Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Biomater ; 158: 281-291, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563774

RESUMO

Understanding how the spatial organization of a neural network affects its activity represents a leading issue in neuroscience. Thanks to their accessibility and easy handling, in vitro studies remain an essential tool to investigate the relationship between the structure and function of a neuronal network. Among all the patterning techniques, ink-jet printing acquired great interest thanks to its direct-write approach, which allows the patterned substrate realization without mold, leading to a considerable saving of both cost and time. However, the inks commonly used give the possibility to control only the structure of a neuronal network, leaving aside the functional aspect. In this work, we synthesize a photosensitive ink combining the rheological and bioadhesive properties of chitosan with the plasmonic properties of gold nanorods, obtaining an ink able to control both the spatial organization of a two-dimensional neuronal network and its activity through photothermal effect. After the ink characterization, we demonstrate that it is possible to print, with high precision, different geometries on a microelectrode array. In this way, it is possible obtaining a patterned device to control the structure of a neuronal network, to record its activity and to modulate it via photothermal effect. Finally, to our knowledge, we report the first evidence of photothermal inhibition of human neurons activity. STATEMENT OF SIGNIFICANCE: Patterned cell cultures remain the most efficient and simple tool for linking structural and functional studies, especially in the neuronal field. Ink-jet printing is the technique with which it is possible to realize patterned structures in the fastest, simple, versatile and low-cost way. However, the inks currently used permit the control only of the neuronal network structure but do not allow the control-modulation of the network activity. In this study, we realize and characterize a photosensitive bioink with which it is possible to drive both the structure and the activity of a neuronal network. Moreover, we report the first evidence of activity inhibition by the photothermal effect on human neurons as far as we know.


Assuntos
Nanotubos , Impressão , Humanos , Impressão/métodos , Neurônios , Técnicas de Cultura de Células , Tinta
2.
Colloids Surf B Biointerfaces ; 220: 112915, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257280

RESUMO

Diabetic retinopathy (DR) is a severe ocular complication that causes retinal damage, being one of the leading causes of blindness globally, thus the development of new strategies to prevent and treat DR as well as other degenerative diseases is highly desired. This work is focused on the design and fabrication of an ingenious model of polymeric microcapsules (MC) for controlled drug delivery in human retina cells able to carry therapeutic resveratrol (RSV) molecules in tandem with active anisotropic gold bipyramidal nanoparticles (AuBPs) as efficient photothermal agents. Specifically, MC were developed via a Layer-by-Layer deposition technique, by successively adding oppositely charged polyelectrolytes on a RSV-conjugated calcium carbonate (CaCO3) core. For the monitorization and localization of the as-formed spherical fluorescent MC inside human retina pigmented epithelial (RPE) D407 cells, fluorescein isothiocyanate, a Food and Drug Administration approved fluorophore, was attached between the polyelectrolytes layers. High-performance liquid chromatography analysis revealed a loading efficiency of over 90% of RSV on the CaCO3 core and demonstrates its release upon NIR irradiation as a consequence of the thermoplasmonic effect of MC. The cytotoxicity of the RSV-carrying MC inside human retina cells was assessed by WST-1 assay. Finally, cellular internalization and localization of the MC inside living RPE cells were monitored via Conventional Fluorescence and Re-Scanning Confocal Fluorescence Microscopy. This research seeks to take use of the novel MC and implement them as potential intraocular RSV delivery vehicles for the therapy of DR.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Humanos , Resveratrol/farmacologia , Polieletrólitos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Polímeros , Cápsulas/química
3.
ACS Appl Mater Interfaces ; 13(4): 5634-5644, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33463154

RESUMO

Controlling solar transmission through windows promises to reduce building energy consumption. A new smart window for adaptive solar modulation is presented in this work proposing the combination of the photothermal one-dimensional (1D) Au nanochains and thermochromic hydrogel. In this adaptive solar modulation system, the Au nanochains act as photoresponsive nanoheaters to stimulate the optical switching of the thermochromic hydrogel. By carefully adjusting the electrostatic interactions between nanoparticles, different chain morphologies and plateau-like broad-band absorption in the NIR region are achieved. Such broad-band-absorbed 1D nanochains possess excellent thermoplasmonic effect and enable the solar modulation with compelling features of improved NIR light shielding, high initial visible transmittance, and fast response speed. The designed smart window based on 1D Au nanochains is capable of shielding 94.1% of the solar irradiation from 300 to 2500 nm and permitting 71.2% of visible light before the optical switching for indoor visual comfort. In addition, outdoor cooling tests in model house under continuous natural solar irradiation reveal the remarkable passive cooling performance up to ∼7.8 °C for the smart window based on 1D Au nanochains, showing its potential in the practical application of building energy saving.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA