Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38337313

RESUMO

Bending is one of the dominant material deformation mechanisms that occurs during the forming process of unidirectional (UD) thermoplastic tapes. Experimental characterization of the bending behavior at processing temperatures is crucial to obtaining close-to-reality data sets for process analysis or material modeling for process simulation. The main purpose of this study is to characterize to a high degree of accuracy the temperature-dependent bending behavior of single and multi-ply specimens of carbon fiber-reinforced polycarbonate (PC/CF) UD tapes at processing temperatures, which implies a molten state of the thermoplastic matrix. The application of the rotation bending test using a customized fixture may come with systematic deviations in the measured moment that result from a pivot offset or an effective clearance that is unknown under realistic test conditions. The present research analyzes these effects with analytical methods, experimental investigations, and simulations using a finite element model. In this context, a compensation method for the toe-in effect is evaluated. With this approach, we were able to obtain reliable data and characterize the bending resistance within the desired processing window. The data reveal a major drop in bending resistance between 200 °C and 250 °C and a less significant decrease between 250 °C and 300 °C. Analysis of the thickness-normalized bending resistances indicates a non-linear relationship between specimen thickness and measured moment but an increasing shear-dominated characteristic at higher temperatures.

2.
Materials (Basel) ; 17(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255497

RESUMO

Polymer-metal hybrid structures combine the merits of polymer and metal materials, making them widely applicable in fields such as aerospace and automotive industries. However, the main challenge lies in achieving efficient and strong connections between the metal and polymer components. This paper uses the jet electrochemical machining (Jet-ECM) method to customize the surface morphologies on 6061 aluminum alloy (AA6061) sheets. The connection between AA6061 and carbon fiber-reinforced PA66 (CF/PA66) is then achieved through hot pressure welding (HPW). The effects of aluminum alloy surface morphology, welding force, and welding time on the mechanical properties and microstructure of the joint are investigated. The optimal process parameters are determined by the design of the experiment. The results show that the aluminum alloy surface morphology has the greatest impact on the mechanical property of the welded joint. The optimal process parameters are surface morphology with wider, shallower, and sparsely distributed grooves on the aluminum alloy surface, the welding force is 720 N, the welding time is 12 s, the welding temperature is 360 °C, the cooling time is 16 s, and the optimal peak load of the joint is 6690 N. Under the optimal parameters, the fracture morphology in the AA6061 side is almost entirely covered with CF/PA66. The joint experiences cohesive failure in most areas and fiber-matrix debonding in a small area.

3.
Polymers (Basel) ; 15(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139901

RESUMO

Electronic devices are sensitive to electromagnetic (EM) emissions, and require electromagnetic shielding protection to ensure good operation, and prevent noise, malfunctioning, or even burning. To ensure protection, it is important to develop suitable material and design solutions for electronic enclosures. Most common enclosures are made with metal alloys using traditional manufacturing methods. However, using thermoplastic composites combined with additive manufacturing (AM) technologies emerges as an alternative that enables the fabrication of complex parts that are lightweight, consolidated, and oxidation- and corrosion-resistant. In this research, an AM technique based on material extrusion was used to print 2 mm-thick specimens with a multi-material made of micro-carbon fiber (CF)-filled polyamide that was reinforced at specific layers using continuous carbon fibers stacked with a 90° rotation to each other. The specimens' electromagnetic shielding effectiveness (EMSE) was evaluated in the frequency band of 0.03-3 GHz using the coaxial transmission line method. Depending on the number of CF layers, the EM shielding obtained can be up to 70 dB, with a specific shielding up to 60 dB.cm3/g, predominantly by the absorption mechanism, being 22 times higher than without the CF layers. These findings promote this innovative approach to lightweight customizable solutions for EM shielding applications.

4.
ACS Appl Mater Interfaces ; 15(48): 56454-56463, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37982666

RESUMO

The combination of continuous fiber-reinforced thermoplastic composites (CFRTPCs) and the continuous fiber 3D printing (CF3DP) technique enables the rapid production of complex structural composites. In these 3D-printed composites, stress transfer primarily relies on the fiber-resin interface, making it a critical performance factor. The interfacial properties are significantly influenced by the temperatures applied during the loading and forming processes. While the effect of the loading temperature has been extensively researched, that of the forming temperature remains largely unexplored, especially from an atomistic perspective. Our research aims to employ molecular dynamics simulations to elucidate the effect of temperature on the interfacial properties of continuous carbon fiber-reinforced polyamide 6 (C/PA6) composites fabricated using the CF3DP technique, considering both loading and forming aspects. Through molecular dynamics simulations, we uncovered a positive correlation between the interfacial strength and forming temperature. Moreover, an increased forming temperature induced a notable shift in the failure mode of C/PA6 under uniaxial tensile loading. Furthermore, it was observed that increasing loading temperatures led to the deterioration of the mechanical properties of PA6, resulting in a gradual transition of the primary failure mode from adhesive failure to cohesive failure. This shift in the failure mode is closely associated with the glass transition of PA6.

5.
Polymers (Basel) ; 15(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37835990

RESUMO

Thermoplastic composite structures possess superior properties compared with thermosetting composites, including recyclability and high damage tolerance. However, the poor adhesion properties of thermoplastic composites make their joining process challenging. In this research, three bonding techniques, namely adhesive, mechanical joining, and hybrid bonding, are investigated using lap shear specimens to evaluate their mechanical properties and failure modes. The stress distributions at the joints of the three bonding techniques are analyzed by numerical simulation. The findings demonstrate that hybrid bonding enhances the strength of composite joints, albeit at the expense of some stiffness due to the presence of an open hole. This method is particularly suitable for applications that necessitate robust connections requiring high strength.

6.
Materials (Basel) ; 16(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895746

RESUMO

The integrity of delaminated composite structures can be restored by introducing a thermally-based healing effect on continuous fiber-reinforced thermoplastic composites (CFRTPC). The phenomenon of thermoplastics retaining their properties after melting and consolidation has been applied by heating the delaminated composite plates above their glass transition temperature under pressure. In the current investigation, the composite is comprised of Methyl methacrylate (MMA)-based infusible lamination resin combined with benzoyl peroxide initiator, which polymerizes into a Polymethyl methacrylate (PMMA) matrix. For the reinforcement, unidirectional 220 gr/m2 glass filament fabric was used. Delamination damage is artificially induced during the fabrication of laminate plates. The distributed delamination region before and after thermally activated healing was determined by using non-destructive testing with active thermography. An experimental approach is employed to characterize the thermal healing effect on mechanical properties. Experimentally determined technological parameters for thermal healing have been successfully applied to repair delamination defects on composite plates. Based on the compression-after-impact (CAI) test methodology, the intact, damaged, and healed composite laminates were loaded cyclically to evaluate the healing effect on stiffness and strength. During the CAI test, the 3D digital image correlation (DIC) technique was used to measure the displacement and deformation fields. Experimental results reveal the difference between the behavior of healed and damaged specimens. Additionally, the numerical models of intact, damaged, and healed composite laminates were developed using the finite element code LS-Dyna. Numerical models with calibrated material properties and tie-break contact constants provide good correlation with experimental results and allow for the prediction of the mechanical behavior of intact, damaged, and healed laminated plates. The comparison analysis based on CAI test results and modal characteristics obtained by the 3D Laser Doppler Vibrometer (Polytec GmbH, Karlsbad, Germany) proved that thermal healing partially restores the mechanical properties of damaged laminate plates. In contrast, active thermography does not necessarily indicate a healing effect.

7.
Turk J Chem ; 47(1): 33-39, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720853

RESUMO

Due to material design and fabrication flexibility, additive manufacturing (AM) or 3D printing (3DP) processes and polymer composites have paved their way into several industrial sectors. The quality of 3D printed polymer composites is highly dependent on the reinforcement content of polymers and 3DP process parameters. Several experimental studies are performed to optimize the reinforcement contents and process parameters; however, exploring the numerical modeling and simulation techniques is vital to lower the research and development costs. In the study, the numerical simulations for the 3DP process were performed using Digimat® software for carbon fiber-reinforced polyamide-6 (PA6) composites fabricated via the fused filament fabrication (FFF) process to evaluate the effect of reinforcement content on deflections, warpages, and process-induced residual stresses. The FFF process simulations were performed to fabricate tensile testing coupons with pure PA6 and 10%-28% CF-reinforced PA6 composites. A significant impact of CF-reinforcement was observed on the deflections, warpages, and residual stresses. The maximum displacement of 4.518 mm and critical warpage of 3.012 was observed for pure PA6 material. However, with the addition of CF reinforcement, a maximum deflection of 3.369 mm and critical warpage of 2.246 was achieved for PA6 reinforced with 28% CF (PA6-CF28). The improved 3D printed specimen quality was acquired at the cost of increased residual stresses of 14.53 MPa compared to 11.75 MPa in pure PA6 specimen. The CF reinforcement significantly improved the 3DP manufacturing performance of PA6/CF composites, reducing deflections and warpages.

8.
Heliyon ; 9(7): e17918, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37539165

RESUMO

Thermoplastic composite pipes (TCP) in comparison to other pipes have proven beneficial features due to its flexibility which includes being fit for purpose, lightweight and no corrosion. However, during the manufacturing of TCP which involves the consolidation process, certain defects may be induced in it because of certain parameters, and this can affect the performance of the pipe in the long run as the induced defects might lead to in-service defects. Current techniques used in the industry are facing challenges with on-the-spot detection in a continuous manufacturing system. In TCP manufacturing process, the pipe is regularly monitored. When a defect is noticed, the whole process stops, and the appropriate action is taken. However, shutting down the process is costly; hence it is vital to decrease the downtime during manufacturing to the barest minimum. The solutions include optimizing the process for reduction in the manufacturing defects amount and thoroughly understanding the effect of parameters which causes certain defect types in the pipe. This review covers the current state-of-the-art and challenges associated with characterizing the identified manufacturing induced defects in TCP. It discusses and describes all effective consolidation monitoring strategies for early detection of these defects during manufacturing through the application of suitable sensing technology that is compatible with the TCP. It can be deduced that there is a correlation between manufacturing process to the performance of the final part and selection of characterization technique as well as optimizing process parameters.

9.
Chemosphere ; 340: 139796, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37586488

RESUMO

Here, lab-made graphite and polylactic acid (Gpt-PLA) biocomposite materials were used to additively manufacture electrodes via the fused deposition modeling (FDM) technique for subsequent determination of the explosive 2,4,6-trinitrotoluene (TNT, considered a persistent organic pollutant). The surface of the 3D-printed material was characterized by SEM and Raman, which revealed high roughness and the presence of defects in the graphite structure, which enhanced the electrochemical response of TNT. The 3D-printed Gpt-PLA electrode coupled to square wave voltammetry (SWV) showed suitable performance for fastly determining the explosive residues (around 7 s). Two reduction processes at around -0.22 V and -0.36 V were selected for TNT detection, with linear ranges between 1.0 and 10.0 µM. Moreover, detection limits of 0.52 and 0.66 µM were achieved for both reduction steps. The proposed method was applied to determine TNT in different environmental water samples (tap water, river water, and seawater) without a dilution step (direct analysis). Recovery values between 98 and 106% confirmed the accuracy of the analyses. Additionally, adequate selectivity was achieved even in the presence of other explosives commonly used by military agencies, metallic ions commonly found in water, and also some electroactive camouflage species. Such results indicate that the proposed device is promising to quantify TNT residues in environmental samples, a viable on-site analysis strategy.


Assuntos
Substâncias Explosivas , Grafite , Trinitrotolueno , Trinitrotolueno/análise , Grafite/química , Substâncias Explosivas/análise , Poliésteres , Eletrodos , Água , Impressão Tridimensional , Técnicas Eletroquímicas/métodos
10.
Polymers (Basel) ; 15(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447524

RESUMO

In this study, the thermoset-thermoplastic structure was produced through a co-curing technique together with an injection overmolding technique. Continuous fiber reinforced thermoset composite (TSC) was selected as thermoset material, while polyamide 6 (PA 6) was chosen as thermoplastic material. The influence of injection temperature, preheating temperature and injection speed on the interfacial bonding strength of hybrid thermoset-thermoplastic composites was investigated. The results show that increasing injection temperature and preheating temperature have significant effects on the increase in bonding strength, while injection speed has little effect on it. In addition, the bonding strength of the co-cured interface is enhanced after the injection overmolding process, which is further studied through molecular dynamic (MD) simulation. The molecular dynamic simulation result shows that the high temperature and pressure during the injection process only have a weak effect on enhancing the bonding strength of the co-cured interface, while the chemical reaction at the co-cured interface is the main reason for the enhancement. Furthermore, the more chemical reactions occur at the interface, the stronger the interface will be.

11.
J Thermoplast Compos Mater ; 36(4): 1651-1679, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36974323

RESUMO

In-situ manufacturing of thermoplastic composites using Hot Gas Torch (HGT)-assisted Automated Fiber Placement (AFP) has the potential to produce laminates in an efficient manner by avoiding a secondary process, like autoclave consolidation. One of the advantages of AFP technique is its capability to steer fiber path and to manufacture Variable Angle Tow (VAT) laminates which have shown to have improved mechanical performance. This study investigates the process parameters that affect steering of carbon fiber reinforced thermoplastic tapes (AS4/polyether ether ketone) using an HGT-assisted AFP machine. The effect of the steering radius, laydown speed, number of repasses, and substrate angle on the geometry and bond strength of steered tape was investigated through observation and testing. A modified lap shear test was devised and used to study the bond strength between the steered tape and the substrate and the results were compared with autoclave treated samples which served as a reference. It was found that with a decrease in the steering radius of the tape, there was a decrease in the tape width and an increase in the tape thickness. A significant reduction in the steering-induced defects was observed at higher laydown speeds where the defects were intermittent unlike in the case of lower laydown speeds. Performing a repass over the steered tape smoothed some of the tape defects caused by steering. Furthermore, the lap shear strengths of the steered tapes were found to be functions of laydown speed and substrate angle.

12.
Polymers (Basel) ; 15(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38232029

RESUMO

This study describes a novel process in which staple fiber yarns made from recycled carbon fibers (rCFs) and polyamide 6 (PA6) fibers are further processed into semi-finished tape products in a modified impregnation and calendaring process. In this process, the staple fiber yarns are heated above the melting temperature of the polymer, impregnated, and stretched to staple fiber tapes (SF tapes) in the calendaring unit. SF tapes with different degrees of stretching and/or repasses were produced. The individual width and thickness were measured in line by a laser profile sensor. From these tapes, preforms were manually laid and processed into laminates in an autoclave. The important physical properties of the unidirectionally reinforced laminates made of the tapes were compared with organic sheets wound from staple fiber yarns. With increasing stretching, both the fiber orientation and mechanical properties improved compared to the organic sheets made from unstretched staple fiber yarns. An improvement in fiber orientation relative to the process direction from 66.3% to 91.9% (between ±10°) and 39.1% to 71.6% (between ±5°), respectively, was achieved for a two-stage stretched tape. The tensile and flexural moduli were increased by 15.2% and 14.5%, respectively.

13.
Materials (Basel) ; 15(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500194

RESUMO

This paper explores the use of Discontinuous Aligned Fibre Filament (DcAFF), a novel discontinuous fibre reinforced thermoplastic filament for 3D printing, to produce structural complex parts. Compared to conventional composite manufacturing, 3D printing has great potential in steering fibres around small structural features. In this current study, the initial thin carbon fibre (CF)-poly(L-lactic acid) (PLA) tape, produced with the High Performance Discontinuous Fibre (HiPerDiF) technology, is now reshaped into a circular cross-section filament, the DcAFF, using a bespoke machine designed to be scalable to high production rates rather than using a labour-intensive manual moulding method as in previous work. The filaments are then fed to a general-purpose 3D printer. Tensile and open-hole tensile tests were considered in this paper for mechanical and processability of DcAFF. The 3D printed specimens fabricated with the DcAFF show superior tensile properties compared to other PLA-based 3D printed composites, even those containing continuous fibres. Curvilinear open-hole tensile test samples were fabricated to explore the processability and performances of such material in complex shapes. The mechanical performance of the produced specimens was benchmarked against conventionally laid-up specimens with a cut hole. Although the steered specimens produced have lower strength than the fully consolidated samples, the raster generated by the printing path has turned the failure mechanism of the composite from brittle to ductile.

14.
Polymers (Basel) ; 14(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36433167

RESUMO

The paper presents research regarding a thermally supported multi-material clinching process (hotclinching) for metal and thermoplastic composite (TPC) sheets: an experimental approach to investigate the flow pressing phenomena during joining. Therefore, an experimental setup is developed to compress the TPC-specimens in out-of-plane direction with different initial TPC thicknesses and varying temperature levels. The deformed specimens are analyzed with computed tomography to investigate the resultant inner material structure at different compaction levels. The results are compared in terms of force-compaction-curves and occurring phenomena during compaction. The change of the material structure is characterized by sliding phenomena and crack initiation and growth.

15.
Materials (Basel) ; 15(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955388

RESUMO

Thermoplastic composites (TPCs) are predestined for use in lightweight structures, especially for high-volume applications. In many cases, joining is a key factor for the successful application of TPCs in multi-material systems. Many joining processes for this material group are based on warm forming the joining zone. This results in a change of the local material structure characterised by modified fibre paths, as well as varying fibre contents, which significantly influences the load-bearing behaviour. During the forming process, many different phenomena occur simultaneously at different scales. In this paper, the deformation modes and flow mechanisms of TPCs during forming described in the literature are first analysed. Based on this, three different joining processes are investigated: embedding of inserts, moulding of contour joints, and hotclinching. In order to identify the phenomena occurring in each process and to describe the characteristic resulting material structure in the joining zones, micrographs as well as computed tomography (CT) analyses are performed for both individual process stages and final joining zones.

16.
Polymers (Basel) ; 14(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35683918

RESUMO

The choice of a manufacturing process, raw materials, and process parameters affects the quality of produced pre-consolidated tapes used in thermoplastic pultrusion. In this study, we used two types of pre-consolidated GF/PP tapes-commercially available (ApATeCh-Tape Company, Moscow, Russia) and inhouse-made tapes produced from commingled yarns (Jushi Holdings Inc., Boca Raton, FL, USA)-to produce pultruded thermoplastic Ø 6 mm bars and 75 mm × 3.5 mm flat laminates. Flat laminates produced from inhouse-made pre-consolidated tapes demonstrated higher flexural, tensile, and apparent interlaminar shear strength compared to laminates produced from commercial pre-consolidated tapes by as much as 106%, 6.4%, and 27.6%, respectively. Differences in pre-consolidated tape manufacturing methods determine the differences in glass fiber impregnation and, thus, differences in the mechanical properties of corresponding pultruded composites. The use of commingled yarns (consisting of matrix and glass fibers properly intermingled over the whole length of prepreg material) makes it possible to achieve a more uniform impregnation of inhouse-made pre-consolidated tapes and to prevent formation of un-impregnated regions and matrix cracks within the center portion of the fiber bundles, which were observed in the case of commercial pre-consolidated tapes. The proposed method of producing pre-consolidated tapes made it possible to obtain pultruded composite laminates with larger cross sections than their counterparts described in the literature, featuring better mechanical properties compared to those produced from commercial pre-consolidated tapes.

17.
Materials (Basel) ; 15(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35407721

RESUMO

Tensile tests were carried out to investigate the effect of stacking sequences on the bearing strength of single-lap thermoplastic composite countersunk bolted joints. A 3D elastoplastic model was built based on a plastic theory for numerical analysis. The damage initiation was judged based on LaRC05 criteria, and the damage propagation was described by using a nonlinear, gradual unloading method based on crack band theory. The accuracy of the present model was validated by comparing the numerical results to those from the tests. The test results showed that the effects of stacking sequences on the ultimate bearing strength and the 2% offset bearing strength are limited. Moreover, the numerical results depicted that the ultimate bearing strength and the 2% offset bearing strength reduce when the bolt-tightening torque or the bolt-hole clearance is increased.

18.
Materials (Basel) ; 15(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35408035

RESUMO

The composite-material laminate structure will inevitably encounter connection problems in use. Among them, mechanical connections are widely used in aerospace, automotive and other fields because of their high connection efficiency and reliable connection performance. Milling parameters are important for the opening quality. In this paper, continuous-glass-fiber-reinforced-polypropylene (GFRPP) laminates were chosen to investigate the effects of different cutters and process parameters on the hole quality. The delamination factor and burr area were taken as the index to characterize the opening quality. After determining the optimal milling tool, the process window was obtained according to the appearance of the milling hole. In the selected process parameter, the maximum temperature did not reach the PP melting temperature. The best hole quality was achieved when the spindle speed was 18,000 r/min and the feed speed was 1500 mm/min with the corn milling cutter.

19.
Polymers (Basel) ; 14(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35267765

RESUMO

The aim of this study is the preparation of star-shaped branched polyamides (sPA6) with low melt viscosity, but also with improved mechanical properties by reactive extrusion. This configuration has been obtained by grafting a tri-functional, three-armed molecule: 5-aminoisophthalic-acid, used as a linking agent (LA). The balance between the fluidity, polarity and mechanical properties of sPA6s is the reason why these materials have been investigated for the impregnation of fabrics in the manufacture of thermoplastic composites. For these impregnation processes, the low viscosity of the melt has allowed the processing parameters (temperature, pressure and time) to be reduced, and its new microstructure has allowed the mechanical properties of virgin thermoplastic resins to be maintained. A significant improvement in the ultrasonic welding processes of the composites was also found when an energy director based on these materials was applied at the interface. In this work, an exhaustive microstructural characterization of the obtained sPAs is presented and related to the final properties of the composites obtained by film stacking.

20.
Polymers (Basel) ; 14(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35335550

RESUMO

Basalt fibre is derived from volcanic rocks and has similar mechanical properties as glass fibre. However, poor fibre-matrix compatibility and processing issues are the main factors that have restricted the mechanical performance of basalt fibre-reinforced thermoplastic composites (BFRTP). In this work, basalt continuous fibre composites with polypropylene (PP) and polycarbonate (PC) matrices were studied. The composites were processed by compression moulding, and a processing study was conducted to achieve good quality composites. For the BF-PC composites, the optimisation of material preparation and processing steps allowed the polymer to impregnate the fibres with minimal fibre movements, hence improving impregnation and mechanical properties. For BF-PP composites, a compatibiliser was required to improve fibre-matrix compatibility. The compatibiliser significantly improved the tensile and impact strength values for short BF-PP composites and continued to increase at 40 wt%. Furthermore, the analytical modelling of the Young's moduli indicated that the induced fibre orientation during processing for short BF-PP composites and unidirectional (UD) BF-PC composites had better stress transfer than that of UD BF-PP composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA