Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 243(2): 705-719, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38803110

RESUMO

Understanding the genetic basis of how plants defend against pathogens is important to monitor and maintain resilient tree populations. Swiss needle cast (SNC) and Rhabdocline needle cast (RNC) epidemics are responsible for major damage of forest ecosystems in North America. Here we investigate the genetic architecture of tolerance and resistance to needle cast diseases in Douglas-fir (Pseudotsuga menziesii) caused by two fungal pathogens: SNC caused by Nothophaeocryptopus gaeumannii, and RNC caused by Rhabdocline pseudotsugae. We performed case-control genome-wide association analyses and found disease resistance and tolerance in Douglas-fir to be polygenic and under strong selection. We show that stomatal regulation as well as ethylene and jasmonic acid pathways are important for resisting SNC infection, and secondary metabolite pathways play a role in tolerating SNC once the plant is infected. We identify a major transcriptional regulator of plant defense, ERF1, as the top candidate for RNC resistance. Our findings shed light on the highly polygenic architectures underlying fungal disease resistance and tolerance and have important implications for forestry and conservation as the climate changes.


Assuntos
Ascomicetos , Resistência à Doença , Estudo de Associação Genômica Ampla , Doenças das Plantas , Pseudotsuga , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Pseudotsuga/genética , Pseudotsuga/microbiologia , Pseudotsuga/fisiologia , Ascomicetos/fisiologia , Ascomicetos/patogenicidade , Árvores/genética , Adaptação Fisiológica/genética , Herança Multifatorial , Regulação da Expressão Gênica de Plantas , Genes de Plantas
2.
Front Plant Sci ; 15: 1375958, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766471

RESUMO

Carbohydrate reserves play a vital role in plant survival during periods of negative carbon balance. Under a carbon-limited scenario, we expect a trade-offs between carbon allocation to growth, reserves, and defense. A resulting hypothesis is that carbon allocation to reserves exhibits a coordinated variation with functional traits associated with the 'fast-slow' plant economics spectrum. We tested the relationship between non-structural carbohydrates (NSC) of tree organs and functional traits using 61 angiosperm tree species from temperate and tropical forests with phylogenetic hierarchical Bayesian models. Our results provide evidence that NSC concentrations in stems and branches are decoupled from plant functional traits. while those in roots are weakly coupled with plant functional traits. In contrast, we found that variation between NSC concentrations in leaves and the fast-slow trait spectrum was coordinated, as species with higher leaf NSC had trait values associated with resource conservative species, such as lower SLA, leaf N, and leaf P. We also detected a small effect of leaf habit on the variation of NSC concentrations in branches and roots. Efforts to predict the response of ecosystems to global change will need to integrate a suite of plant traits, such as NSC concentrations in woody organs, that are independent of the 'fast-slow' plant economics spectrum and that capture how species respond to a broad range of global change drivers.

3.
Bio Protoc ; 14(3): e4927, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38379829

RESUMO

Seeds ensure the growth of a new generation of plants and are thus central to maintaining plant populations and ecosystem processes. Nevertheless, much remains to be learned about seed biology and responses of germinated seedlings to environmental challenges. Experiments aiming to close these knowledge gaps critically depend on the availability of healthy, viable seeds. Here, we report a protocol for the collection of seeds from plants in the genus Populus. This genus comprises trees with a wide distribution in temperate forests and with economic relevance, used as scientific models for perennial plants. As seed characteristics can vary drastically between taxonomic groups, protocols need to be tailored carefully. Our protocol takes the delicate nature of Populus seeds into account. It uses P. deltoides as an example and provides a template to optimize bulk seed extraction for other Populus species and plants with similar seed characteristics. The protocol is designed to only use items available in most labs and households and that can be sterilized easily. The unique characteristics of this protocol allow for the fast and effective extraction of high-quality seeds. Here, we report on seed collection, extraction, cleaning, storage, and viability tests. Moreover, extracted seeds are well suited for tissue culture and experiments under sterile conditions. Seed material obtained with this protocol can be used to further our understanding of tree seed biology, seedling performance under climate change, or diversity of forest genetic resources. Key features • Populus species produce seeds that are small, delicate, non-dormant, with plenty of seed hair. Collection of seed material needs to be timed properly. • Processing, seed extraction, seed cleaning, and storage using simple, sterilizable laboratory and household items only. Obtained seeds are pure, high quality, close to 100% viability. • Seeds work well in tissue culture and in experiments under sterile conditions. • Extractability, speed, and seed germination were studied and confirmed for Populus deltoides as an example. • Can also serve as template for bulk seed collection from other Populus species and plant groups that produce delicate seeds (with no or little modifications). Graphical overview.

4.
New Phytol ; 241(6): 2395-2409, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38247230

RESUMO

Tree seedlings from populations native to drier regions are often assumed to be more drought tolerant than those from wetter provenances. However, intraspecific variation in drought tolerance has not been well-characterized despite being critical for developing climate change mitigation and adaptation strategies, and for predicting the effects of drought on forests. We used a large-scale common garden drought-to-death experiment to assess range-wide variation in drought tolerance, measured by decline of photosynthetic efficiency, growth, and plastic responses to extreme summer drought in seedlings of 73 natural populations of the two main varieties of Douglas-fir (Pseudotsuga menziesii var. menziesii and var. glauca). Local adaptation to drought was weak in var. glauca and nearly absent in menziesii. Var. glauca showed higher tolerance to drought but slower growth than var. menziesii. Clinal variation in drought tolerance and growth species-wide was mainly associated with temperature rather than precipitation. A higher degree of plasticity for growth was observed in var. menziesii in response to extreme drought. Genetic variation for drought tolerance in seedlings within varieties is maintained primarily within populations. Selective breeding within populations may facilitate adaptation to drought more than assisted gene flow.


Assuntos
Secas , Pseudotsuga , Plântula , Florestas , Árvores , Fotossíntese
5.
Tree Physiol ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198739

RESUMO

Understanding the within-tree variability of non-structural carbohydrates (NSC) is crucial for interpreting point measurements and calculating whole-tree carbon balances. Yet, little is known about how the vertical light gradient within tree crowns influences branch NSC concentrations and dynamics. We measured NSC concentrations, irradiance and key leaf traits in uppermost, sun-exposed and lowest, shaded branches in the crowns of mature, temperate trees from nine species with high temporal resolution throughout one growing season. Measurements from two additional years allowed us to test the generality of our findings among climatically contrasting years. Despite the vertical light gradient, we found very similar seasonal NSC dynamics and concentrations between sun and shade branches in most species. This can at least partially be explained by acclimations in SLA and photosynthetic leaf traits compensating the different light availability between the top and bottom canopy. Only in the ring-porous species Quercus and Fraxinus, starch refilling after budbreak was slower in lower branches. End-of-season NSC concentrations were similar between canopy positions and among observation years. Only Fagus had 40 and 29% lower starch concentrations by the end of the extremely dry year 2020, relative to the other two years. We show that NSC measured anywhere in a tree crown is often representative of the whole crown. Overall, our results suggest that carbon reserve dynamics in trees are largely insensitive to both microclimatic gradients and inter-annual climatic variation, and only deviate under severe carbon deficits, as was presumably the case with Fagus in our study.

6.
Plant Physiol Biochem ; 206: 108223, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043252

RESUMO

Freeze-thaw cycles (FTCs) limit the distribution and survival of temperate tree species. Tree species with different wood types coexist in temperate forests and are subjected to the same FTCs. It is essential to understand how these trees differentially cope with xylem hydraulic failure induced by FTCs in the field. The branch hydraulic traits and nonstructural carbohydrate concentration of six coexisting tree species in a temperate forest were measured from mid-winter to early spring when the FTCs occurred from January to April. The percentage loss of hydraulic conductivity (PLC) was lower, and the water potential inducing a 50% loss of hydraulic conductivity (P50) was more negative in tracheid trees than in ring- and diffuse-porous trees, suggesting tracheid trees with narrow tracheid diameters showed less vulnerable to embolism and provided a lower degree of hydraulic failure during FTCs (stronger resistance). Ring-porous trees always showed lower hydraulic conductivity and higher PLC and P50, and these traits did not change during FTCs, suggesting that they might lose the hydraulic functions in winter and abandon the last year xylem. The P50 in diffuse-porous increased after several FTCs (frost fatigue), but that in tracheid species continued to increase (or even decrease) until the end of FTCs (69 cycles), suggesting that tracheid trees were less sensitive to frost fatigue than diffuse-porous trees. Soluble sugar concentration in deciduous trees negatively correlated with PLC at the end of FTCs, indicating that the effect of soluble sugar on refilling embolism occurred in early spring. While the soluble sugar concentration of deciduous trees decreased, that of two evergreen tracheid trees gradually increased, possibly due to the winter photosynthesis of evergreen leaves. Our results suggest temperate trees adopt different strategies to cope with the same FTCs. These findings enrich the understanding of plant hydraulics and carbon physiology in winter and provide insights into the response of different species coexisting in temperate forests under climate change.


Assuntos
Embolia , Árvores , Árvores/fisiologia , Florestas , Madeira , Xilema/fisiologia , Água , Folhas de Planta/fisiologia , Açúcares
7.
Sci Total Environ ; 905: 166906, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37689186

RESUMO

Climate change shifts tree growth phenology and dynamics in temperate forests. However, there is still little information on how warming climate changes intra-annual growth patterns and how these changes affect the productivity and carbon uptake of temperate trees. To address this knowledge gap, we used high-precision growth data from automatic dendrometers to quantify the impacts of unusually warm weather in 2022 (hot year) on growth phenology, dynamics and aboveground biomass (AGB) production in eight common temperate species (both conifers and broadleaved) in the Czech Republic. Mixed-effect models were used to investigate inter-annual changes in the start, end, and length of the growing season and intra-annual growth dynamics. We also modelled how changes in growth phenology, growth rates, and tree size affected yearly AGB production of individual trees. In the hot year, the growth started 5 days earlier, peaked 22 days earlier and ended 20 days earlier than in the climatically normal year, resulting in a shorter growing season with fewer growing days. AGB production decreased 36 % in the hot year, mainly due to fewer growing days and lower maximum growth rates, but with significant variation among tested species. The decline in AGB production in the hot year was most significant in the most productive species, which were also the species with the greatest reduction in the number of growing days. Tree size strongly enhanced AGB production, but its effect did not change with climate variation. Our findings suggest that climate change is likely to advance but also shorten the growing season of temperate trees, resulting in lower biomass production and carbon uptake. The results also indicate that the fast-growing and highly productive temperate tree species will have their growth reduced most by climate change, which will increasingly limit their high carbon sequestration potential.


Assuntos
Traqueófitas , Árvores , Florestas , Biomassa , Mudança Climática , Carbono
8.
Ann Bot ; 129(6): 679-696, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35390122

RESUMO

BACKGROUND AND AIMS: Dormant resting buds are frequently regarded as static units, with protective cataphylls on the outside and embryonic foliage leaves on the inside. How the presence of cataphylls influences the dynamic, cyclical, annually repeating sequence of leaf forms that a resting bud gives rise to has rarely been interrogated. To examine the connection between dormant structure and growing-season development, we compare the complete seasonal heteroblastic sequence of leaf forms of six species of temperate Juglandaceae with distinctly different vegetative resting bud structures. These include buds with cataphylls; buds without cataphylls; and buds with caducous cataphylls that are lost before the onset of winter. METHODS: In a common garden setting over a 7-month growing season, the dimensions of 2249 individual vegetative metamers were tracked from first exposure to abscission along the shoots of saplings and mature trees. The timing of metamer initiation within terminal buds was investigated using micro-CT scanning. Character state transitions of resting bud types were estimated using a phylogenetic tree of Juglandaceae. KEY RESULTS: The presence of cataphylls within a heteroblastic sequence is associated with a single cohort of foliage leaves that flush and abscise synchronously. This growing pattern is highly determinate, with next year's terminal-bud cataphylls already initiated before spring leaf out. In contrast, in sequences without cataphylls, shorter-lived foliage leaves appear and abscise in a staggered fashion. Despite these differences in leaf demography, all examined heteroblastic sequences produce a series of small, caducous leaf forms that precede terminal bud set. CONCLUSIONS: The ubiquity of caducous leaf forms in Juglandoideae may point to the importance of shoot tip protection far beyond the dormant season. In addition, the presence or absence of cataphylls in resting buds is indicative of distinct shoot ontogenetic patterns, and functional strategies, in summer.


Assuntos
Folhas de Planta , Humanos , Filogenia , Folhas de Planta/anatomia & histologia , Brotos de Planta , Estações do Ano
9.
Ann Bot ; 129(5): 567-582, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35136925

RESUMO

BACKGROUND AND AIMS: Petioles are important plant organs connecting stems with leaf blades and affecting light-harvesting ability of the leaf as well as transport of water, nutrients and biochemical signals. Despite the high diversity in petiole size, shape and anatomy, little information is available regarding their structural adaptations across evolutionary lineages and environmental conditions. To fill this knowledge gap, we investigated the variation of petiole morphology and anatomy of mainly European woody species to better understand the drivers of internal and external constraints in an evolutionary context. METHODS: We studied how petiole anatomical features differed according to whole-plant size, leaf traits, thermal and hydrological conditions, and taxonomic origin in 95 shrubs and trees using phylogenetic distance-based generalized least squares models. KEY RESULTS: Two major axes of variation were related to leaf area and plant size. Larger and softer leaves are found in taller trees of more productive habitats. Their petioles are longer, with a circular outline and are anatomically characterized by the predominance of sclerenchyma, larger vessels, interfascicular areas with fibres and indistinct phloem rays. In contrast, smaller and tougher leaves are found in shorter trees and shrubs of colder or drier habitats. Their petioles have a terete outline, phloem composed of small cells and radially arranged vessels, fibreless xylem and lamellar collenchyma. Individual anatomical traits were linked to different internal and external drivers. Petiole length and vessel diameter increase with increasing leaf blade area. Collenchyma becomes absent with increasing temperature, and petiole outline becomes polygonal with increasing precipitation. CONCLUSIONS: We conclude that species' temperature and precipitation optima, plant height, and leaf area and thickness exerted a significant control on petiole anatomical and morphological structures not confounded by phylogenetic inertia. Species with different evolutionary histories but similar thermal and hydrological requirements have converged to similar petiole anatomical structures.


Assuntos
Folhas de Planta , Xilema , Anatomia Comparada , Floema , Filogenia , Folhas de Planta/anatomia & histologia , Plantas , Xilema/anatomia & histologia
10.
Glob Chang Biol ; 27(22): 5806-5817, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34431180

RESUMO

Spring phenology of temperate forest trees has advanced substantially over the last decades due to climate warming, but this advancement is slowing down despite continuous temperature rise. The decline in spring advancement is often attributed to winter warming, which could reduce chilling and thus delay dormancy release. However, mechanistic evidence of a phenological response to warmer winter temperatures is missing. We aimed to understand the contrasting effects of warming on plants leaf phenology and to disentangle temperature effects during different seasons. With a series of monthly experimental warming by ca. 2.4°C from late summer until spring, we quantified phenological responses of forest tree to warming for each month separately, using seedlings of four common European tree species. To reveal the underlying mechanism, we tracked the development of dormancy depth under ambient conditions as well as directly after each experimental warming. In addition, we quantified the temperature response of leaf senescence. As expected, warmer spring temperatures led to earlier leaf-out. The advancing effect of warming started already in January and increased towards the time of flushing, reaching 2.5 days/°C. Most interestingly, however, warming in October had the opposite effect and delayed spring phenology by 2.4 days/°C on average; despite six months between the warming and the flushing. The switch between the delaying and advancing effect occurred already in December. We conclude that not warmer winters but rather the shortening of winter, i.e., warming in autumn, is a major reason for the decline in spring phenology.


Assuntos
Mudança Climática , Clima , Folhas de Planta , Estações do Ano , Temperatura , Árvores
11.
Glob Chang Biol ; 27(22): 5934-5949, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34363285

RESUMO

Climate change impacts on the structure and function of ecosystems will worsen public health issues like allergic diseases. Birch trees (Betula spp.) are important sources of aeroallergens in Central and Northern Europe. Birches are vulnerable to climate change as these trees are sensitive to increased temperatures and summer droughts. This study aims to examine the effect of climate change on airborne birch pollen concentrations in Central Europe using Bavaria in Southern Germany as a case study. Pollen data from 28 monitoring stations in Bavaria were used in this study, with time series of up 30 years long. An integrative approach was used to model airborne birch pollen concentrations taking into account drivers influencing birch tree abundance and birch pollen production and projections made according to different climate change and socioeconomic scenarios. Birch tree abundance is projected to decrease in parts of Bavaria at different rates, depending on the climate scenario, particularly in current centres of the species distribution. Climate change is expected to result in initial increases in pollen load but, due to the reduction in birch trees, the amount of airborne birch pollen will decrease at lower altitudes. Conversely, higher altitude areas will experience expansions in birch tree distribution and subsequent increases in airborne birch pollen in the future. Even considering restrictions for migration rates, increases in pollen load are likely in Southwestern areas, where positive trends have already been detected during the last three decades. Integrating models for the distribution and abundance of pollen sources and the drivers that control birch pollen production allowed us to model airborne birch pollen concentrations in the future. The magnitude of changes depends on location and climate change scenario.


Assuntos
Betula , Mudança Climática , Alérgenos , Ecossistema , Pólen
12.
New Phytol ; 232(2): 523-536, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34028040

RESUMO

Resting bud cataphylls are often assumed to play an essential protective role in winter due to their widespread presence among temperate, woody plants. This view is challenged by our documentation of significant numbers of temperate woody angiosperm taxa with naked buds that overwinter without cataphyll protection. We inventoried temperate, woody angiosperm taxa reported to have resting buds without cataphyll protection in winter and for the first time characterised the morphological and functional diversity of naked buds. Using this new classification of bud types, the taxonomic and geographic distributions of taxa with naked buds were summarised and relationships between plant functional traits and bud type were investigated. Naked buds are not, as long presumed, markedly rare in temperate, woody floras. They occur in at least 87 genera in 42 families throughout the angiosperm phylogeny in various morphologically distinct manifestations. The geographic distribution of species with naked buds in temperate areas was found to be associated with summer precipitation, but not with winter climatic variables. Resting bud structure is not necessarily a trait optimised solely for winter survival. A taxon's bud composition may be influenced by factors such as biogeographic history and ontogenetic pattern of leaf formation over the growing season.


Assuntos
Magnoliopsida , Folhas de Planta , Plantas , Estações do Ano , Madeira
14.
Proc Natl Acad Sci U S A ; 116(17): 8431-8436, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30962371

RESUMO

Temperate species experienced dramatic range reductions during the Last Glacial Maximum, yet refugial populations from which modern populations are descended have never been precisely located. Climate-based models identify only broad areas of potential habitat, traditional phylogeographic studies provide poor spatial resolution, and pollen records for temperate forest communities are difficult to interpret and do not provide species-level taxonomic resolution. Here we harness signals of range expansion from large genomic datasets, using a simulation-based framework to infer the precise latitude and longitude of glacial refugia in two widespread, codistributed hickories (Carya spp.) and to quantify uncertainty in these estimates. We show that one species likely expanded from close to ice sheet margins near the site of a previously described macrofossil for the genus, highlighting support for the controversial notion of northern microrefugia. In contrast, the expansion origin inferred for the second species is compatible with classic hypotheses of distant displacement into southern refugia. Our statistically rigorous, powerful approach demonstrates how refugia can be located from genomic data with high precision and accuracy, addressing fundamental questions about long-term responses to changing climates and providing statistical insight into longstanding questions that have previously been addressed primarily qualitatively.


Assuntos
Genoma de Planta/genética , Camada de Gelo , Árvores , Teorema de Bayes , Clima , Ecossistema , Fósseis , Genômica , Modelos Biológicos , América do Norte , Filogeografia , Sudeste dos Estados Unidos , Texas , Árvores/classificação , Árvores/genética , Árvores/fisiologia
15.
New Phytol ; 221(3): 1466-1477, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30368825

RESUMO

Despite the importance of nonstructural carbohydrates (NSC) for growth and survival in woody plants, we know little about whole-tree NSC storage. The conventional theory suggests that NSC reserves will increase over the growing season and decrease over the dormant season. Here, we compare storage in five temperate tree species to determine the size and seasonal fluctuation of whole-tree total NSC pools as well as the contribution of individual organs. NSC concentrations in the branches, stemwood, and roots of 24 trees were measured across 12 months. We then scaled up concentrations to the whole-tree and ecosystem levels using allometric equations and forest stand inventory data. While whole-tree total NSC pools followed the conventional theory, sugar pools peaked in the dormant season and starch pools in the growing season. Seasonal depletion of total NSCs was minimal at the whole-tree level, but substantial at the organ level, particularly in branches. Surprisingly, roots were not the major storage organ as branches stored comparable amounts of starch throughout the year, and root reserves were not used to support springtime growth. Scaling up NSC concentrations to the ecosystem level, we find that commonly used, process-based ecosystem and land surface models all overpredict NSC storage.


Assuntos
Carboidratos/química , Estações do Ano , Árvores/metabolismo , Biomassa , Ecossistema , Especificidade da Espécie , Amido/metabolismo , Açúcares/metabolismo
16.
Mol Ecol ; 27(5): 1138-1154, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29412519

RESUMO

Reconstructing the colonization and demographic dynamics that gave rise to extant forests is essential to forecasts of forest responses to environmental changes. Classical approaches to map how population of trees changed through space and time largely rely on pollen distribution patterns, with only a limited number of studies exploiting DNA molecules preserved in wooden tree archaeological and subfossil remains. Here, we advance such analyses by applying high-throughput (HTS) DNA sequencing to wood archaeological and subfossil material for the first time, using a comprehensive sample of 167 European white oak waterlogged remains spanning a large temporal (from 550 to 9,800 years) and geographical range across Europe. The successful characterization of the endogenous DNA and exogenous microbial DNA of 140 (~83%) samples helped the identification of environmental conditions favouring long-term DNA preservation in wood remains, and started to unveil the first trends in the DNA decay process in wood material. Additionally, the maternally inherited chloroplast haplotypes of 21 samples from three periods of forest human-induced use (Neolithic, Bronze Age and Middle Ages) were found to be consistent with those of modern populations growing in the same geographic areas. Our work paves the way for further studies aiming at using ancient DNA preserved in wood to reconstruct the micro-evolutionary response of trees to climate change and human forest management.


Assuntos
DNA Antigo/química , Análise de Sequência de DNA/métodos , Madeira , Biodiversidade , Evolução Biológica , Mudança Climática , Florestas , Quercus/genética
17.
New Phytol ; 216(1): 113-123, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28737248

RESUMO

We investigated how deciduous trees can adjust their freezing resistance in response to temperature during the progress of the ecodormancy phase, from midwinter to budburst. We regularly sampled twigs of four different temperate deciduous tree species from January to the leaf-out date. Using computer-controlled freezers and climate chambers, the freezing resistance of buds was measured directly after sampling and also after the application of artificial hardening and dehardening treatments, simulating cold and warm spells. The thermal time to budburst in forcing conditions (c. 20°C) was also quantified at each sampling as a proxy for dormancy depth. Earlier flushing species showed higher freezing resistance than late flushing species at either similar bud development stage or similar dormancy depth. Overall, freezing resistance and its hardening and dehardening potential dramatically decreased during the progress of ecodormancy and became almost nil during budburst. Our results suggest that extreme cold events in winter are not critical for trees, as freezing resistance can be largely enhanced during this period. By contrast, the timing of budburst is a critical component of tree fitness. Our results provide quantitative values of the freezing resistance dynamics during ecodormancy, particularly valuable in process-based species distribution models.


Assuntos
Congelamento , Estações do Ano , Árvores/fisiologia , Análise de Variância , Dormência de Plantas/fisiologia , Especificidade da Espécie , Temperatura , Fatores de Tempo
19.
Am Nat ; 187(4): E83-92, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27028083

RESUMO

The relationship between large-scale gradients in species richness and functional diversity provides important information regarding the mechanisms driving patterns of biodiversity. A classic hypothesis in ecology is that strong interspecific interactions should result in an increase in the functional volume of assemblages as the species richness increases, whereas climatic constraints may result in no change in functional volume. Most research of this kind examines latitudinal gradients in species richness, but the results are likely confounded by underlying gradients in climate and phylogenetic composition. We take an alternative approach that examines functional richness across a tree species richness anomaly where species richness doubles from Europe to eastern North America. The results demonstrate that the functional richness on both continents saturates at a similar point as species richness increases and that the packing of functional space becomes tighter. Further, the species richness anomaly is driven primarily by genera unique to North America, but those genera contribute less than expected functional richness to the region, indicating a high level of redundancy with genera shared between the continents. Taken together, the results indicate that the species richness anomaly is associated with diversification within a climatically constrained trait space. More generally, the work demonstrates the power of utilizing species richness anomalies in biodiversity research, particularly when they are coupled with information regarding organismal function.


Assuntos
Biodiversidade , Árvores/classificação , Clima , Europa (Continente) , América do Norte , Filogeografia
20.
New Phytol ; 212(1): 259-68, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26847468

RESUMO

This paper presents highly unexpected paleobotanical data. Eight (14) C-accelerator mass spectrometry (AMS) dates of soil macrocharcoal pieces, identified taxonomically, indicate the presence of oak and beech in the Younger Dryas, and pine in the Allerød, in the northernmost low mountain range of Central Europe, the Harz Mountains, in Germany. If the presence of pine at such latitude and periods is not surprising, the presence of temperate-adapted trees is highly improbable, because they are assumed to have reached the area from a southern location several thousand years later. Two hypotheses are postulated to explain this record. Both are related to the warm periods of the Bølling and Allerød: the classically 'short' duration of this warm period makes the migration of the temperate trees from the identified refuge areas in the southern location implausible, and so the presence of intermediary microrefugia at a medium latitude in Central Europe is postulated; recent data reveal that the warm period of the Late Glacial phase was much longer than considered in the classical view and, thus, would be long enough for a northward migration of temperate-adapted trees. Although our dataset does not permit disentanglement of these hypotheses, it provides significant innovative insights for the biogeography of Central Europe.


Assuntos
Ecossistema , Árvores/fisiologia , Clima , Europa (Continente) , Sedimentos Geológicos/química , Filogeografia , Solo/química , Fatores de Tempo , Árvores/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA