taro starch. The findings showed that cold plasma treatments substantially impacted starch granule shapes (3.60-2.54 µm), such as reduced aggregations and developed fissures on granule surface due to the generation of an etching by plasma species and enhancement in the surface topography and roughness of treated starch as compared with native by SEM and AFM analysis. Besides this, no variations were detected in the functional groups of taro starch using FT-IR analysis after cold plasma treatments. However, the A-type pattern in the XRD did not affect it, while a reduction in relative crystallinity (14.20-11.50 %) was seen as a function of the active plasma species depolymerization. Furthermore, depending on the cold plasma voltage and treatment time, amylose content (20.12-15.98 %), paste clarity (24.48-31.27 %), solubility (0.41-65.53 %), freezing thaw stability (% syneresis) (32.10-42.58 %), color properties (L*, 94.79-97.52), whiteness index (79.37-84.66), molecular weight distribution (Peak 1, 12.79-5.35 × 108 g/mol; Peak 2, 4.20-1.56 × 107 g/mol) and in vitro digestibility (RDS, 64.10-64.08 %) significantly changed. So, based on these excellent properties, this study suggested that cold plasm-treated taro starch can be used in the field of food packaging material, functional food and pharmaceutical products. Therefore, a potential approach for physically altering starch is plasma treatment.


Assuntos
Colocasia , Gases em Plasma , Amido/química , Colocasia/química , Gases em Plasma/química , Espectroscopia de Infravermelho com Transformada de Fourier , Amilose/química
17.
Nutrients ; 15(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37571276

RESUMO

Taro (Colocasia esculenta) is a root crop that remains largely underutilized and undervalued despite its abundance and affordability. In comparison to other root vegetables, such as potatoes, yams, carrots, and cassava, taro stands out as a plentiful and low-cost option. As global hunger increases, particularly in Africa, it becomes essential to address food insecurity by maximizing the potential of existing food resources, including taro, and developing improved food products derived from it. Taro possesses a wealth of carbohydrates, dietary fiber, vitamins, and minerals, thereby making it a valuable nutritional source. Additionally, while not a significant protein source, taro exhibits higher protein content than many other root crops. Consequently, utilizing taro to create food products, such as plant-based milk alternatives, frozen desserts, and yogurt substitutes, could play a crucial role in raising awareness and increasing taro production. Unfortunately, taro has been stigmatized in various cultures, which has led to its neglect as a food crop. Therefore, this review aims to highlight the substantial potential of taro as an economical source of dietary energy by exploring the rich fiber, potassium, vitamin C, protein, and other micronutrient content of taro, and providing a foundation for the formulation of novel food products. Furthermore, this paper assesses the nutritional benefits of taro, its current utilization, and its antinutritional properties. It emphasizes the need for further research to explore the various applications of taro and improve on-farm processing conditions for industrial purposes.


Assuntos
Colocasia , Vitaminas/metabolismo , Minerais/metabolismo , Produtos Agrícolas , Micronutrientes/metabolismo
18.
PeerJ ; 11: e15400, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37309370

RESUMO

Background: Taro is an important potato crop, which can be used as food, vegetable, feed, and industrial raw material. The yield and quality of taro are primarily determined by the expansion degree of taro bulb and the filling condition of starch, whereas the expansion of taro bulb is a complex biological process. However, little information is reviewed on the research progress of bulb expansion and starch enrichment in taro. Methodology: PubMed, Web of Science, and the China National Knowledge Infrastructure databases were searched for relevant articles. After removing duplicate articles and articles with little relevance, 73 articles were selected for review. Results: This article introduces the formation and development of taro bulb for workers engaged in taro research. The content includes the process of amyloplast formation at the cytological level and changes in bulb expansion and starch enrichment at physiological levels, which involve endogenous hormones and key enzyme genes for starch synthesis. The effects of environment and cultivation methods on taro bulb expansion were also reviewed. Conclusions: Future research directions and research focus about the development of taro bulb were proposed. Limited research has been conducted on the physiological mechanism and hormone regulatory pathway of taro growth and development, taro bulb expansion, key gene expression, and starch enrichment. Therefore, the abovementioned research will become the key research direction in the future.


Assuntos
Colocasia , Humanos , China , Bases de Dados Factuais , Amido , Verduras
19.
Food Sci Nutr ; 11(6): 2697-2707, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37324901

RESUMO

Stabilizers are essential components of manufactured products such as yogurt. The addition of stabilizers improves the body, texture, appearance, and mouth feel of yogurt while also preventing technical defects such as syneresis. A study was conducted to optimize the concentration of taro starch in yogurt. The yogurt was fortified at different concentrations of taro starch. Taro starch levels were 0%, 0.5%, 1%, 1.5%, 2%, 2.5%, and 3%, with different storage times (0, 14, and 28 days). The Tukey honesty test was used for mean comparison (p < .1). The results of the study showed that maximum moisture and protein content was taken by using 0.5% taro starch and stored for 0 days while maximum fat % was attained in 1.5% taro starch treatment and storage time was 0 days. The maximum water-holding capacity was increased by adding 1.5% taro starch under 14 days' storage time. Water-holding capacity started decreasing with the increasing taro concentration. The acidity of yogurt started increasing with the increasing taro starch and the maximum acidity was taken at 2.5% taro starch concentration. The viscosity of the yogurt was maximum at 2% taro starch. As far as it concerned, sensory evolution, aroma, and taste started changing with the increasing taro starch concentration and increasing storage time. The study's goals were to optimize the taro concentration for stabilizing the yogurt synthesis and to probe the impact of taro starch on the physiochemical attributes of yogurt.

20.
Polymers (Basel) ; 15(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37376271

RESUMO

The development of biodegradable plastics and eco-friendly biomaterials derived from renewable resources is crucial for reducing environmental damage. Agro-industrial waste and rejected food can be polymerized into bioplastics, offering a sustainable solution. Bioplastics find use in various industries, including for food, cosmetics, and the biomedical sector. This research investigated the fabrication and characterization of bioplastics using three types of Honduran agro-wastes: taro, yucca, and banana. The agro-wastes were stabilized and characterized (physicochemically and thermically). Taro flour presented the highest protein content (around 4.7%) and banana flour showed the highest moisture content (around 2%). Furthermore, bioplastics were produced and characterized (mechanically and functionally). Banana bioplastics had the best mechanical properties, with a Young's modulus around 300 MPa, while taro bioplastics had the highest water-uptake capacity (200%). In general, the results showed the potential of these Honduran agro-wastes for producing bioplastics with different characteristics that could add value to these wastes, promoting the circular economy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA