Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(7): 2282-2288, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38345381

RESUMO

The rapid development of infrared spectroscopy, observational astronomy, and scanning near-field microscopy has been enabled by the emergence of sensitive mid- and far-infrared photodetectors. Superconducting hot-electron bolometers (HEBs), known for their exceptional signal-to-noise ratio and fast photoresponse, play a crucial role in these applications. While superconducting HEBs are traditionally crafted from sputtered thin films such as NbN, the potential of layered van der Waals (vdW) superconductors is untapped at THz frequencies. Here, we introduce superconducting HEBs made from few-layer NbSe2 microwires. By improving the interface between NbSe2 and metal leads, we overcome impedance mismatch with RF readout, enabling large responsivity THz detection (0.13 to 2.5 THz) with a minimal noise equivalent power of 7 pW/ Hz and nanosecond-range response time. Our work highlights NbSe2 as a promising platform for HEB technology and presents a reliable vdW assembly protocol for custom bolometer production.

2.
Sensors (Basel) ; 22(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36366183

RESUMO

Terahertz (THz) imaging is a powerful technique allowing us to explore non-conducting materials or their arrangements such as envelopes, packaging substances, and clothing materials in a nondestructive way. The direct implementation of THz imaging systems relies, on the one hand, on their convenience of use and compactness, minimized optical alignment, and low power consumption; on the other hand, an important issue remains the system cost and its figure of merit with respect to the image quality and recording parameters. In this paper, we report on the design and performance of an extraordinary low-cost THz imaging system relying on a InP Gunn diode emitter, paraffin wax optics, and commercially available GaAs high-electron-mobility transistors (HEMTs) with a gate length of 200 nm as the sensing elements in a room temperature environment. The design and imaging performance of the system at 94 GHz is presented, and the spatial resolution in the range of the illumination wavelength (∼3 mm) and contrast of nearly two orders of magnitude is determined. The operation of two models of the HEMTs of the same nominal 20 GHz cut-off frequency, but placed in different packages and printed circuit board layouts was evaluated at 94 GHz and 0.307 THz. The presence of two competing contributions-self-resistive mixing and radiation coupling through the antenna effects of the printed circuit boards-to the detected signal is revealed by the signal dependence on the gate-to-source voltage, resulting in a cross-sectional responsivity of 27 V/W and noise-equivalent power of 510 pW/Hz at 94 GHz. Further routes in the development of low-cost THz imaging systems in the range of EUR 100 are considered.

3.
Adv Mater ; 34(42): e2204621, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36043902

RESUMO

The electromagnetic spectrum between microwave and infrared light is termed the "terahertz (THz) gap," of which there is an urgent lack of feasible and efficient room-temperature (RT) THz detectors. Type-II Weyl semimetals (WSMs) have been predicted to host significant RT topological photoresponses in low-frequency regions, especially in the THz gap, well addressing the shortcomings of THz detectors. However, such devices have not been experimentally realized yet. Herein, a type-II WSM (NbIrTe4 ) is selected to fabricate THz detector, which exhibits a photoresponsivity of 5.7 × 104  V W-1 and a one-year air stability at RT. Such excellent THz-detection performance can be attributed to the topological effect of type-II WSM in which the effective mass of photogenerated electrons can be reduced by the large tilting angle of Weyl nodes to further improve mobility and photoresponsivity. Impressively, this device shows a giant intrinsic anisotropic conductance (σmax /σmin  = 339) and THz response (Iph-max /Iph-min  = 40.9), both of which are record values known. The findings open a new avenue for the realization of uncooled and highly sensitive THz detectors by exploring type-II WSM-based devices.

4.
Nanomedicine (Lond) ; 16(12): 1035-1047, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33970689

RESUMO

Aim: Further to our reports on chip-integrable uncooled terahertz microbolometer arrays, compatible with medium-scale semiconductor device fabrication processes, the possibility of the development of chip-integrable medical device is proposed here. Methods: The concept of graphene-based nanopatch antennas with design optimization by the finite element method (FEM) is explored. The high-frequency structure simulator (HFSS) utilized fine FEM solver for analyzing empirical mode decomposition preprocessing and for modeling and simulating graphene antennas. Results: Graphene nanopatch antennas exhibited tunable features with varying patch dimensions and dependence on substrate material permittivity. Conclusion: This work implements reconfigurable graphene nanopatch antenna compatible with terahertz microbolometer arrays. This design concept further develops on-chip medical devices for possible screening of cancer cell with terahertz image processing.


Assuntos
Grafite , Neoplasias , Diagnóstico por Imagem , Neoplasias/diagnóstico por imagem
5.
Adv Sci (Weinh) ; 7(5): 1902699, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32154074

RESUMO

Terahertz (THz) photon detection is of particular appealing for myriad applications, but it still lags behind efficient manipulation with electronics and photonics due to the lack of a suitable principle satisfying both high sensitivity and fast response at room temperature. Here, a new strategy is proposed to overcome these limitations by exploring the photothermoelectric (PTE) effect in an ultrashort (down to 30 nm) channel with black phosphorus as a photoactive material. The preferential flow of hot carriers is enabled by the asymmetric Cr/Au and Ti/Au metallization with the titled-angle evaporation technique. Most intriguingly, orders of magnitude field-enhancement beyond the skin-depth limit and photon absorption across a broadband frequency can be achieved. The PTE detector has excellent sensitivity of 297 V W-1, noise equivalent power less than 58 pW/Hz0.5, and response time below 0.8 ms, which is superior to other thermal-based detectors at room temperature. A rigorous comparison with existing THz detectors, together with verification by further optical-pumping and imaging experiments, substantiates the importance of the localized field effect in the skin-depth limit. The results allow solid understanding on the role of PTE effect played in the THz photoresponse, opening up new opportunities for developing highly sensitive THz detectors for addressing targeted applications.

6.
Med Phys ; 35(7Part3): 3415-3416, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28512907

RESUMO

Visualization and quantification of biological processes in mice, the preferred animal model in most preclinical studies, require the best possible spatial resolution in positron emission tomography (PET). A new 64-channel avalanche photodiode (APD) detector module was developed to achieve submillimeter spatial resolution for this purpose. The module consists of dual 4 × 8 APD arrays mounted in a custom ceramic holder. Individual APD pixels having an active area of 1.1 × 1.1 mm2 at a 1.2 mm pitch can be fitted to an 8 × 8 LYSO scintillator block designed to accommodate one-to-one coupling. An analog test board with four 16-channel preamplifier ASICs was designed to be interfaced with the existing LabPET digital processing electronics. At a standard APD operating bias, a mean energy resolution of 27.5 ± 0.6% was typically obtained at 511 keV with a relative standard deviation of 13.8% in signal amplitude for the 64 individual pixels. Crosstalk between pixels was found to be well below the typical lower energy threshold used for PET imaging applications. With two modules in coincidence, a global timing resolution of 5.0 ns FWHM was measured. Finally, an intrinsic spatial resolution of 0.8 mm FWHM was measured by sweeping a 22Na point source between two detector arrays. The proposed detector module demonstrates promising characteristics for dedicated mouse PET imaging at submillimiter resolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA