RESUMO
Pancreatic ductal adenocarcinoma (PDAC) relies heavily on neoangiogenesis for its progression, making early detection crucial. Here, LTZi-MHI148 (Letrozole inhibitor bonding with MHI-148 dye), a near-infrared (NIR) fluorescent agent is developed, to target RhoJ (Ras Homolog Family Member J), a protein expressed in neonatal vasculature, for both imaging and therapy of early PDAC. This agent is synthesized by conjugating Letrozole with MHI-148, exhibiting excellent NIR characteristics and photostability. In vitro studies showed that LTZi-MHI148 selectively accumulated within pancreatic cancer cells through Organic Anion Transporting Polypeptide (OATP) transporters and bound to cytoplasmic RhoJ. In vivo, the probe effectively targeted neoangiogenesis and Pancreatic Intraepithelial Neoplasias (PanINs) in various PDAC models, including the orthotopic, ectopic, spontaneous, and tamoxifen-induced tumors. Notably, LTZi-MHI148 detected preneoplastic PanIN lesions with Overexpressed RhoJ and active neoangiogenesis in both spontaneous and tamoxifen-induced PDAC murine models. Longitudinal imaging studies revealed that RhoJ-targeted neoangiogenesis tracks lesion progression, highlighting LTZi-MHI148's utility in monitoring disease progression. Furthermore, multiple LTZi-MHI148 administrations attenuated PanINs to PDAC progression, suggesting its potential as a therapeutic intervention. These findings underscore the translational potential of LTZi-MHI148 for the early detection and targeted therapy of PDAC, utilizing NIR-I/II imaging to monitor RhoJ overexpression in precancerous ductal neoplasia associated with neoangiogenesis.
RESUMO
Nucleic acids, because of their precise pairing and simple composition, have emerged as excellent materials for the formation of gels. The application of DNA hydrogels in the diagnosis and therapy of cancer has expanded significantly through research on the properties and functions of nucleic acids. Functional nucleic acids (FNAs) such as aptamers, Small interfering RNA (siRNA), and DNAzymes have been incorporated into DNA hydrogels to enhance their diagnostic and therapeutic capabilities. This review discusses various methods for forming DNA hydrogels, with a focus on pure DNA hydrogels. We then explore the innovative applications of DNA hydrogels in cancer diagnosis and therapy. DNA hydrogels have become essential biomedical materials, and this review provides an overview of current research findings and the status of DNA hydrogels in the diagnosis and therapy of cancer, while also exploring future research directions.
RESUMO
Many different types of nanoparticles have been suggested for tumor-targeted theranosis. However, most systems were prepared through a series of complicated processes and could not even overcome the blood-immune barriers. For the accurate diagnosis and effective treatment of cancers, herein we suggested the lipid micellar structure capturing quantum dot (QD) for cancer theranosis. The QD/lipid micelles (QDMs) were prepared using a simple self-assembly procedure and then conjugated with anti-epidermal growth factor receptor (EGFR) antibodies for tumor targeting. As a therapeutic agent, Bcl2 siRNA-cholesterol conjugates were loaded on the surface of QDMs. The EGFR-directed QDMs containing Bcl2 siRNA, so-called immuno-QDM/siBcl2 (iQDM/siBcl2), exhibited the more effective delivery of QDs and siBcl2 to target human colorectal cancer cells in cultures as well as in mouse xenografts. The effective in vivo targeting of iQDM/siBcl2 resulted in a more enhanced therapeutic efficacy of siBcl2 to the target cancer in mice. Based on the results, anti-EGFR QDM capturing therapeutic siRNA could be suggested as an alternative modality for tumor-targeted theranosis.
Assuntos
Receptores ErbB , Proteínas Proto-Oncogênicas c-bcl-2 , Pontos Quânticos , RNA Interferente Pequeno , Pontos Quânticos/química , Animais , Receptores ErbB/genética , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Humanos , RNA Interferente Pequeno/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Camundongos , Linhagem Celular Tumoral , Nanopartículas/química , Lipídeos/química , Nanomedicina Teranóstica/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , MicelasRESUMO
Nanoscale materials have demonstrated a very high potential in anticancer therapy by properly adjusting their functionalization and physicochemical properties. Herein, we report the synthesis of some novel vanadocene-loaded silica-based nanomaterials incorporating four different S-containing amino acids (penicillamine, methionine, captopril, and cysteine) and different fluorophores (rhodamine B, coumarin 343 or Alexa Fluor™ 647), which have been characterized by diverse solid-state spectroscopic techniques viz; FTIR, diffuse reflectance spectroscopies,13C and51V solid-state NMR spectroscopy, thermogravimetry and TEM. The analysis of the biological activity of the novel vanadocene-based nanostructured silicas showed that the materials containing cysteine and captopril aminoacids demonstrated high cytotoxicity and selectivity against triple negative breast cancer cells, making them very promising antineoplastic drug candidates. According to the biological results it seems that vanadium activity is connected to its incorporation through the amino acid, resulting in synergy that increases the cytotoxic activity against cancer cells of the studied materials presumably by increasing cell internalization. The results presented herein hold significant potential for future developments in mesoporous silica-supported metallodrugs, which exhibit strong cytotoxicity while maintaining low metal loading. They also show potential for theranostic applications highlighted by the analysis of the optical properties of the studied systems after incorporating rhodamine B, coumarin 343 (possible)in vitroanticancer analysis, or Alexa Fluor™ 647 (in vivostudies of cancer models).
Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Dióxido de Silício/química , Cisteína/uso terapêutico , Medicina de Precisão , Captopril/uso terapêutico , Nanopartículas/química , Antineoplásicos/química , PorosidadeRESUMO
Currently, many challenges are associated with hepatocellular carcinoma (HCC) as the failure of early diagnosis, and the lack of effective therapy. This study aimed to investigate the possible role of tuftelin 1 (TUFT 1) in the early diagnosis of HCC and evaluate the potential contribution of the TUFT 1/Ca+2 /phosphinositol 3 kinase (PI3K) pathway in dantrolene sodium (Dan) therapeutic outcomes. The study was performed on two sets of rats, the staging (30 rats) and treatment sets (80 rats). HCC was induced by a single dose of diethylnitrosamine (DENA). The hepatic content of TUFT 1 protein was assayed via western blot and immunohistochemistry (IHC), while PI3K, vascular endothelial growth factor (VEGF), Cyclin D1, and matrix-metalloproteinase-9 (MMP-9) contents were assessed using enzyme-linked immunosorbent assay. Hepatic and serum calcium were measured colorimetrically. Furthermore, the nuclear proliferation marker, (Ki-67), (Kiel [Ki] where the antibody was produced in the University Department of Pathology and the original clone number is 67)-expression was assessed by IHC. TUFT 1/Ca+2 /PI3K signaling pathway was progressively activated in the 3 studied stages of HCC with subsequent upregulation of angiogenesis, cell cycle, and metastasis. More interestingly, Dan led to TUFT 1/Ca+2 /PI3K pathway disruption by diminution of the hepatic contents of TUFT 1, calcium, PI3K, VEGF, Cyclin D1, and MMP-9 in a dose-dependent pattern. TUFT 1 can serve as a theranostic biomarker in HCC. Moreover, Dan exerted an antineoplastic effect against HCC via the interruption of TUFT 1/Ca+2 /PI3K pathway.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratos , Animais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Metaloproteinase 9 da Matriz/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ciclina D1 , Fosfatidilinositol 3-Quinases/metabolismo , Medicina de Precisão , Cálcio , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diagnóstico Precoce , Proliferação de Células , Linhagem Celular TumoralRESUMO
Five different silica nanoparticles functionalized with vitamin B12, a derivative of coumarin found in green plants and a minimum content of an organotin(IV) fragment (1-MSN-Sn, 2-MSN-Sn, 2-SBA-Sn, 2-FSPm-Sn and 2-FSPs-Sn), were identified as excellent anticancer agents against triple negative breast cancer, one of the most diagnosed and aggressive cancerous tumors, with very poor prognosis. Notably, compound 2-MSN-Sn shows selectivity for cancer cells and excellent luminescent properties detectable by imaging techniques once internalized. The same compound is also able to interact with and nearly eradicate biofilms of Staphylococcus aureus, the most common bacteria isolated from chronic wounds and burns, whose treatment is a clinical challenge. 2-MSN-Sn is efficiently internalized by bacteria in a biofilm state and destroys the latter through reactive oxygen species (ROS) generation. Its internalization by bacteria was also efficiently monitored by fluorescence imaging. Since silica nanoparticles are particularly suitable for oral or topical administration, and considering both its anticancer and antibacterial activity, 2-MSN-Sn represents a new dual-condition theranostic agent, based primarily on natural products or their derivatives and with only a minimum amount of a novel metallodrug.
RESUMO
This work highlights boosting the tumor targeting efficiency of epirubicin through loading on a new radionanosystem, based on the effective role of silver nanoparticles (AgNPs). Accordingly, PEGylated silver nanoparticles (PEG/AgNPs) were prepared in a size of 20.2 ± 0.1 nm. Additionally, epirubicin was loaded on PEG/AgNPs with a loading efficiency of 63 ± 3 %. Furthermore, both of PEG/AgNPs and EPI/PEG/AgNPs were radiolabeled with 131I isotope with radiolabeling yields of 85 ± 0.2 % and 90.3 ± 1 %, respectively. The in-vivo distribution of 131I-PEG/AgNPs and 131I-EPI/PEG/AgNPs were examined in healthy and tumor bearing mice models. Excitingly, 131I-EPI/PEG/AgNPs revealed a reticuloendothelial system (RES) avoidance and prolonged circulating time. In addition, 131I-EPI/PEG/AgNPs showed fast targeting of tumor site by 25.1 ± 0.1 %ID/g within 0.5 h after intravenous injection. Subsequently, the outcomes provided 131I-EPI/PEG/AgNPs as a new potential system for enhancement of tumor targeting and theranosis (therapy and/or imaging).
Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Camundongos , Animais , Epirubicina , Prata , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , PolietilenoglicóisRESUMO
A new series of theranostic silica materials based on fibrous silica particles acting as nanocarriers of two different cytotoxic agents, namely, chlorambucil and an organotin metallodrug have been prepared and structurally characterized. Besides the combined therapeutic activity, these platforms have been decorated with a targeting molecule (folic acid, to selectively target triple negative breast cancer) and a molecular imaging agent (Alexa Fluor 647, to enable their tracking both in vitro and in vivo). The in vitro behaviour of the multifunctional silica systems showed a synergistic activity of the two chemotherapeutic agents in the form of an enhanced cytotoxicity against MDA-MB-231 cells (triple negative breast cancer) as well as by a higher cell migration inhibition. Subsequently, the in vivo applicability of the siliceous nanotheranostics was successfully assessed by observing with in vivo optical imaging techniques a selective tumour accumulation (targeting ability), a marked inhibition of tumour growth paired to a marked antiangiogenic ability after 13 days of systemic administration, thus, confirming the enhanced theranostic activity. The systemic nanotoxicity was also evaluated by analyzing specific biochemical markers. The results showed a positive effect in form of reduced cytotoxicity when both chemotherapeutics are administered in combination thanks to the fibrous silica nanoparticles. Overall, our results confirm the promising applicability of these novel silica-based nanoplatforms as advanced drug-delivery systems for the synergistic theranosis of triple negative breast cancer.
Assuntos
Antineoplásicos , Nanopartículas , Neoplasias de Mama Triplo Negativas , Antineoplásicos/farmacologia , Humanos , Nanopartículas/uso terapêutico , Medicina de Precisão , Dióxido de Silício/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológicoRESUMO
Nowadays, a number of promising strategies are being developed that aim at combining diagnostic and therapeutic capabilities into clinically effective formulations. Thus, the combination of a modified release provided by an organic encapsulation and the intrinsic physico-chemical properties from an inorganic counterpart opens new perspectives in biomedical applications. Herein, a biocompatible magnetic lipid nanocomposite vehicle was developed through an efficient, green and simple method to simultaneously incorporate magnetic nanoparticles and an anticancer drug (doxorubicin) into a natural nano-matrix. The theranostic performance of the final magnetic formulation was validated in vitro and in vivo, in melanoma tumors. The systemic administration of the proposed magnetic hybrid nanocomposite carrier enhanced anti-tumoral activity through a synergistic combination of magnetic hyperthermia effects and antimitotic therapy, together with MRI reporting capability. The application of an alternating magnetic field was found to play a dual role, (i) acting as an extra layer of control (remote, on-demand) over the chemotherapy release and (ii) inducing a local thermal ablation of tumor cells. This combination of chemotherapy with thermotherapy establishes a synergistic platform for the treatment of solid malignant tumors under lower drug dosing schemes, which may realize the dual goal of reduced systemic toxicity and enhanced anti-tumoral efficacy.
RESUMO
Cancer is the second leading cause of death in the world, which is why it is so important to make an early and very precise diagnosis to obtain a good prognosis. Thanks to the combination of several imaging modalities in the form of the multimodal molecular imaging (MI) strategy, a great advance has been made in early diagnosis, in more targeted and personalized therapy, and in the prediction of the results that will be obtained once the anticancer treatment is applied. In this context, magnetic nanoparticles have been positioned as strong candidates for diagnostic agents as they provide very good imaging performance. Furthermore, thanks to their high versatility, when combined with other molecular agents (for example, fluorescent molecules or radioisotopes), they highlight the advantages of several imaging techniques at the same time. These hybrid nanosystems can be also used as multifunctional and/or theranostic systems as they can provide images of the tumor area while they administer drugs and act as therapeutic agents. Therefore, in this review, we selected and identified more than 160 recent articles and reviews and offer a broad overview of the most important concepts that support the synthesis and application of multifunctional magnetic nanoparticles as molecular agents in advanced cancer detection based on the multimodal molecular imaging approach.
RESUMO
Heterometallic drugs are emerging as a great alternative to conventional metallodrugs. Careful selection of different metallic fragments makes possible to enhance not only the therapeutic potential by a synergistic effect, but also to incorpore key features like traceability. Drugs that integrate traceability and therapy in one system are known as theranostic agents. In cancer research, theranostic agents are becoming increasingly important. They deliver crucial information regarding their biological interplay that can ultimately be used for optimization. The well-established therapeutic potential of PtII -, RuII - and AuI -based drugs combined with the outstanding optical properties of d6 transition metal complexes grant the delivery of traceable metallodrugs. These species can be easily fine-tuned through modification of their respective ligands to provide a new generation of drugs.
Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Humanos , Neoplasias/patologiaRESUMO
Cholangiocarcinoma (CCA) is a rare disease with poor outcomes and limited research efforts into novel treatment options. A systematic review of CCA biomarkers was undertaken to identify promising biomarkers that may be used for theranosis (therapy and diagnosis). MEDLINE/EMBASE databases (1996-2019) were systematically searched using two strategies to identify biomarker studies of CCA. The PANTHER Go-Slim classification system and STRING network version 11.0 were used to interrogate the identified biomarkers. The TArget Selection Criteria for Theranosis (TASC-T) score was used to rank identified proteins as potential targetable biomarkers for theranosis. The following proteins scored the highest, CA9, CLDN18, TNC, MMP9, and EGFR, and they were evaluated in detail. None of these biomarkers had high sensitivity or specificity for CCA but have potential for theranosis. This review is unique in that it describes the process of selecting suitable markers for theranosis, which is also applicable to other diseases. This has highlighted existing validated markers of CCA that can be used for active tumor targeting for the future development of targeted theranostic delivery systems. It also emphasizes the relevance of bioinformatics in aiding the search for validated biomarkers that could be repurposed for theranosis.
RESUMO
The one-pot cascade reaction of naturally occurring enzymes is exciting for highly selective complex reaction and biodegradable approaches. Tamoxifen is the main drug against breast cancer for decades and induces an anticancerous effect upon metabolic activation by cytochrome P450 (CYP450). Herein, bi-enzymatic nanoreactors (NRs) are developed as a multimodality platform for smart action against breast tumors. CYPBM3 of Bacillus magaterium (CYP) is co-confined with glucose oxidase (GOx) where GOx produces H2O2 in the presence of glucose that elicits the CYP-mediated transformation of tamoxifen. The scintillating and mesoporous LaF3:Tb as nanocarrier showed advantages like a wide range of pore size and positive surface charge for efficient loading of enzyme couple, while the smallest pores were available for substrate/product diffusion. The obtained NRs were camouflaged with human serum albumin (HSA) to overcome premature enzyme leaching and provide active stealth properties. The nanocomposite was characterized for physicochemical properties and glucose-mediated sequential catalysis. The in vitro studies demonstrated the cell internalization of NRs in both ER+ and triple-negative breast cancer cell lines and showed significant cytotoxicity. The developed NRs not only improve the outcomes of endocrine therapy in ER+ cells but also synergistically act with oxidation therapy for enhanced therapeutic effect. Importantly, inhibition of triple-negative cells was also achieved. Thus, the development of the new multimodal nanomedicine of the present work should afford new tools towards the theranosis of breast cancer with minimized adverse effects.
Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Bacillus , Neoplasias da Mama/tratamento farmacológico , Catálise , Sistema Enzimático do Citocromo P-450 , Feminino , Humanos , Peróxido de HidrogênioRESUMO
Hyaluronic acid (HA) is a natural mucopolysaccharide and has many useful advantages, including biocompatibility, non-immunogenicity, chemical versatility, non-toxicity, biodegradability, and high hydrophilicity. Numerous tumor cells overexpress several receptors that have a high binding affinity for HA, while these receptors are poorly expressed in normal body cells. HA-based drug delivery carriers can offer improved solubility and stability of anticancer drugs in biological environments and allow for the targeting of cancer treatments. Based on these benefits, HA has been widely investigated as a promising material for developing the advanced clinical cancer therapies in various formulations, including nanoparticles, micelles, liposomes, and hydrogels, combined with other materials. We describe various approaches and findings showing the feasibility of improvement in theragnosis probes through the application of HA.
RESUMO
Introduction: Pharmacotherapy is limited by the inefficient drug targeting of non-healthy cells/tissues. In this pharmacological landscape, liposomes are contributing to the impulse given by Nanotechnology to optimize drug therapy. Areas covered: The analysis of the state-of-the-art in liposomal formulations for drug delivery purposes have underlined that lately published patents (since 2014) are exploring alternative compositions and ways to optimize the stability and drug loading content/release profile. These improvements are complemented by improved long-circulating structures and further liposome functionalizations, which have definitively opened the road for the (co-)delivery of therapeutics to the site of action. Liposomes are also contributing to new drug delivery approaches involving the generation of extracellular vesicles by targeted cells, while opening new ways to combine disease diagnosis and therapy (theranosis). Expert opinion: Patent publications on liposomal formulations have expanded new ways in drug delivery. New lipid compositions and strategies to optimize stability and drug vehiculization capabilities have settle solid pillars in liposome fabrication. Despite, their architecture has been satisfactorily adapted for combining passive and active drug targeting concepts, new inputs of liposomes into the disease arena should answer for: a simple/scalable/cost-effective formulation; a safe/stable/controllable formulation meeting quality control regulations; and, a confirmed therapeutic efficiency in clinical investigations.
Assuntos
Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos , Lipídeos/química , Animais , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Humanos , Lipossomos , Nanotecnologia/métodos , Patentes como AssuntoRESUMO
Rational design and construction of theranostic nanomedicines based on clinical characteristics of cervical cancer is an important strategy to achieve precise cancer therapy. Herein, we fabricate a cervical cancer-targeting gold nanorod-mesoporous silica heterostructure for codelivery of synergistic cisplatin and antiangiogenic drug Avastin (cisplatin-AuNRs@SiO2-Avastin@PEI/AE105) to achieve synergistic chemophotothermal therapy. Based on database analysis and clinical sample staining, conjugation of the AE105-targeting peptide obviously improves the intracellular uptake of the nanosystem and enhances the cancer-killing ability and selectivity between cervical cancer and normal cells. It could also be used to specifically monitor the urokinase-type plasminogen activator receptor (uPAR) expression level in clinical cervical specimens, which would be an early indicator of prognosis in cancer treatment. Under 808 nm laser irradiation, the nanosystem demonstrates smart NIR-light-triggered drug release and prominent photodynamic activity via induction of reactive oxygen species overproduction-mediated cell apoptosis. The nanosystem also simultaneously suppresses HeLa tumor growth and angiogenesis in vivo, with no evident histological damage observed in the major organs. In short, this study not only provides a clinical data-based rational design strategy of smart nanomedicine for precise treatment and rapid clinical diagnosis of cervical cancer but also contributes to the development of the clinical translation of nanomedicines.
Assuntos
Antineoplásicos , Bevacizumab , Cisplatino , Ouro , Hipertermia Induzida , Nanopartículas Metálicas , Nanotubos/química , Proteínas de Neoplasias , Neovascularização Patológica , Fototerapia , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Neoplasias do Colo do Útero , Antineoplásicos/química , Antineoplásicos/farmacologia , Bevacizumab/química , Bevacizumab/farmacocinética , Bevacizumab/farmacologia , Cisplatino/química , Cisplatino/farmacocinética , Cisplatino/farmacologia , Feminino , Ouro/química , Ouro/farmacologia , Células HeLa , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/terapia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/agonistas , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/terapiaRESUMO
Rational design of multifunctional and smart drug-delivered nanoplatforms is a promising strategy to achieve simultaneous diagnosis, real-time monitoring, and therapy of cancers. Herein, highly uniform and stable selenium nanoparticles with epidermal growth factor receptor (EGFR) targeting and tumor microenvironment-responsive ability (Se-5Fu-Gd-P(Cet/YI-12)) were designed and synthesized by using EGFR as the targeting molecule, gadolinium chelate as the magnetic resonance imaging contrast agent, 5-fluorouracil (5Fu) and cetuximab as drug payloads, polyamidoamine (PAMAM) and 3,3'-dithiobis (sulfosuccinimidyl propionate) as the response agents of intratumoral glutathione, and pH for the treatment and diagnosis of nasopharyngeal carcinoma (NPC). This Se nanoplatform showed excellent magnetic resonance imaging capability and has the potential for its clinical application as a diagnostic agent for tumor tissue specimens. Additionally, in vitro cellular experiments showed that by means of introducing clinical targeted drugs and peptides not only validly increased the intracellular uptake of the Se nanoplatform in NPC cells but also enhanced its penetration ability toward CNE tumor spheroids, resulting in simultaneous inhibition of CNE cell growth, invasion, and migration. In addition, the sequentially triggered bioresponsive property of the nanoplatform in a tumor microenvironment effectively improved the targeting delivery and anticancer efficiency of payloads. Overall, this study not only provides a strategy for facile synthesis of highly uniform and stable nanomedicines and tailing of the bioresponsive property but also sheds light on its application in targeting theranosis of NPC.
Assuntos
Receptores ErbB/metabolismo , Nanopartículas/química , Selênio/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Cetuximab/química , Cetuximab/metabolismo , Cetuximab/farmacologia , Meios de Contraste/química , Portadores de Fármacos/química , Receptores ErbB/antagonistas & inibidores , Fluoruracila/química , Fluoruracila/metabolismo , Fluoruracila/farmacologia , Hemólise/efeitos dos fármacos , Humanos , Imageamento por Ressonância Magnética , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/diagnóstico por imagem , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/diagnóstico por imagem , Poliaminas/química , Distribuição Tecidual , Microambiente TumoralRESUMO
Among various 2D nanomaterials, molybdenum disulfide (MoS2 ) exhibits unique visible photoluminescence with high absorption at the near-infrared (NIR) range. Despite these optical properties, the efforts to use MoS2 nanomaterials for optical imaging and photothermal therapy are hampered by their instability and low intracellular delivery efficiency. Multifunctional MoS2 conjugated with hyaluronate (HA) for cancer theranosis is reported herein. HA facilitates the delivery of MoS2 to tumor cells by the HA-receptor mediated endocytosis. In BALB/c nude mice inoculated with a colorectal cancer cell line of HCT116, HA-MoS2 conjugates appear to be accumulated in the primary tumor at a content more than that in the liver and kidney. The disulfide bonding between MoS2 and thiolated HA seems to degrade in the cytoplasm, releasing MoS2 sheets in stacks and enhancing luminescence efficiency. The HA-MoS2 conjugates are readily detected via photoacoustic imaging as well as upconversion and downconversion fluorescence imaging. With NIR light illumination, HA-MoS2 conjugates enable highly effective photothermal tumor ablation. All these results confirm the promising potential of HA-MoS2 conjugates for cancer theranosis.
Assuntos
Dissulfetos/química , Ácido Hialurônico/química , Molibdênio/química , Neoplasias/diagnóstico , Neoplasias/terapia , Animais , Endocitose , Células HCT116 , Humanos , Hipertermia Induzida , Camundongos Endogâmicos BALB C , Camundongos Nus , Fenômenos Ópticos , Técnicas Fotoacústicas , FototerapiaRESUMO
The effective design of a targeted drug delivery system could improve the therapeutic efficacy of anticancer drugs by reducing their undesirable adsorption and toxic side effects. Here, an RGD-peptide functionalized and bioresponsive ruthenium prodrug (Ru-RGD) was designed for both cancer therapy and clinical diagnosis. This prodrug can be selectively delivered to cervical tumor sites to enhance theranostic efficacy. The benzimidazole-based ligand of the complex is susceptible to acidic conditions so, after reaching the tumor microenvironment, ligand substitution occurs and the therapeutic drug is released. The deep-red emissions produced by both one-photon and two-photon excitation increases the potential of Ru-RGD for use in the deep tissue imaging of 3D tumor spheroids. The specific accumulation of the Ru prodrug in tumor sites allows for precise tumor diagnosis and therapy in vivo. Luminescence staining of 38 clinical patient specimens shows that Ru-RGD exhibits differences in binding capability between cervical cancer and normal tissue, with a sensitivity of 95% and a specificity of 100%. This study thus provides an approach for the effective design and application of targeted metal complexes in cancer therapy and clinical diagnosis.