Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
Methods Mol Biol ; 2853: 103-117, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39460917

RESUMO

Improving the time integral of viable cell concentration by overcoming cell death, namely apoptosis, is one of the most widely used strategies for the efficient production of therapeutic proteins. By establishing stable cell lines that overexpress antiapoptotic genes or downregulate proapoptotic genes, the final product yields can be enhanced as cells become more resistant to environmental stresses. From the selection of high-expressing clones to verification of antiapoptotic activity, the method to construct a stable antiapoptotic cell line is discussed in this chapter.


Assuntos
Apoptose , Cricetulus , Animais , Células CHO , Apoptose/genética , Cricetinae , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Engenharia de Proteínas/métodos , Transfecção/métodos
2.
Molecules ; 29(19)2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39407556

RESUMO

The field of computational protein engineering has been transformed by recent advancements in machine learning, artificial intelligence, and molecular modeling, enabling the design of proteins with unprecedented precision and functionality. Computational methods now play a crucial role in enhancing the stability, activity, and specificity of proteins for diverse applications in biotechnology and medicine. Techniques such as deep learning, reinforcement learning, and transfer learning have dramatically improved protein structure prediction, optimization of binding affinities, and enzyme design. These innovations have streamlined the process of protein engineering by allowing the rapid generation of targeted libraries, reducing experimental sampling, and enabling the rational design of proteins with tailored properties. Furthermore, the integration of computational approaches with high-throughput experimental techniques has facilitated the development of multifunctional proteins and novel therapeutics. However, challenges remain in bridging the gap between computational predictions and experimental validation and in addressing ethical concerns related to AI-driven protein design. This review provides a comprehensive overview of the current state and future directions of computational methods in protein engineering, emphasizing their transformative potential in creating next-generation biologics and advancing synthetic biology.


Assuntos
Inteligência Artificial , Engenharia de Proteínas , Engenharia de Proteínas/métodos , Humanos , Proteínas/química , Modelos Moleculares , Biologia Computacional/métodos , Aprendizado de Máquina , Desenho de Fármacos
3.
Eur J Pharm Biopharm ; 204: 114514, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39332745

RESUMO

Therapeutic proteins suffer from physical and chemical instability in aqueous solution. Polysorbates and poloxamers are often added for protection against interfacial stress to prevent protein aggregation and particle formation. Previous studies have revealed that the hydrolysis and oxidation of polysorbates in parenteral formulations can lead to the formation of free fatty acid particles, insufficient long-term stabilization, and protein oxidation. Poloxamers, on the other hand, are considered to be less effective against protein aggregation. Here we investigated two lyso-phosphatidylcholines (LPCs) as potential alternative surfactants for protein formulations, focusing on their physicochemical behavior and their ability to protect against the formation of monoclonal antibody particles during mechanical stress. The hemolytic activity of LPC was tested in varying ratios of plasma and buffer mixtures. LPC effectively stabilized mAb formulations when shaken at concentrations several orders of magnitude below the onset of hemolysis, indicating that the potential for erythrocyte damage by LPC is non-critical. LPC formulations subjected to mechanical stress through peristaltic pumping exhibited comparable protein particle formation to those containing polysorbate 80 or poloxamer 188. Profile analysis tensiometry and dilatational rheology indicated that the stabilizing effect likely arises from the formation of a viscoelastic film at approximately the CMC. Data gathered from concentration-gradient multi-angle light scattering and isothermal titration calorimetry support this finding. Surfactant desorption was evaluated through sub-phase exchange experiments. While LPCs readily desorbed from the interface, resorption occurred rapidly enough in the bulk solution to prevent protein adsorption. Overall, LPCs behave similarly to polysorbate with respect to interfacial stabilization and show promise as a potential substitute for polysorbate in parenteral protein formulations.


Assuntos
Anticorpos Monoclonais , Hemólise , Lisofosfatidilcolinas , Anticorpos Monoclonais/química , Anticorpos Monoclonais/administração & dosagem , Lisofosfatidilcolinas/química , Hemólise/efeitos dos fármacos , Tensoativos/química , Química Farmacêutica/métodos , Polissorbatos/química , Humanos , Estabilidade de Medicamentos , Fosfatidilcolinas/química , Composição de Medicamentos/métodos , Excipientes/química
4.
ACS Nano ; 18(34): 22752-22779, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39133564

RESUMO

Recent years have witnessed rapid progress in the discovery of therapeutic proteins and peptides for the treatment of central nervous system (CNS) diseases. However, their clinical applications have been considerably hindered by challenges such as low biomembrane permeability, poor stability, short circulation time, and the formidable blood-brain barrier (BBB). Recently, substantial improvements have been made in understanding the dynamics of the BBB and developing efficient approaches for delivering proteins and peptides to the CNS, especially by using various nanoparticles. Herein, we present an overview of the up-to-date understanding of the BBB under physiological and pathological conditions, emphasizing their effects on brain drug delivery. We summarize advanced strategies and elucidate the underlying mechanisms for delivering proteins and peptides to the brain. We highlight the developments and applications of nanocarriers in treating CNS diseases via BBB crossing. We also provide critical opinions on the limitations and obstacles of the current strategies and put forward prospects for future research.


Assuntos
Barreira Hematoencefálica , Encéfalo , Sistemas de Liberação de Medicamentos , Peptídeos , Proteínas , Humanos , Peptídeos/química , Barreira Hematoencefálica/metabolismo , Proteínas/química , Proteínas/administração & dosagem , Proteínas/metabolismo , Encéfalo/metabolismo , Animais , Nanopartículas/química , Portadores de Fármacos/química , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/metabolismo
5.
Trends Biotechnol ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39209601

RESUMO

Synthetic cells (SCs) offer a promising approach for therapeutic protein delivery, combining principles from synthetic biology and drug delivery. Engineered to mimic natural cells, SCs provide biocompatibility and versatility, with precise control over their architecture and composition. Protein production is essential in living cells, and SCs aim to replicate this process using compartmentalized cell-free protein synthesis systems within lipid bilayers. Lipid bilayers serve as favored membranes in SC design due to their similarity to the biological cell membrane. Moreover, engineering lipidic membranes enable tissue-specific targeting and immune evasion, while stimulus-responsive SCs allow for triggered protein production and release. This Review explores lipid-based SCs as platforms for therapeutic protein delivery, discussing their design principles, functional attributes, and translational challenges and potential.

6.
Front Immunol ; 15: 1406040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863708

RESUMO

T-cell dependent antibody responses to biotherapeutics remain a challenge to the optimal clinical application of biotherapeutics because of their capacity to impair drug efficacy and their potential to cause safety issues. To minimize this clinical immunogenicity risk, preclinical assays measuring the capacity of biotherapeutics to elicit CD4 T cell response in vitro are commonly used. However, there is considerable variability in assay formats and a general poor understanding of their respective predictive value. In this study, we evaluated the performance of three different CD4 T cell proliferation assays in their capacity to predict clinical immunogenicity: a CD8 T cell depleted peripheral blood mononuclear cells (PBMC) assay and two co-culture-based assays between dendritic cells (DCs) and autologous CD4 T cells with or without restimulation with monocytes. A panel of 10 antibodies with a wide range of clinical immunogenicity was selected. The CD8 T cell depleted PBMC assay predicted the clinical immunogenicity in four of the eight highly immunogenic antibodies included in the panel. Similarly, five antibodies with high clinical immunogenicity triggered a response in the DC: CD4 T cell assay but the responses were of lower magnitude than the ones observed in the PBMC assay. Remarkably, three antibodies with high clinical immunogenicity did not trigger any response in either platform. The addition of a monocyte restimulation step to the DC: CD4 T cell assay did not further improve its predictive value. Overall, these results indicate that there are no CD4 T cell assay formats that can predict the clinical immunogenicity of all biotherapeutics and reinforce the need to combine results from various preclinical assays assessing antigen uptake and presentation to fully mitigate the immunogenicity risk of biotherapeutics.


Assuntos
Produtos Biológicos , Linfócitos T CD4-Positivos , Avaliação Pré-Clínica de Medicamentos , Humanos , Anticorpos/imunologia , Produtos Biológicos/imunologia , Produtos Biológicos/efeitos adversos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/imunologia , Avaliação Pré-Clínica de Medicamentos/métodos , Leucócitos Mononucleares/imunologia , Ativação Linfocitária/imunologia , Medição de Risco
7.
Int J Biol Macromol ; 270(Pt 2): 132254, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729501

RESUMO

Therapeutic proteins have been employed for centuries and reached approximately 50 % of all drugs investigated. By 2023, they represented one of the top 10 largest-selling pharma products ($387.03 billion) and are anticipated to reach around $653.35 billion by 2030. Growth hormones, insulin, and interferon (IFN α, γ, and ß) are among the leading applied therapeutic proteins with a higher market share. Protein-based therapies have opened new opportunities to control various diseases, including metabolic disorders, tumors, and viral outbreaks. Advanced recombinant DNA biotechnology has offered the production of therapeutic proteins and peptides for vaccination, drugs, and diagnostic tools. Prokaryotic and eukaryotic expression host systems, including bacterial, fungal, animal, mammalian, and plant cells usually applied for recombinant therapeutic proteins large-scale production. However, several limitations face therapeutic protein production and applications at the commercial level, including immunogenicity, integrity concerns, protein stability, and protein degradation under different circumstances. In this regard, protein-engineering strategies such as PEGylation, glycol-engineering, Fc-fusion, albumin conjugation, and fusion, assist in increasing targeting, product purity, production yield, functionality, and the half-life of therapeutic protein circulation. Therefore, a comprehensive insight into therapeutic protein research and findings pave the way for their successful implementation, which will be discussed in the current review.


Assuntos
Peptídeos , Humanos , Peptídeos/química , Peptídeos/uso terapêutico , Animais , Viroses/tratamento farmacológico , Viroses/prevenção & controle , Proteínas Recombinantes/uso terapêutico , Engenharia de Proteínas/métodos , Antivirais/uso terapêutico , Vírus
8.
AAPS J ; 26(3): 60, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730115

RESUMO

Subcutaneous (SC) administration of therapeutic proteins is perceived to pose higher risk of immunogenicity when compared with intravenous (IV) route of administration (RoA). However, systematic evaluations of clinical data to support this claim are lacking. This meta-analysis was conducted to compare the immunogenicity of the same therapeutic protein by IV and SC RoA. Anti-drug antibody (ADA) data and controlling variables for 7 therapeutic proteins administered by both IV and SC routes across 48 treatment groups were analyzed. RoA was the primary independent variable of interest while therapeutic protein, patient population, adjusted dose, and number of ADA samples were controlling variables. Analysis of variance was used to compare the ADA incidence between IV and SC RoA, while accounting for controlling variables and potential interactions. Subsequently, 10 additional therapeutic proteins with ADA data published for both IV and SC administration were added to the above 7 therapeutic proteins and were evaluated for ADA incidence. RoA had no statistically significant effect on ADA incidence for the initial dataset of 7 therapeutic proteins (p = 0.55). The only variable with a significant effect on ADA incidence was the therapeutic protein. None of the other controlling variables, including their interactions with RoA, was significant. When all data from the 17 therapeutic proteins were pooled, there was no statistically significant effect of RoA on ADA incidence (p = 0.81). In conclusion, there is no significant difference in ADA incidence between the IV and SC RoA, based on analysis of clinical ADA data from 17 therapeutic proteins.


Assuntos
Administração Intravenosa , Humanos , Injeções Subcutâneas , Anticorpos/administração & dosagem , Anticorpos/imunologia , Proteínas/administração & dosagem , Proteínas/imunologia
9.
Xenobiotica ; 54(8): 552-562, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38607350

RESUMO

RNA interference (RNAi) is a biological process that evolved to protect eukaryotic organisms from foreign genes delivered by viruses. This process has been adapted as a powerful tool to treat numerous diseases through the delivery of small-interfering RNAs (siRNAs) to target cells to alter aberrant gene expression.Antibody-oligonucleotide conjugates (AOCs) are monoclonal antibodies with complexed siRNA or antisense oligonucleotides (ASOs) that have emerged to address some of the challenges faced by naked or chemically conjugated siRNA, which include rapid clearance from systemic circulation and lack of selective delivery of siRNA to target cells.It is essential to characterise the ADME properties of an AOC during development to optimise distribution to target tissues, to minimise the impact of biotransformation on exposure, and to characterise the PK/PD relationship to guide translation. However, owing to the complexity of AOC structure, this presents significant bioanalytical challenges, and multiple bioanalytical measurements are required to investigate the pharmacokinetics and biotransformation of the antibody, linker, and siRNA payload.In this paper, we describe an analytical workflow that details in vivo characterisation of AOCs through measurement of their distinct molecular components to provide the basis for greater understanding of their ADME properties. Although the approaches herein can be applied to in vitro characterisation of AOCs, this paper will focus on in vivo applications. This workflow relies on high-resolution mass spectrometry as the principal means of detection and leverages chromatographic, affinity-based, and enzymatic sample preparation steps.


Assuntos
RNA Interferente Pequeno , Humanos , Imunoconjugados/farmacocinética , Anticorpos Monoclonais , Oligonucleotídeos Antissenso/farmacocinética , Animais , Oligonucleotídeos
10.
J Pharm Biomed Anal ; 245: 116141, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38678856

RESUMO

Potency assays are essential for the development and quality control of biopharmaceutical drugs, but they are often a time limiting factor due to manual handling steps and consequently low analytical throughput. On the other hand, automation of potency assays can be challenging due to their complexity and the use of biological materials. ELISA (enzyme-linked immunosorbent assay) is widely used for potency determination and is a good candidate for automation as all ELISA types depend on the same basic steps: coating, blocking, sample incubation, detection, and signal measurement. Nevertheless, ELISA for relative potency measurements still require drug-specific development and assay validation thereby complicating automation efforts. To simplify potency testing by ELISA, we first developed a manual protocol generally applicable to different drugs and then adapted this protocol for automated measurements. We identified unexpected critical parameters which had to be adapted to transfer the manual ELISA to an automated liquid handling system and we demonstrated that gravimetric sample dilution is unnecessary with the automated protocol. Both manual and automated protocols were validated and compared using multiple biotherapeutics. The automated protocol showed similar or higher precision and accuracy when compared to the manual method.


Assuntos
Ensaio de Imunoadsorção Enzimática , Ensaio de Imunoadsorção Enzimática/métodos , Automação , Fragmentos de Imunoglobulinas , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Reprodutibilidade dos Testes , Humanos , Automação Laboratorial/métodos , Controle de Qualidade
11.
Artigo em Inglês | MEDLINE | ID: mdl-38618492

RESUMO

Extracellular vesicles (EVs) have emerged as a captivating field of study in molecular biology with diverse applications in therapeutics. These small membrane-bound structures, released by cells into the extracellular space, play a vital role in intercellular communication and hold immense potential for advancing medical treatments. EVs, including exosomes, microvesicles, and apoptotic bodies, are classified based on size and biogenesis pathways, with exosomes being the most extensively studied. The aim of this study was to examine the molecular secretory pathway of exosomes and to discuss the medical applications of exosomes and the methods for employing them in laboratory models. The therapeutic potential of EVs has garnered significant attention. Their unique properties, such as stability, biocompatibility, and capacity to traverse biological barriers, make them promising vehicles for targeted drug delivery. By engineering EVs to carry specific cargo molecules, such as therapeutic proteins, small interfering Ribonucleic Acid (RNAs) (siRNAs), or anti-cancer drugs, researchers can enhance drug stability and improve their targeted delivery to specific cells or tissues. This approach has the potential to minimize off-target effects and increase therapeutic efficacy, offering a more precise and effective treatment strategy. EVs represent a captivating and rapidly evolving field with significant therapeutic implications. Their role in intercellular communication, targeted drug delivery, and regenerative medicine makes them valuable tools for advancing medical treatments. As our understanding of EV biology and their therapeutic applications continues to expand, we can expect remarkable advancements that will revolutionize the field of medicine and lead to more personalized and effective therapies.

12.
Sci China Life Sci ; 67(7): 1385-1397, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38561483

RESUMO

A common approach in therapeutic protein development involves employing synthetic ligands with multivalency, enabling sophisticated control of signal transduction. Leveraging the emerging concept of liquid-liquid phase separation (LLPS) and its ability to organize cell surface receptors into functional compartments, we herein have designed modular ligands with phase-separation modalities to engineer programmable interreceptor communications and precise control of signal pathways, thus inducing the rapid, potent, and specific apoptosis of tumor cells. Despite their simplicity, these "triggers", named phase-separated Tumor Killers (hereafter referred to as psTK), are sufficient to yield interreceptor clustering of death receptors (represented by DR5) and tumor-associated receptors, with notable features: LLPS-mediated robust high-order organization, well-choreographed conditional activation, and broad-spectrum capacity to potently induce apoptosis in tumor cells. The development of novel therapeutic proteins with phase-separation modalities showcases the power of spatially reorganizing signal transduction. This approach facilitates the diversification of cell fate and holds promising potential for targeted therapies against challenging tumors.


Assuntos
Apoptose , Transdução de Sinais , Humanos , Linhagem Celular Tumoral , Neoplasias/metabolismo , Neoplasias/patologia , Ligantes , Animais , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Antineoplásicos/farmacologia , Separação de Fases
13.
Trends Biotechnol ; 42(9): 1192-1203, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38548556

RESUMO

Genome-scale metabolic models (GEMs) of Chinese hamster ovary (CHO) cells are valuable for gaining mechanistic understanding of mammalian cell metabolism and cultures. We provide a comprehensive overview of past and present developments of CHO-GEMs and in silico methods within the flux balance analysis (FBA) framework, focusing on their practical utility in rational cell line development and bioprocess improvements. There are many opportunities for further augmenting the model coverage and establishing integrative models that account for different cellular processes and data for future applications. With supportive collaborative efforts by the research community, we envisage that CHO-GEMs will be crucial for the increasingly digitized and dynamically controlled bioprocessing pipelines, especially because they can be successfully deployed in conjunction with artificial intelligence (AI) and systems engineering algorithms.


Assuntos
Cricetulus , Modelos Biológicos , Animais , Células CHO , Genoma/genética , Inteligência Artificial , Engenharia Metabólica/métodos , Cricetinae , Simulação por Computador
14.
Anal Biochem ; 690: 115508, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38494101

RESUMO

Biologicals developers often face challenges in accurately determining the extinction coefficient (EC) measurement. We have successfully improved the precision and robustness of the widely recognized amino acid analysis method for EC determination, through a stepwise optimization process. Extensive analyses based on 114 observations, covering eight proteins over three years were performed, with a maximum relative standard deviation of 1.5% among multiple analysts, and a maximum deviation of 2.8% from the theoretical EC across the eight given proteins examined.

15.
3 Biotech ; 14(4): 112, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38510462

RESUMO

Proteins are considered magic molecules due to their enormous applications in the health sector. Over the past few decades, therapeutic proteins have emerged as a promising treatment option for various diseases, particularly cancer, cardiovascular disease, diabetes, and others. The formulation of protein-based therapies is a major area of research, however, a few factors still hinder the large-scale production of these therapeutic products, such as stability, heterogenicity, immunogenicity, high cost of production, etc. This review provides comprehensive information on various sources and production of therapeutic proteins. The review also summarizes the challenges currently faced by scientists while developing protein-based therapeutics, along with possible solutions. It can be concluded that these proteins can be used in combination with small molecular drugs to give synergistic benefits in the future.

16.
Appl Microbiol Biotechnol ; 108(1): 182, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285115

RESUMO

Mammalian cell lines are frequently used as the preferred host cells for producing recombinant therapeutic proteins (RTPs) having post-translational modified modification similar to those observed in proteins produced by human cells. Nowadays, most RTPs approved for marketing are produced in Chinese hamster ovary (CHO) cells. Recombinant therapeutic antibodies are among the most important and promising RTPs for biomedical applications. One of the issues that occurs during development of RTPs is their degradation, which caused by a variety of factors and reducing quality of RTPs. RTP degradation is especially concerning as they could result in reduced biological functions (antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity) and generate potentially immunogenic species. Therefore, the mechanisms underlying RTP degradation and strategies for avoiding degradation have regained an interest from academia and industry. In this review, we outline recent progress in this field, with a focus on factors that cause degradation during RTP production and the development of strategies for overcoming RTP degradation. KEY POINTS: • The recombinant therapeutic protein degradation in CHO cell systems is reviewed. • Enzymatic factors and non-enzymatic methods influence recombinant therapeutic protein degradation. • Reducing the degradation can improve the quality of recombinant therapeutic proteins.


Assuntos
Apoptose , Indústrias , Animais , Cricetinae , Humanos , Células CHO , Cricetulus , Proteólise
17.
J Chromatogr A ; 1713: 464498, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-37980809

RESUMO

When therapeutic proteins are analysed under hydrophilic interaction liquid chromatography (HILIC) conditions, there is an inherent mismatch between the sample diluent (proteins must be solubilised in aqueous media) and the mobile phase, which is mostly composed of aprotic solvent (acetonitrile). This difference in eluent strength between sample diluent and mobile phase is responsible for severe analyte breakthrough and peak distortion. As demonstrated with therapeutic proteins of different sizes (insulin of 6 kDa, anakinra of 17 kDa and rituximab subunits of 25 and 50 kDa), only very small volumes of 0.1-0.2 µL can be injected without breakthrough effects, when performing rapid analysis on short HILIC columns of 20-50 mm, leading to poor sensitivity. In order to avoid the undesired effect of the strong sample diluent, a special injection program should be preferred. This consists in the addition and automatic injection of a defined volume of weak solvent (acetonitrile) along with the sample to increase retention factors during sample loading. Various injection programs were tested, including the addition of a pre-injection or post-injection or both (bracketed injection) of acetonitrile plugs. Several weak to strong injection solvent ratios of 1:1, 1:2, 1:4 and 1:10 were tested. Our work proves that the addition of a pre-plug solvent with a weak vs. strong injection solvent ratio of 1:10 is a valuable strategy to inject relatively large volumes of proteins in HILIC, regardless of column dimensions, thus maximising sensitivity. No peak deformation or breakthrough was observed under these conditions. However, it is important to note that peak broadening (40 % larger peaks) was observed when the injection program increased the injection solvent ratio from 1:1 to 1:10. Finally, this strategy was applied to a wide range of therapeutic mAb products with different physico-chemical properties. In all cases, relatively large volumes can be successfully injected onto small volume HILIC columns using a purely aqueous sample diluent, as long as an appropriate (weak) solvent pre-injection is applied.


Assuntos
Água , Cromatografia Líquida , Solventes/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Acetonitrilas/química , Indicadores e Reagentes
18.
Antib Ther ; 6(4): 265-276, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38075239

RESUMO

Arginine (Arg) is a natural amino acid with an acceptable safety profile and a unique chemical structure. Arg and its salts are highly effective in enhancing protein refolding and solubilization, suppressing protein-protein interaction and aggregation and reducing viscosity of high concentration protein formulations. Arg and its salts have been used in research and 20 approved protein injectables. This review summarizes the effects of Arg as an excipient in therapeutic protein formulations with the focus on its physicochemical properties, safety, applications in approved protein products, beneficial and detrimental effects in liquid and lyophilized protein formulations when combined with different counterions and mechanism on protein stabilization and destabilization. The decade literature review indicates that the benefits of Arg overweigh its risks when it is used appropriately. It is recommended to add Arg along with glutamate as a counterion to high concentration protein formulations on top of sugars or polyols to counterbalance the negative effects of Arg hydrochloride. The use of Arg as a viscosity reducer and protein stabilizer in high concentration formulations will be the inevitable future trend of the biopharmaceutical industry for subcutaneous administration.

19.
Microb Cell Fact ; 22(1): 259, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104077

RESUMO

BACKGROUND: Komagataella phaffii (Pichia pastoris) is a methylotrophic commercially important non-conventional species of yeast that grows in a fermentor to exceptionally high densities on simple media and secretes recombinant proteins efficiently. Genetic engineering strategies are being explored in this organism to facilitate cost-effective biomanufacturing. Small, stable artificial chromosomes in K. phaffii could offer unique advantages by accommodating multiple integrations of extraneous genes and their promoters without accumulating perturbations of native chromosomes or exhausting the availability of selection markers. RESULTS: Here, we describe a linear "nano"chromosome (of 15-25 kb) that, according to whole-genome sequencing, persists in K. phaffii over many generations with a copy number per cell of one, provided non-homologous end joining is compromised (by KU70-knockout). The nanochromosome includes a copy of the centromere from K. phaffii chromosome 3, a K. phaffii-derived autonomously replicating sequence on either side of the centromere, and a pair of K. phaffii-like telomeres. It contains, within its q arm, a landing zone in which genes of interest alternate with long (approx. 1-kb) non-coding DNA chosen to facilitate homologous recombination and serve as spacers. The landing zone can be extended along the nanochromosome, in an inch-worming mode of sequential gene integrations, accompanied by recycling of just two antibiotic-resistance markers. The nanochromosome was used to express PDI, a gene encoding protein disulfide isomerase. Co-expression with PDI allowed the production, from a genomically integrated gene, of secreted murine complement factor H, a plasma protein containing 40 disulfide bonds. As further proof-of-principle, we co-expressed, from a nanochromosome, both PDI and a gene for GFP-tagged human complement factor H under the control of PAOX1 and demonstrated that the secreted protein was active as a regulator of the complement system. CONCLUSIONS: We have added K. phaffii to the list of organisms that can produce human proteins from genes carried on a stable, linear, artificial chromosome. We envisage using nanochromosomes as repositories for numerous extraneous genes, allowing intensive engineering of K. phaffii without compromising its genome or weakening the resulting strain.


Assuntos
Pichia , Saccharomycetales , Humanos , Animais , Camundongos , Pichia/genética , Pichia/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Saccharomycetales/genética , Recombinação Homóloga , Cromossomos
20.
AAPS J ; 26(1): 3, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036919

RESUMO

Therapeutic fusion proteins are a class of hybrid constructs that combine distinct biomolecules into a single platform with the additive effects of the components. The ability to fuse two unrelated proteins provides a means to localize mechanisms to better treat a range of diseases. Fusion proteins can be designed to impart diverse functions, including increasing half-life, providing targeting, and enabling sustained signaling. Of these, half-life extenders, which are fused to a therapeutic protein to increase exposure, are the most established group of fusion proteins, with many clinical successes. Rapid advances in antibody and antibody-derivative technology have enabled the fusion of targeting domains with therapeutic proteins. An emerging group of therapeutic fusion proteins has two separate active functions. Although most research for therapeutic fusion proteins focuses on cancer, prior successes provide a foundation for studies into other diseases as well. The exponential emergence of biopharmaceuticals gives precedence for increased research into therapeutic fusion proteins for a multitude of diseases.


Assuntos
Neoplasias , Proteínas , Humanos , Proteínas/uso terapêutico , Anticorpos , Neoplasias/tratamento farmacológico , Proteínas Recombinantes de Fusão/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA