Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 117(5): 1330-1343, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37996996

RESUMO

Plants and bacteria have distinct pathways to synthesize the bioactive vitamin B1 thiamin diphosphate (TDP). In plants, thiamin monophosphate (TMP) synthesized in the TDP biosynthetic pathway is first converted to thiamin by a phosphatase, which is then pyrophosphorylated to TDP. In contrast, bacteria use a TMP kinase encoded by ThiL to phosphorylate TMP to TDP directly. The Arabidopsis THIAMIN REQUIRING2 (TH2)-encoded phosphatase is involved in TDP biosynthesis. The chlorotic th2 mutants have high TMP and low thiamin and TDP. Ectopic expression of Escherichia coli ThiL and ThiL-GFP rescued the th2-3 mutant, suggesting that the bacterial TMP kinase could directly convert TMP into TDP in Arabidopsis. These results provide direct evidence that the chlorotic phenotype of th2-3 is caused by TDP rather than thiamin deficiency. Transgenic Arabidopsis harboring engineered ThiL-GFP targeting to the cytosol, chloroplast, mitochondrion, or nucleus accumulated higher TDP than the wild type (WT). Ectopic expression of E. coli ThiL driven by the UBIQUITIN (UBI) promoter or an endosperm-specific GLUTELIN1 (GT1) promoter also enhanced TDP biosynthesis in rice. The pUBI:ThiL transgenic rice accumulated more TDP and total vitamin B1 in the leaves, and the pGT1:ThiL transgenic lines had higher TDP and total vitamin B1 in the seeds than the WT. Total vitamin B1 only increased by approximately 25-30% in the polished and unpolished seeds of the pGT1:ThiL transgenic rice compared to the WT. Nevertheless, these results suggest that genetic engineering of a bacterial vitamin B1 biosynthetic gene downstream of TMP can enhance vitamin B1 production in rice.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Ectópica do Gene , Tiamina/metabolismo , Tiamina Pirofosfato/genética , Tiamina Pirofosfato/metabolismo , Tiamina Monofosfato/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Bactérias/metabolismo , Proteínas de Ligação a DNA/genética
3.
Plant J ; 91(1): 145-157, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28346710

RESUMO

Thiamin diphosphate (TPP, vitamin B1 ) is an essential coenzyme present in all organisms. Animals obtain TPP from their diets, but plants synthesize TPPde novo. We isolated and characterized an Arabidopsis pale green1 (pale1) mutant that contained higher concentrations of thiamin monophosphate (TMP) and less thiamin and TPP than the wild type. Supplementation with thiamin, but not the thiazole and pyrimidine precursors, rescued the mutant phenotype, indicating that the pale1 mutant is a thiamin-deficient mutant. Map-based cloning and whole-genome sequencing revealed that the pale1 mutant has a mutation in At5g32470 encoding a TMP phosphatase of the TPP biosynthesis pathway. We further confirmed that the mutation of At5g32470 is responsible for the mutant phenotypes by complementing the pale1 mutant with constructs overexpressing full-length At5g32470. Most plant TPP biosynthetic enzymes are located in the chloroplasts and cytosol, but At5g32470-GFP localized to the mitochondrion of the root, hypocotyl, mesophyll and guard cells of the 35S:At5g32470-GFP complemented plants. The subcellular localization of a functional TMP phosphatase suggests that the complete vitamin B1 biosynthesis pathway may involve the chloroplasts, mitochondria and cytosol in plants. Analysis of PALE1 promoter-uidA activity revealed that PALE1 is mainly expressed in vascular tissues of Arabidopsis seedlings. Quantitative RT-PCR analysis of TPP biosynthesis genes and genes encoding the TPP-dependent enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and transketolase revealed that the transcript levels of these genes were upregulated in the pale1 mutant. These results suggest that endogenous levels of TPP may affect the expression of genes involved in TPP biosynthesis and TPP-dependent enzymes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Tiamina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Tiamina Pirofosfato/metabolismo
4.
Biochem J ; 473(2): 157-66, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26537753

RESUMO

The penultimate step of thiamin diphosphate (ThDP) synthesis in plants and many bacteria is dephosphorylation of thiamin monophosphate (ThMP). Non-specific phosphatases have been thought to mediate this step and no genes encoding specific ThMP phosphatases (ThMPases) are known. Comparative genomic analysis uncovered bacterial haloacid dehalogenase (HAD) phosphatase family genes (from subfamilies IA and IB) that cluster on the chromosome with, or are fused to, thiamin synthesis genes and are thus candidates for the missing phosphatase (ThMPase). Three typical candidates (from Anaerotruncus colihominis, Dorea longicatena and Syntrophomonas wolfei) were shown to have efficient in vivo ThMPase activity by expressing them in an Escherichia coli strain engineered to require an active ThMPase for growth. In vitro assays confirmed that these candidates all preferred ThMP to any of 45 other phosphate ester substrates tested. An Arabidopsis thaliana ThMPase homologue (At4g29530) of unknown function whose expression pattern and compartmentation fit with a role in ThDP synthesis was shown to have in vivo ThMPase activity in E. coli and to prefer ThMP to any other substrate tested. However, insertional inactivation of the At4g29530 gene did not affect growth or the levels of thiamin or its phosphates, indicating that Arabidopsis has at least one other ThMPase gene. The Zea mays orthologue of At4g29530 (GRMZM2G035134) was also shown to have ThMPase activity. These data identify HAD genes specifying the elusive ThMPase activity, indicate that ThMPases are substrate-specific rather than general phosphatases and suggest that different evolutionary lineages have recruited ThMPases independently from different branches of the HAD family.


Assuntos
Proteínas de Arabidopsis/biossíntese , Proteínas de Escherichia coli/biossíntese , Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/biossíntese , Tiamina Pirofosfato/biossíntese , Animais , Catálise , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA