Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Adv Exp Med Biol ; 1460: 821-850, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39287873

RESUMO

There are few convincing studies establishing the relationship between endogenous factors that cause obesity, cellular aging, and telomere shortening. Without a functional telomerase, a cell undergoing cell division has progressive telomere shortening. While obesity influences health and longevity as well as telomere dynamics, cellular senescence is one of the major drivers of the aging process and of age-related disorders. Oxidative stress induces telomere shortening, while decreasing telomerase activity. When progressive shortening of telomere length reaches a critical point, it triggers cell cycle arrest leading to senescence or apoptotic cell death. Telomerase activity cannot be detected in normal breast tissue. By contrast, maintenance of telomere length as a function of human telomerase is crucial for the survival of breast cancer cells and invasion. Approximately three-quarters of breast cancers in the general population are hormone-dependent and overexpression of estrogen receptors is crucial for their continued growth. In obesity, increasing leptin levels enhance aromatase messenger ribonucleic acid (mRNA) expression, aromatase content, and its enzymatic activity on breast cancer cells, simultaneously activating telomerase in a dose-dependent manner. Meanwhile, applied anti-estrogen therapy increases serum leptin levels and thus enhances leptin resistance in obese postmenopausal breast cancer patients. Many studies revealed that shorter telomeres of postmenopausal breast cancer have higher local recurrence rates and higher tumor grade. In this review, interlinked molecular mechanisms are looked over between the telomere length, lipotoxicity/glycolipotoxicity, and cellular senescence in the context of estrogen receptor alpha-positive (ERα+) postmenopausal breast cancers in obese women. Furthermore, the effect of the potential drugs, which are used for direct inhibition of telomerase and the inhibition of human telomerase reverse transcriptase (hTERT) or human telomerase RNA promoters as well as approved adjuvant endocrine therapies, the selective estrogen receptor modulator and selective estrogen receptor down-regulators are discussed.


Assuntos
Neoplasias da Mama , Senescência Celular , Obesidade , Telomerase , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Obesidade/genética , Obesidade/metabolismo , Telomerase/metabolismo , Telomerase/genética , Encurtamento do Telômero , Telômero/metabolismo , Telômero/genética , Leptina/metabolismo , Leptina/genética , Animais
2.
Front Immunol ; 15: 1399676, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919619

RESUMO

The global impact of the SARS-CoV-2 pandemic has been unprecedented, posing a significant public health challenge. Chronological age has been identified as a key determinant for severe outcomes associated with SARS-CoV-2 infection. Epigenetic age acceleration has previously been observed in various diseases including human immunodeficiency virus (HIV), Cytomegalovirus (CMV), cardiovascular diseases, and cancer. However, a comprehensive review of this topic is still missing in the field. In this review, we explore and summarize the research work focusing on biological aging markers, i.e., epigenetic age and telomere attrition in COVID-19 patients. From the reviewed articles, we identified a consistent pattern of epigenetic age dysregulation and shortened telomere length, revealing the impact of COVID-19 on epigenetic aging and telomere attrition.


Assuntos
Envelhecimento , COVID-19 , Epigênese Genética , SARS-CoV-2 , Humanos , COVID-19/imunologia , Envelhecimento/imunologia , SARS-CoV-2/fisiologia , Telômero , Encurtamento do Telômero
3.
Biomedicine (Taipei) ; 14(1): 10-19, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533302

RESUMO

Aging is considered part of the natural process of life, however in recent years medical literature has started to show that specific facets of aging are beginning to be understood and those factors may even be considered preventable with various measures. Aging is also considered the number one cause of poor quality of life, disease, disability, and death, so the importance of understanding the aging process and how to control certain aspects of it cannot be underestimated when age related suffering is factored in. The causes of aging are now becoming well understood, and in recent years many therapies have already become available to the public to attenuate specific corridors of aging. The heterogeneity of the aging process and the biological drivers involved is examined here in parallel with various compounds and therapies to combat biological decline. The benefits for governments in keeping their populations healthy and vibrant are vast, and at the same time offer a great incentive to invest into newly emerging technologies that may prevent the onset of preventable disease. Whilst this paper only discusses nine pathways to the aging process, many more exist.

4.
Cardiovasc Diabetol ; 23(1): 98, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493287

RESUMO

BACKGROUND: Telomere Length (TL), a marker of cellular aging, holds promise as a biomarker to elucidate the molecular mechanism of diabetes. This study aimed to investigate whether shorter telomeres are associated with a higher risk of type 2 diabetes mellitus (T2DM) incidence in patients with coronary heart disease; and to determine whether the most suitable dietary patterns, particularly a Mediterranean diet or a low-fat diet, can mitigate the development of diabetes in these patients after a follow-up period of five years. METHODS: The CORonary Diet Intervention with Olive oil and cardiovascular PREVention study (CORDIOPREV study) was a single-centre, randomised clinical trial done at the Reina Sofia University Hospital in Córdoba, Spain. Patients with established coronary heart disease (aged 20-75 years) were randomly assigned in a 1:1 ratio by the Andalusian School of Public Health to receive two healthy diets. Clinical investigators were masked to treatment assignment; participants were not. Quantitative-PCR was used to assess TL measurements. FINDINGS: 1002 patients (59.5 ± 8.7 years and 82.5% men) were enrolled into Mediterranean diet (n = 502) or a low-fat diet (n = 500) groups. In this analysis, we included all 462 patients who did not have T2DM at baseline. Among them, 107 patients developed T2DM after a median of 60 months. Cox regression analyses showed that patients at risk of short telomeres (TL < percentile 20th) are more likely to experience T2DM than those at no risk of short telomeres (HR 1.65, p-value 0.023). In terms of diet, patients at high risk of short telomeres had a higher risk of T2DM incidence after consuming a low-fat diet compared to patients at no risk of short telomeres (HR 2.43, 95CI% 1.26 to 4.69, p-value 0.008), while no differences were observed in the Mediterranean diet group. CONCLUSION: Patients with shorter TL presented a higher risk of developing T2DM. This association could be mitigated with a specific dietary pattern, in our case a Mediterranean diet, to prevent T2DM in patients with coronary heart disease. TRIAL REGISTRATION: Clinicaltrials.gov number NCT00924937.


Assuntos
Doenças Cardiovasculares , Doença das Coronárias , Diabetes Mellitus Tipo 2 , Dieta Mediterrânea , Feminino , Humanos , Masculino , Biomarcadores , Doenças Cardiovasculares/epidemiologia , Doença das Coronárias/diagnóstico , Doença das Coronárias/epidemiologia , Doença das Coronárias/genética , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Telômero , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso
5.
Arch Gerontol Geriatr ; 121: 105349, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38340585

RESUMO

BACKGROUND: Many related factors can accelerate the age-dependent telomere shortening, but some problems remain unresolved. This study aimed to assess the risk factors of telomere attrition at different age stages. METHODS: This study was a population-based nationally representative survey study. All data were collected using a standard methodology by the national surveillance system. Quantitative polymerase chain reaction was used to measure relative leukocyte telomere length. Multiple linear regression analysis with age stratification was used to estimate the association of shortened telomere length with risk factors at the different age stages. Covariance analysis was used to compare the telomere length of category variables, and the model was adjusted for potentially confounders. RESULTS: A total of 7,659 eligible participants aged 20 years or older with DNA specimens participated in the study. Related risk factors for age-dependent telomere shortening included gender, race-ethnicity, education levels, family income, health insurance, marital status, physical activity, smoking status, alcohol use, and self-reported greatest weight, which were associated with change in telomere length at different age stages. CONCLUSIONS AND IMPLICATIONS: Related risk factors of telomere attrition were changed with age in life course. The evaluation of related risk factors for telomere attrition in terms of age may be a more accurate evaluation comparison with the specific age.


Assuntos
Acontecimentos que Mudam a Vida , Encurtamento do Telômero , Humanos , Telômero/genética , Fatores de Risco , Fumar
6.
Antioxidants (Basel) ; 13(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275650

RESUMO

In order to evaluate whether telomere maintenance is associated with type 2 diabetes remission, newly diagnosed type 2 diabetes patients without glucose-lowering treatment (183 out of 1002) from the CORDIOPREV study (NCT00924937) were randomized to consume a Mediterranean or low-fat diet. Patients were classified as Responders, those who reverted from type 2 diabetes during the 5 years of dietary intervention (n = 69), and Non-Responders, who did not achieve diabetes remission by the end of the follow-up period (n = 104). We found no differences in diabetes remission between the two diets, and we determined telomere length (TL) by measuring qPCR, telomerase activity using the TRAP assay, and direct redox balance based on the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSH) via colorimetric assay. Responders exhibited higher baseline TL in comparison with Non-Responders (p = 0.040), and a higher TL at baseline significantly predicted a higher probability of type 2 diabetes remission (OR 2.13; 95% CI, 1.03 to 4.41). After the dietary intervention, Non-Responders showed significant telomere shortening (-0.19, 95% CI -0.32 to 0.57; p = 0.005). Telomere shortening was significantly pronounced in type 2 diabetes patients with a worse profile of insulin resistance and/or beta-cell functionality: high hepatic insulin resistance fasting, a high disposition index (-0.35; 95% CI, -0.54 to -0.16; p < 0.001), and a low disposition index (-0.25; 95% CI, -0.47 to -0.01; p = 0.037). In addition, changes in TL were correlated to the GSH/GSSG ratio. Responders also showed increased telomerase activity compared with baseline (p = 0.048), from 0.16 (95% CI, 0.08 to 0.23) to 0.28 (95% CI, 0.15 to 0.40), with a more marked increase after the dietary intervention compared with Non-Responders (+0.07; 95% CI, -0.06-0.20; p = 0.049). To conclude, telomere maintenance may play a key role in the molecular mechanisms underlying type 2 diabetes remission in newly diagnosed patients. However, further larger-scale prospective studies are necessary to corroborate our findings.

7.
Geroscience ; 46(1): 241-255, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37594598

RESUMO

A progressive decline in biological function and fitness is, generally, how aging is defined. However, in 2013, a description on the "hallmarks of aging" in mammals was published, and within it, it described biological processes that are known to alter the aging phenotype. These include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication (inflammation), and changes within the microbiome. This mini-review provides a detailed account of the progress on each of these hallmarks of aging in the domestic dog within the last 5 years. Additionally, when there are gaps in the literature between other mammalian species and dogs, I highlight the aging biomarkers that may be missing for dogs as aging models. I also argue for the importance of dog aging studies to include several breeds of dogs at differing ages and for age corrections for breeds with differing mean lifespans throughout.


Assuntos
Envelhecimento , Epigênese Genética , Cães , Animais , Envelhecimento/genética , Senescência Celular , Células-Tronco , Fenótipo , Mamíferos
8.
Eur J Nutr ; 63(1): 291-302, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37870657

RESUMO

PURPOSE: Oxidative stress has been reported to cause telomere attrition, which triggers cell apoptosis. Apoptosis of neurocytes may play an essential role in the pathogenesis of neurodegenerative diseases. This study hypothesized that folic acid (FA) supplementation decreased neurocyte apoptosis by alleviating oxidative stress-induced telomere attrition in 25-month-old Sprague Dawley (SD) rats. METHODS: Three-month-old male SD rats were randomly divided into four diet groups by different concentrations of folic acid in equal numbers, with intervention for 22 months. Folate, homocysteine (Hcy), reactive oxygen species (ROS) levels, antioxidant activities, and telomere length in the brain tissues were tested at 11, 18, and 22 months of intervention, and 8-hydroxy-deoxyguanosine (8-OHdG) levels, neurocyte apoptosis and telomere length in the cerebral cortex and hippocampal regions were tested during the 22-month intervention. An automated chemiluminescence system, auto-chemistry analyzer, Q-FISH, qPCR, and TUNEL assay were used in this study. RESULTS: The rats had lower folate concentrations and higher Hcy, ROS, and 8-OHdG concentrations in brain tissue with aging. However, FA supplementation increased folate concentrations and antioxidant activities while decreasing Hcy, ROS, and 8-OHdG levels in rat brain tissue after 11, 18, and 22 months of intervention. Furthermore, FA supplementation alleviated telomere length shortening and inhibited neurocyte apoptosis during the 22-month intervention. CONCLUSION: FA supplementation alleviated oxidative stress-induced telomere attrition and inhibited apoptosis of neurocytes in 25-month-old rats.


Assuntos
Antioxidantes , Ácido Fólico , Ratos , Masculino , Animais , Ácido Fólico/farmacologia , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Ratos Sprague-Dawley , Estresse Oxidativo , Apoptose , 8-Hidroxi-2'-Desoxiguanosina , Telômero
9.
PeerJ ; 11: e16457, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38054014

RESUMO

Background: Life history theory predicts trade-offs between reproduction and survival in species like the northern gannet (Morus bassanus). During breeding, demanding foraging conditions lead them to expand their foraging range and diversify their diet, increasing the risk of reproductive failure. Changing partners may enhance breeding success but lead to more physiological costs. Methods: To investigate the physiological costs of reproduction upon partner changes, we measured and compared 21 biomarkers related to telomere dynamics, oxidative stress, inflammation, hematology, nutritional status, and muscle damage. We used a longitudinal approach with gannets (n = 38) over three contrasting years (2017, 2018 and 2019). Results: Our results suggest that annual breeding conditions exert a greater influence on physiological changes than partnership status. Individuals that changed partner experienced greater short-term stress than retained partners. This transient increase in stress was marked by short-term increases in oxidative lipid damage, lower antioxidant capacity, signs of inflammation, and greater weight loss than individuals that retained partners. During favorable conditions, individuals that changed mates had stabilized telomere length, decreased antioxidant capacity, glucose concentration, and muscle damage, along with increased oxygen transport capacity. Conversely, unfavorable breeding conditions led to increased telomere attrition, stabilized antioxidant capacity, decreased inflammation susceptibility, diminished oxygen transport capacity, and increased muscle damage. In the cases where partners were retained, distinct physiological changes were observed depending on the year's conditions, yet the telomere dynamics remained consistent across both partnership status categories. During the favorable year, there was an increase in unsaturated fatty acids and oxygen transport capacity in the blood, coupled with a reduction in inflammation potential and protein catabolism. In contrast, during the unfavorable year in the retained mates, we observed an increase in oxidative DNA damage, antioxidant capacity, weight loss, but a decrease in inflammation susceptibility as observed in changed mates. Discussion: Our study shows that behavioral flexibility such as mate switching can help seabirds cope with the challenges of food scarcity during reproduction, but these coping strategies may have a negative impact on physiological status at the individual level. In addition, the marked reduction in telomere length observed during harsh conditions, coupled with the stabilization of telomere length in favorable conditions, highlights the long-term physiological impact of annual breeding conditions on seabirds. These findings underscore the effect on their potential survival and fitness, emphasizing that the influence of annual breeding conditions is greater than that of partnership status.


Assuntos
Antioxidantes , Aves , Humanos , Animais , Aves/genética , Telômero/genética , Redução de Peso/genética , Cruzamento , Inflamação/genética , Oxigênio
10.
Mol Ecol ; 32(21): 5812-5822, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37792396

RESUMO

Life-history theory suggests that ageing is one of the costs of reproduction. Accordingly, a higher reproductive allocation is expected to increase the deterioration of both the somatic and the germinal lines through enhanced telomere attrition. In most species, males' reproductive allocation mainly regards traits that increase mating and fertilization success, that is sexually selected traits. In this study, we tested the hypothesis that a higher investment in sexually selected traits is associated with a reduced relative telomere length (RTL) in the guppy (Poecilia reticulata), an ectotherm species characterized by strong pre- and postcopulatory sexual selection. We first measured telomere length in both the soma and the sperm over guppies' lifespan to see whether there was any variation in telomere length associated with age. Second, we investigated whether a greater investment in pre- and postcopulatory sexually selected traits is linked to shorter telomere length in both the somatic and the sperm germinal lines, and in young and old males. We found that telomeres lengthened with age in the somatic tissue, but there was no age-dependent variation in telomere length in the sperm cells. Telomere length in guppies was significantly and negatively correlated with sperm production in both tissues and life stages considered in this study. Our findings indicate that telomere length in male guppies is strongly associated with their reproductive investment (sperm production), suggesting that a trade-off between reproduction and maintenance is occurring at each stage of males' life in this species.


Assuntos
Poecilia , Sêmen , Animais , Masculino , Espermatozoides/fisiologia , Comportamento Sexual Animal , Reprodução/genética , Músculos , Poecilia/genética
11.
Mol Ecol ; 32(19): 5429-5447, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37658759

RESUMO

Telomeres are chromosome protectors that shorten during eukaryotic cell replication and in stressful conditions. Developing individuals are susceptible to telomere erosion when their growth is fast and resources are limited. This is critical because the rate of telomere attrition in early life is linked to health and life span of adults. The metabolic telomere attrition hypothesis (MeTA) suggests that telomere dynamics can respond to biochemical signals conveying information about the organism's energetic state. Among these signals are glucocorticoids, hormones that promote catabolic processes, potentially impairing costly telomere maintenance, and nucleotides, which activate anabolic pathways through the cellular enzyme target of rapamycin (TOR), thus preventing telomere attrition. During the energetically demanding growth phase, the regulation of telomeres in response to two contrasting signals - one promoting telomere maintenance and the other attrition - provides an ideal experimental setting to test the MeTA. We studied nestlings of a rapidly developing free-living passerine, the great tit (Parus major), that either received glucocorticoids (Cort-chicks), nucleotides (Nuc-chicks) or a combination of both (NucCort-chicks), comparing these with controls (Cnt-chicks). As expected, Cort-chicks showed telomere attrition, while NucCort- and Nuc-chicks did not. NucCort-chicks was the only group showing increased expression of a proxy for TOR activation (the gene TELO2), of mitochondrial enzymes linked to ATP production (cytochrome oxidase and ATP-synthase) and a higher efficiency in aerobically producing ATP. NucCort-chicks had also a higher expression of telomere maintenance genes (shelterin protein TERF2 and telomerase TERT) and of enzymatic antioxidant genes (glutathione peroxidase and superoxide dismutase). The findings show that nucleotide availability is crucial for preventing telomere erosion during fast growth in stressful environments.


Assuntos
Passeriformes , Telômero , Humanos , Animais , Adulto , Telômero/genética , Glucocorticoides , Nucleotídeos , Passeriformes/genética , Trifosfato de Adenosina , Encurtamento do Telômero
12.
Nutrients ; 15(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37447170

RESUMO

The effect of maternal folate status on the fetal central nervous system (CNS) is well recognized, while evidence is emerging that such an association also exists between fathers and offspring. The biological functions of telomeres and telomerase are also related to neural cell proliferation and apoptosis. The study aimed to investigate the effect of parental folate deficiency on the proliferation and apoptosis of neural stem cells (NSCs) in neonatal offspring and the role of telomeres in this effect. In this study, rats were divided into four groups: maternal folate-deficient and paternal folate-deficient diet (D-D) group; maternal folate-deficient and paternal folate-normal diet (D-N) group; maternal folate-normal and paternal folate-deficient diet (N-D) group; and the maternal folate-normal and paternal folate-normal diet (N-N) group. The offspring were sacrificed at postnatal day 0 (PND0), and NSCs were cultured from the hippocampus and striatum tissues of offspring for future assay. The results revealed that parental folate deficiency decreased folate levels, increased homocysteine (Hcy) levels of the offspring's brain tissue, inhibited proliferation, increased apoptosis, shortened telomere length, and aggravated telomere attrition of offspring NSCs in vivo and in vitro. In vitro experiments further showed that offspring NSCs telomerase activity was inhibited due to parental folate deficiency. In conclusion, parental folate deficiency inhibited the proliferation and increased apoptosis of offspring NSCs, maternal folate deficiency had more adverse effects than paternal, and the mechanisms may involve the telomere attrition of NSCs.


Assuntos
Deficiência de Ácido Fólico , Células-Tronco Neurais , Telomerase , Animais , Ratos , Encurtamento do Telômero , Telômero , Ácido Fólico/farmacologia , Apoptose , Proliferação de Células
13.
Mol Neurobiol ; 60(8): 4169-4183, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37046137

RESUMO

Telomeres, also known as the "protective caps" of our chromosomes, shorten with each cell cycle due to the end replication problem. This process, termed telomere attrition, is associated with many age-related disorders, such as Alzheimer's disease (AD). Despite the numerous studies conducted in this field, the role of telomere attrition in the onset of the disease remains unclear. To investigate the causal relationship between short telomeres and AD, this review aims to highlight the primary factors that regulate telomere length and maintain its integrity, with an additional outlook on the role of oxidative stress, which is commonly associated with aging and molecular damage. Although some findings thus far might be contradictory, telomere attrition likely plays a crucial role in the progression of AD due to its close association with oxidative stress. The currently available treatments for AD are only symptomatic without affecting the progression of the disease. The components of telomere biology discussed in this paper have previously been studied as an alternative treatment option for several diseases and have exhibited promising in vitro and in vivo results. Hence, this should provide a basis for future research to develop a potential therapeutic strategy for AD. (Created with BioRender.com).


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Telômero/genética , Telômero/metabolismo , Envelhecimento/genética , Encurtamento do Telômero , Biologia
14.
Eur J Nutr ; 62(4): 1867-1878, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36859557

RESUMO

PURPOSE: Previous evidence indicated anti-ageing potential of docosahexaenoic acid (DHA), but the underlying mechanism remains unclear. We investigated protective effect of DHA on telomere attrition and lipid disturbance in male mice with premature ageing caused by telomerase deficiency. METHODS: Wild-type (WT) and fourth-generation telomerase-deficient (G4 Terc-/-, Terc knockout, KO) male mice (C57BL/6, 2 months old) were fed control diet (WT-C and KO-C groups) or DHA-enriched diet containing 0.80% DHA by weight (WT-DHA and KO-DHA groups) for 10 months. The ageing phenotypes and metabolic level [carbon dioxide emission, oxygen consumption, and respiratory exchange ratio (RER)] were assessed at the end of the experiment. Telomere length in various tissues and the hepatic gene and protein expression for regulating lipid synthesis and lipolysis were measured. Data were tested using one- or two-factor ANOVA. RESULTS: In KO male mice, DHA prevented weight loss, corrected high RER, and reduced fat loss. Telomere shortening was reduced by 22.3%, 25.5%, and 13.5% in heart, liver, and testes of the KO-DHA group compared with those in the KO-C group. The KO-DHA group exhibited higher gene transcription involved in glycerol-3-phosphate pathway [glycerol-3-phosphate acyltransferase (Gpat)], lower gene expression of ß-oxidation [carnitine palmitoyltransferase 1a (Cpt1a)], and upregulation of proteins in lipid synthesis [mammalian target of rapamycin complex 1 (mTORC1) and sterol responsive element binding protein 1 (SREBP1)] in liver than the KO-C group. CONCLUSION: Long-term DHA intervention attenuates telomere attrition and promotes lipid synthesis via the tuberous sclerosis complex 2 (TSC2)-mTORC1-SREBP1 pathway in KO male mice.


Assuntos
Ácidos Docosa-Hexaenoicos , Telomerase , Animais , Camundongos , Masculino , Ácidos Docosa-Hexaenoicos/farmacologia , Telomerase/genética , Glicerol , Camundongos Endogâmicos C57BL , Telômero , Fosfatos , Camundongos Knockout , Mamíferos/genética , Mamíferos/metabolismo
15.
Geroscience ; 45(4): 2213-2228, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36826621

RESUMO

Short telomeres are a defining feature of telomere biology disorders (TBDs), including dyskeratosis congenita (DC), for which there is no effective general cure. Patients with TBDs often experience bone marrow failure. NAD, an essential metabolic coenzyme, is decreased in models of DC. Herein, using telomerase reverse transcriptase null (Tert-/-) mice with critically short telomeres, we investigated the effect of NAD supplementation with the NAD precursor, nicotinamide riboside (NR), on features of health span disrupted by telomere impairment. Our results revealed that NR ameliorated body weight loss in Tert-/- mice and improved telomere integrity and telomere dysfunction-induced systemic inflammation. NR supplementation also mitigated myeloid skewing of Tert-/- hematopoietic stem cells. Furthermore, NR alleviated villous atrophy and inflammation in the small intestine of Tert-/- transplant recipient mice. Altogether, our findings support NAD intervention as a potential therapeutic strategy to enhance aspects of health span compromised by telomere attrition.


Assuntos
Disceratose Congênita , Transplante de Células-Tronco Hematopoéticas , Humanos , Animais , Camundongos , NAD , Telômero/metabolismo , Disceratose Congênita/genética , Disceratose Congênita/metabolismo , Inflamação
16.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674498

RESUMO

The relationship between sleep and micronutrients, including magnesium, is implicated in its regulation. The effects of low magnesium and other micronutrients on sleep disruption and telomere loss are not well understood. The present study was carried out in 172 healthy elderly subjects from South Australia. Plasma micronutrients including magnesium were measured. Each participant provided information about their sleep hours (<7 h or ≥7 h). Lymphocyte telomere length (TL) was measured by real-time qPCR assay. Plasma magnesium level was significantly low in subjects who sleep less than 7 h (p = 0.0002). TL was significantly shorter in people who are low in magnesium and sleep less than 7 h (p = 0.01). Plasma homocysteine (Hcy) is negatively associated with magnesium (r = −0.299; p < 0.0001). There is a significant interaction effect of magnesium and Hcy on sleep duration (p = 0.04) and TL (p = 0.003). Our results suggest that inadequate magnesium levels have an adverse impact on sleep and telomere attrition rate in cognitively normal elderly people, and this may be exacerbated by low levels of vitamin B12 and folate that elevate Hcy concentration.


Assuntos
Magnésio , Vitamina B 12 , Humanos , Idoso , Austrália , Ácido Fólico , Telômero/genética , Sono , Micronutrientes , Homocisteína
17.
Biol Res Nurs ; 25(2): 227-239, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36222081

RESUMO

Background and Purpose: Cognitive, affective, and physical symptoms and alterations in their function are seen across chronic illnesses. Data suggest that environmental, psychological, and physiological factors contribute to symptom experience, potentially through loss of telomeres (telomere attrition), structures at the ends of chromosomes. Telomere length is affected by many factors including environmental (e.g., exercise, diet, smoking) and physiological (e.g., response to stress), as well as from oxidative damage and inflammation that occurs in many disease processes. Moreover, telomere attrition is associated with chronic disease (cancer, cardiovascular disease, Alzheimer's disease) and predicts higher morbidity and mortality rates. However, findings are inconsistent among telomere roles and relationships with health outcomes. This article aims to synthesize the current state-of-the-science of telomeres and their relationship with cognitive, affective, and physical function and symptoms. Method: A comprehensive literature search was performed in two databases: CINAHL and PUBMED. A total of 33 articles published between 2000 and 2022 were included in the final analysis. Results: Telomere attrition is associated with various changes in cognitive, affective, and physical function and symptoms. However, findings are inconsistent. Interventional studies (e.g., meditation and exercise) may affect telomere attrition, potentially impacting health outcomes. Conclusion: Nursing research and practice are at the forefront of furthering the understanding of telomeres and their relationships with cognitive, affective, and physical function and symptoms. Future interventions targeting modifiable risk factors may be developed to improve health outcomes across populations.


Assuntos
Dieta , Estresse Oxidativo , Humanos , Fatores de Risco , Cognição/fisiologia , Telômero
18.
Front Aging Neurosci ; 14: 1002138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533172

RESUMO

Aging is an inevitable progressive decline in physiological organ function that increases the chance of disease and death. The renin-angiotensin system (RAS) is involved in the regulation of vasoconstriction, fluid homeostasis, cell growth, fibrosis, inflammation, and oxidative stress. In recent years, unprecedented advancement has been made in the RAS study, particularly with the observation that angiotensin II (Ang II), the central product of the RAS, plays a significant role in aging and chronic disease burden with aging. Binding to its receptors (Ang II type 1 receptor - AT1R in particular), Ang II acts as a mediator in the aging process by increasing free radical production and, consequently, mitochondrial dysfunction and telomere attrition. In this review, we examine the physiological function of the RAS and reactive oxygen species (ROS) sources in detail, highlighting how Ang II amplifies or drives mitochondrial dysfunction and telomere attrition underlying each hallmark of aging and contributes to the development of aging and age-linked diseases. Accordingly, the Ang II/AT1R pathway opens a new preventive and therapeutic direction for delaying aging and reducing the incidence of age-related diseases in the future.

19.
Front Aging ; 3: 1021051, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304436

RESUMO

Background: Short telomere length (TL) and telomere attrition (TA) have been associated with age-related diseases. Objective: We assessed whether a genetic risk score for short TL (GRS-TL) combining seven TL-associated genetic variants identified in a European-ancestry genome-wide association study (GWAS) was associated with TL and TA over 10 years. Methods: Relative TL (T/S ratio) was measured by the quantitative polymerase chain reaction method for a sample of white, African American, and Hispanic participants, who attended Exam 1 and/or 5 of the Multi-Ethnic Study of Atherosclerosis (MESA). Our final sample included 1,227 participants for the TL analysis and 1,138 for the TA analysis. Participants were 45-84 years at Exam 1. We used a linear mixed effects model and adjusted for age, sex, and population structure. Models were stratified by race/ethnicity. Results: In the TL analysis, higher GRS-TL significantly predicted shorter TL (estimates = -0.18 [S.E. = 0.08], p = 0.02 for white; -0.18 [0.07], p < 0.01 for African American; and -0.13 [0.05], p = 0.02 for Hispanic) in fully adjusted models. In the TA analysis, no association between GRS-TL and TA over 10 years was found. Conclusion: Although GRS-TL was developed in European-ancestry populations, it was significantly associated with TL (but not TA) in all three race/ethnic groups examined.

20.
Cancer ; 128(16): 3109-3119, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35670038

RESUMO

BACKGROUND: Cancer treatments are thought to accelerate biological aging, although this trajectory is highly variable. Depression is more prevalent in breast cancer survivors and is thought to be a vulnerability factor for biological aging. A lifetime history of depression and cumulative lifetime number of depression episodes could hypothetically be associated with an accelerated rate of biological aging as indexed by attrition of telomere length in a prospective cohort of breast cancer survivors who were not currently depressed. METHODS: Breast cancer survivors (n = 206) without current depression were recruited from a large community-based health plan and were assessed for depression history by a structured diagnostic interview. Blood specimens were provided at baseline and every 8 months over 24 months to measure peripheral blood mononuclear cell (PBMC) telomere length. Mixed linear models examined associations of depression history and number of depression episodes with change in telomere length, adjusting for demographic, comorbidity, and cancer-specific factors. RESULTS: In the fully adjusted model, depression history predicted attrition of PBMC telomere length over 24 months (Beta [SE] = -.006 [.002], p = .001). Greater number of depressive episodes over the lifetime was also associated with accelerated attrition of PBMC telomere length over 24 months (Beta [SE] = -.004 [.001], p = .001). CONCLUSIONS: In breast cancer survivors without current depression, telomere attrition over 24 months was greatest in those with a lifetime depression history, particularly those with the greatest number of episodes of major depressive disorder over their lifetime. Depression history and its cumulative burden may contribute to accelerated biological aging, with implications for risk of morbidity and mortality in breast cancer survivors.


Assuntos
Neoplasias da Mama , Sobreviventes de Câncer , Transtorno Depressivo Maior , Neoplasias da Mama/genética , Estudos de Coortes , Depressão/epidemiologia , Feminino , Humanos , Leucócitos Mononucleares , Estudos Longitudinais , Estudos Prospectivos , Telômero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA